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Mobile robots such as unmanned ground vehicles (UGVs) and unmanned aerial
vehicles (UAVs) are increasingly used for precision agriculture.While UGVs have larger
payload capabilities and longer operation time, they are limited to 2-D space. This
makes UAVs better suited for tasks that require fast coverage, harsh terrain traversal,
and high altitude ormultilevel operation. However, it remains a challenging task to
develop a reliable yet fully autonomous UAV system that can actively extract
actionable information in large-scale cluttered agricultural environments. Such a
systemwill have to estimate its own poses, build amap of the environment, navigate
through obstacles, and act to gather informationwith limited onboard computation
and battery life. In this survey, we first review recent advances inUAV hardware and
software, ranging from novel platforms and sensors to state-of-the-art autonomous
navigation, object detection and segmentation, robot localization, andmapping
algorithms related to agriculture.We then provide a list of challenges in each field and
potential opportunities for the broader adoption of UAVs in precision agriculture.

The world is facing a unique combination of very
challenging problems1: There are over 700 mil-
lion malnourished people; most land that can

be cultivated is already in use; agriculture accounts
for over 70% of freshwater usage; pathogens can
increase the inefficiency and losses in farming; mod-
ern agriculture needs to adapt to challenges related
to climate change. While humans excel at making sci-
entific assessments (e.g., measuring sizes, identifying
species, infestation, or investigating damage to the
roots/soil) at a relatively small scale, accurately per-
forming such assessments at a large scale is still chal-
lenging. For example, data gathering forms a large
part of the expenditure on forest management but is
carried out in a rudimentary fashion with human labor.
Development and cross-fertilization of technologies in

robotics, artificial intelligence, and agriculture will
have a tremendous impact.

Many commercial solutions for precision agricul-
ture exist today, including satellite-based, UGV-based,
and UAV-based technologies. Although unmanned
ground vehicles (UGVs) have advantages in operation
time and payload capabilities, they also have intrinsic
limitations. First, ground robots can only see objects

of interest close to the ground or from a viewpoint

close to the ground, reducing the amount of informa-

tion gathered. Second, ground robots cannot traverse

steep and harsh terrains, commonly found in agricul-

tural environments (rice farms, terrace farms, and for-

ests). Finally, UGVs are unable to survey large
agriculture fields rapidly.

Recently, we have seen remarkable advances in
unmanned aerial vehicles (UAVs) that weigh less than

5 kg. UAVs can hover and fly fast in 3-D environments.

They are becoming popular in precision agriculture for

yield estimation, crop fertilization, and crop monitoring.

Most applications, however, focus on overhead flight
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through wide-open space.2 This drastically simplifies
operations, but over-canopy data severely limit what is
possible to measure. For example, it is difficult to assess
individual fruits’ sizes and health conditions, or get me-
asurements on the diameters of trees from overhead
data alone.

IN THIS ARTICLE, WEWILL DESCRIBE
THE STATE OF THE ART IN UAVS FOR
PRECISION AGRICULTURE, AND THE
CHALLENGES REQUIRED TO BUILD
AUTONOMOUS UAV SYSTEMS THAT
CAN ACTIVELY EXTRACT ACTIONABLE
INFORMATION IN CLUTTERED AND
HIGHLY UNSTRUCTURED
AGRICULTURAL ENVIRONMENTS
ACROSS MULTIPLE SQUARE
KILOMETERS, ADDRESSING
CHALLENGES ON BOTH HARDWARE
AND SOFTWARE.

UAVs capable of under-canopy flights can address
these issues. Under-canopy UAVs can achieve a good
tradeoff between coverage rate and sensor resolution
while keeping the labor cost modest. However, develop-
ing an autonomousUAVsystem that can operate at large
scale and multiple altitudes, between rows of trees, or
even go under the tree canopy is still very challenging:
First, global positioning system (GPS) is not always reli-
able due to canopy occlusion. Second, the environment
is very unstructured and dynamic (e.g., leaves or grass
blowing in the wind), which poses significant challenges
on robot odometry systems that rely on static geometric
features. Third, the environment is cluttered with many

tiny objects, which requires a very accurate and dense
mapping system.

There is prior work that addresses under-canopy
data collection but mostly with human pilots.3,4 Only a
few under-canopy autonomous flights have been dem-
onstrated so far,5,6 but the environments are much
sparser than those shown in Figure 1. Moreover, those
flights are only performed at a relatively small scale.

In this article, we will describe the state of the art
in UAVs for precision agriculture, and the challenges
required to build autonomous UAV systems that can
actively extract actionable information in cluttered
and highly unstructured agricultural environments
across multiple square kilometers, addressing chal-
lenges on both hardware and software. We will mainly
address micro-UAVs, with a focus on operation
between trees and under the canopy flight, which is
more challenging and the opportunity for impact is
more significant.

UAV HARDWARE AND
AUTONOMY

There has been a considerable progress in the past
decade with UAVs that can operate with sophisticated
sensory and computational payloads, despite the
stringent power constraints.7,8 Today, UAV technolo-
gies for agricultural applications are available as com-
mercial products. However, these solutions focus on
relatively less complex missions such as overhead
flights with GPS. Even though there are commercial
UAV systems that can perform fully autonomous
flights in cluttered environments, most of them still
rely heavily on GPS if long-range operation is required.
Moreover, they are not designed to accomplish high-
level missions in complex agricultural environments,
such as building large-scale high-resolution semantic
maps of fruits or trees.

FIGURE 1. Example forest and orchard environments. The left-hand panel shows the over-canopy view of a forest, the middle

panel shows the under-canopy view of the same forest, and the right-hand panel shows the view from a UAV flying in an apple

orchard. Navigating under tree canopy is challenging for UAVs due to moving and repetitive features, tiny branches, under-

growth, and unreliable GPS. Accurate semantic mapping is also hard because the environment is unstructured and the operat-

ing conditions (illumination, occlusions) are quite varied.
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UAV Platforms and Autonomy
An autonomy stack for UAVs usually consists of state
estimation, planning, and control modules, as shown in
Figure 3. The goal of the mission and the properties of
the environment such as scale, structuredness, clutter-
edness, and access to GPS have a significant influence
on the design of each module, which directly impacts
the onboard computing and sensor platforms. Figure 2
shows various platforms that have been used to demon-
strate safe, high-speed flight (2–10 m/s) in moderately

cluttered environments without human oversight, GPS,
or radio communications for up to 1 km.

In Mohta et al.’s work,7 a stereo visual-inertial
odometry (VIO) algorithm was used for state estima-
tion, a 2-D light detection and ranging (LiDAR)
mounted on a nodding gimbal was used for mapping
and obstacle avoidance, and a search-based motion
planner was used for motion primitives plans collision-
free and dynamically feasible trajectories. A vision-
based autonomous flight system was proposed by

FIGURE 2. Generations of autonomous UAV platforms developed by our lab. The need for autonomy in GPS-denied environ-

ments leads to bigger sensor and CPU payloads, and the need for longer flight times leads to bigger batteries. Despite the signif-

icant decrease in price/performance and weight/performance ratios for LiDARs and CPUs/GPUs, sub-500-g platforms have to be

based on camera-IMU sensing packages and smartphone processors—see, for example, the smallest platform (0.12-m radius,

185 g). Faster flight requires long-range sensing and therefore platforms based on LiDARs and move powerful CPUs, which are

bigger and heavier (over 3.5 kg).

FIGURE 3. Autonomous UAV system consists of state estimation (simultaneously estimating robot poses and building a map

from raw sensor data), planning (computing a collision-free and dynamically feasible trajectory from current pose to a given

goal), and control (tracking the trajectory considering the UAV model) modules.
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Oleynikova et al.8 for dense mapping in GPS-denied
scenarios. The system can navigate in structured and
moderately unstructured environments, such as col-
lapsed buildings. While this system was tested in simu-
lated forest environments, no real-world experiment
for such highly unstructured environments was
shown. A conservative local planning strategy was
used with unobserved space regarded as nonfree
space, which potentially limits the flight speeds as
well as the optimality of local planning. A system of
multiple UAVs collaboratively surveying and mapping
under forest canopy was presented by Tian et al.6 A 2-
D LiDAR is used for state estimation and mapping. A
collaborative simultaneous localization and mapping
(SLAM) scheme with loop closure capabilities was
proposed where object-based maps were built by
detecting trees and using them as landmarks. This
representation significantly decreases communication
bandwidth between robots and the base station. How-
ever, the proposed clustering- and filtering-based tree
detection method may not be able to reliably detect
trees for large-scale complex forests with thick under-
growth or tiny branches. In addition, the UAV is oper-
ating in a 3-D environment, much of the space will not
be observed by the 2-D body-fixed LiDAR.

A common limitation for these systems is that they
are unable to perform long-range (several kilometers)
missions in complex agricultural environments, as
illustrated in Figure 1. In addition, they also do not
have the capability of detecting and modeling objects
of interest such as fruits or trees in real time and at
scale, which is important for guiding the robot to plan
more informative trajectories.

Sensor Configuration
Due to the limited payload capability, sensors in
UAVs serve a dual purpose: they are used both for
autonomy, as well as for gathering mission-specific
data. Most commonly used sensors in UAVs for pre-
cision agriculture include: cameras, IMUs, LiDARs,
and global navigation satellite systems (GNSS).
Because multirotor UAVs consume around 100–200
W/kg,9 lightweight sensors naturally enable longer
missions.

Cameras and IMUs provide a lightweight low-power
sensor combination for navigation and obstacle avoid-
ance.2 For navigation purposes, cameras and IMUs can
provide fast odometry updates in GPS-denied condi-
tions. However, cameras suffer from intrinsic draw-
backs, such as scale ambiguity, the requirement for
calibration, limited dynamic range, and high computa-
tion requirements. For example, the limited baseline of

stereo cameras has a direct impact on the depth error.
Direct sunlight or darkness affects the performance of
cameras. For instance, sunlight coming through cano-
pies can create patches of bright spots on the ground,
making it difficult to adjust exposure. Some of these
problems may be solved with the use of event-based
cameras,10 but they are heavier and more expensive
than conventional cameras.

Three-dimensional LiDARs provide rich informa-
tion for autonomous robotic platforms, with the abil-
ity to perceive objects at tens to hundreds of
meters. This makes them an essential sensor for
obstacle avoidance flights at high speed in very clut-
tered environments or when accurate measure-
ments are required. While still expensive, 3-D LiDAR
prices have dropped significantly in the recent
years, and LiDAR-based algorithms are a fast-grow-
ing field of research. Unfortunately, the sensor
weight is still considerable. Solid-state LiDAR which
replaces the moving parts of traditional LiDARs with
semiconductors, may offer a significant improve-
ment over the current technologies in term of
robustness, weight, and power consumption.

Both cameras and LiDARs have their unique
advantages, and combining them provides a good bal-
ance between the different capabilities of the sensors.
For such an approach, there will be challenges regard-
ing meeting size and weight constraints as well as sen-
sor synchronization and calibration.

Finally, GNSS sensors such as GPS allow robots to
obtain geospatial positioning. These sensors are inex-
pensive, and their accuracy can be as high as 1 m. How-
ever, if there are obstacles between the receiver and
the satellite, the accuracy of GNSS decreases, which is
the case for between-tree or under-canopy environ-
ments. Enhancements to GNSS using ground stations,
such as differential GPS (DGPS) and real-time kinemat-
ics (RTK), allow improvements in accuracy up to the
centimeter range. When using corrections, it is neces-
sary to have a radio link between the UAV and the base
station. Postprocessing techniques, such as postpro-
cessed kinematic (PPK), can help get accuratemeasure-
ments when there is no available link between the base
station and the robot, but it cannot be used for real-
time control. For these reasons, a reliable onboard state
estimation system without relying on GPS is key to
UAVs in precision agriculture.

Challenges
Obstacles like thin branches are notoriously hard to
detect, yet failure to avoid them will result in cata-
strophic crashes. An obvious solution is to increase the
resolution of the onboard sensors. Kong et al.11
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proposed a fully autonomous quadrotor system with a
forward facing solid-state LiDAR that can fly safely in
cluttered environments while avoiding small obstacles.
By focusing the LiDAR beams to the front, the sensor
effectively gains resolution, but at the cost of the full
360-degree spatial awareness provided by a spinning
LiDAR with lower resolution. As UAVs usually have lim-
ited payload and onboard computation, this problem
cannot be solved by adding more sensors without
sacrificing flight time. The tradeoff between sensing
capability and power consumption should be carefully
investigated when designing such systems.

Smaller UAVs are safer, able to fly through narrower
gaps, more agile, and easier to deploy. Although small
and lightweight UAVs are available in the market, their
autonomy stack capabilities, computation power, and
data storage for performing large-scale autonomous
missions in GPS-denied conditions is still limited.

Running onboard deep learning detectors is
especially challenging because of the computational
needs. While some of the data may be postprocessed,
inference at the edge may be required when deep
learning is used in the robot control loop. Network dis-
cretization12 and AI accelerators such as application-
specific integrated circuits (ASICs)13 and embedded
general-purpose graphics processing units (GPGPUs)
may be the key toward intensive machine learning
onboard UAVs.

A friendly and intuitive user interface is required to
democratize the access to complex agricultural UAV
systems, and abstracting this complexity to the user is
challenging. When trying to operate in a new environ-
ment, UAVs usually require tuning and configuration
from knowledgeable users.

OBJECT DETECTION AND
SEGMENTATION

Object detection and semantic segmentation are cru-
cial to precision agriculture because actionable infor-
mation is usually related to semantic features such as
fruits or trees, or phenotype data. In this section, we
will review methods to obtain semantic features
based on both 2-D images and 3-D LiDAR data.

Image-Based (2-D)
Various imaging techniques including RGB, multispec-
tral and hypersectral, thermal, and near-infrared
images have been used for agricultural applications
such as image classification, anomaly detection, and
yield estimation.

Early attempts use classical machine learning meth-
ods, such as K-means clustering and support vector

machines, to solve agriculture-related object detection
and segmentation problems, using hand-crafted fea-
tures. Later efforts shift toward a data-driven para-
digm,4,14 accelerated by the massive progress in deep
learning. These techniques have also been used in agri-
culture-related tasks such as weed detection, plant
stress assessment, leaf area index evaluation, soil seg-
mentation, or moisture distribution modeling. We refer
the readers to a recent survey on this topic.15

LIDAR-Based (3-D)
The most commonly used 3-D representation for
object detection include voxel grid, point cloud, multi-
view, and spherical image.

Volumetric convolutional neural networks (CNNs)
represent data as 3-D occupancy grids, and directly
apply 3-D convolution on this representation. Multi-
view-based approaches project 3-D data from differ-
ent viewing angles to a 2-D image, which can then be
fed to existing image-based CNNs. However, the pro-
jection process is sensitive to noisy or incomplete
input, and the voxelization process induces informa-
tion loss. For this reason, some argue that it is better
to directly use point clouds. Other approaches also
combine 2-D multiview and 3-D point cloud represen-
tations. Another solution to this problem is projecting
range data of each LiDAR scan into a spherical image
(i.e., range image), which can also leverage existing
image-based CNNs while avoiding information loss.
For further references, we refer our readers to a recent
survey paper by Guo et al.16

The application of these techniques in agriculture
is a relatively new area of study. Some recent work
use methods such as clustering, filtering, circle fitting,
and arc extraction to detect trees.6 However, their
performances are parameter-sensitive, which require
expert knowledge to tune. Therefore, a data-driven
approach is preferred for large-scale complicated agri-
culture environments. For instance, Chen et al.3 used
a data-driven approach to detect trees from point
clouds using LiDAR range images.

Challenges
Access to large high-quality labeled data sets
remains a significant challenge. While there exist
many labeled data sets in the public domain, very
few are agriculture specific.17,18 Transfer learning
can be used to adapt models trained on general
data sets to agriculture settings.4 Another approach
is to leverage synthetic data sets. However, the so-
called sim-to-real gap is still quite significant. Finally,
for tasks such as yield estimation, acquiring
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accurate ground-truth harvest data still remains
labor intensive and time-dependent.

Occlusion poses a big challenge to yield estimation
and semantic mapping in orchards. Simple statistical
tools such as linear regression can be used to account
for the difference between estimated and actual yields.
However, these calibration procedures are limited in
that they require the presence of previous harvest yield
data. Possible solutions to deal with heavy occlusions
include aggregating information from multiple views
and multiple sensors, or utilizing robotic manipulators
to effectively expose the occluded objects.

ROBOT LOCALIZATION
ANDMAPPING
Traditional Localization andMapping
Robot localization and mapping is a key module in
autonomous navigation system. Mapping is the task
of accumulating readings from one or more sensors
over time into a representation of the space observed
by a robotic agent. The agent may also be required to
estimate its position with respect to this map.

Traditional approaches address this problem rely-
ing on geometric features (corners, lines, and planes).
Plane and line features are hard to find. Corner fea-
tures are repetitive, hard to match, and sometimes
dynamic (e.g., corners on the grass or undergrowth
move with the wind), which leads to large drifts or
even failure in robot localization. A potential solution
to these problems is exploiting semantics or prior
knowledge about the structure of the field.

Semantic Localization and Mapping
The importance of semantic features is twofold: first,
they allow us to generate a meaningful map repre-
sented by models of objects of interests; second, they
enable more reliable robot pose estimation. Semantic
objects are sparser and more unambiguous and thus
less susceptible to mismatching and semantic infor-
mation can indicate whether the object is static.

For agriculture-related localization and mapping,
some prior work also utilizes semantic information. For
example, although trees look largely similar to each
other, they are much sparser compared to corner fea-
tures. Thus, it is easier to track them across a data
sequence (e.g., image frames, LiDAR scans). In addi-
tion, the spatial relationship of semantic features, such
as polygons formed by multiple trees, can be used as
descriptors for local regions.19 Such descriptors can be
utilized to help robot correct drift, detect loop closures,
and build a better map over a long range.

Semantic LiDAR odometry and mapping (SLOAM)
is proposed by Chen et al.,3 which generates high-res-
olution forest maps and extracts timber volume esti-
mates. SLOAM detects trees and ground using a
neural network and explicitly models them. These
models are used for mapping and state estimation.

A monocular-camera-only CNN-based system that
counts and maps fruits from image sequences was
proposed by Liu et al.,20 where the reconstructed 3-D
fruit locations are used to reject outliers that cannot
be identified in 2-D images. Semantic information
including tree trunks and ground were used by
Dong et al.21 to align and merge views from two oppo-
site sides of the tree rows. Chebrolu et al.22 augmented
classic features with semantic data, using the segmen-
tation of crops, weeds, and their stem positions to
improve data association between an orthomosaic
map and images captured from a ground robot.

Challenges
Agricultural environments pose additional challenges
to the robot’s localization and mapping capability
compared to urban ones, especially at a larger scale.
Typical urban environments have plenty of man-made
objects with well-defined geometric, visual, and
semantic features. Such features enables state-of-
the-art SLAM algorithms to produce high-quality
maps, which in turn allows accurate robot localization.
However, these features are rare in an agricultural set-
ting. For example, in a dense forest or orchard, many
trees have similar textures and shapes, which causes
perceptual aliasing for both vision and LiDAR sensors.
If not carefully dealt with, they will give rise to incor-
rect data association and result in estimator drift, or
even complete failure.

WE IMAGINE A FUTUREWHERE
AUTONOMOUS UAVsWILL HAVE A
TREMENDOUS IMPACT IN PRECISION
AGRICULTURE, ENABLING FAST
INFORMATION ACQUISITION IN
LARGE-SCALE COMPLEX
ENVIRONMENTS.

Semantic mapping consists of adding semantic
concepts to geometric map. Building a semantic map
is an important step toward a more efficient, task-
based representation for human interaction. In addi-
tion, it leads to a hierarchical map representation in
which the top level only incorporates sparse semantic
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information for action guidance, and a smaller geo-
metric map can be built around the robot for local
motion planning and obstacle avoidance. This facili-
tates real-time computation for autonomous opera-
tion on resource-constraint robots.

Active mapping is the process of robot actively
choosing actions to reduce uncertainties in the map
based on its sensor measurement model. However, it is
hard to directly apply such methods to agricultural envi-
ronments where the scale is large and information is
densely distributed.One potential solution is to leverage
the semantic map since it is usually sparser than the
metric map. This in turn requires measurement models
that can account for uncertainties in semantic informa-
tion in ameaningful and efficientmanner.

CONCLUSION
We imagine a future where autonomous UAVs will
have a tremendous impact in precision agriculture,
enabling fast information acquisition in large-scale
complex environments. In this survey, we have sum-
marized the recent advances regarding UAV hardware
and software, and highlighted challenges and opportu-
nities toward ubiquitous adoption of UAVs in precision
agriculture. It is our hope that this work provides a
roadmap for both academic and industrial efforts,
such as NSF Engineering Research Center for the
Internet of Things for Precision Agriculture (IoT4Ag).1
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