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Abstract—

In this paper, we propose an energy-efficient architecture which is designed to receive both
images and text inputs as a step towards designing reinforcement learning agents that can
understand human language and act in real-world environments. We evaluate our proposed
method on three different software environments and a low power drone named Crazyflie to
navigate towards specified goals and avoid obstacles successfully. To find the most efficient
language-guided RL model, we implemented the model with various configurations of image
input sizes and text instruction sizes on the Crazyflie drone GAP8 which consists of 8 RISC-V
cores. The task completion success rate and onboard power consumption, latency, and memory
usage of GAP8 are measured and compared with Jetson TX2 ARM CPU and Raspberry Pi 4. The
results show that by decreasing 20% of input image size we achieve up to 78% energy
improvement while achieving an 82% task completion success rate.

B REINFORCEMENT LEARNING (RL) is a
goal-oriented paradigm of machine learning in
which the RL agent tries to learn a policy to
perform tasks by trial and error. RL is the best
suited for applications that involve sequential
decision making like autonomous drone naviga-
tion [1] and robot control [2], where the agent
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needs to take several actions in an environment
to perform the desired task. In RL, the agent
learns the policy using the reward function. But
human language can also be used to specify
goals as shown in [3]. It is beneficial to train
the agent in a way that easily abides the human
instructions. One scalable way to do this is by us-
ing language instructions. Recent works in using
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Figure 1. Proposed architecture for the RL agent training and inference. The agent learns the desired policy by
receiving the instructions in the form of text from user and images from the environment. During the inference,
the hardware-intensive language module is replaced by a vector-map to reduce the power and area and
increase the efficiency of the design. Efficient reinforcement learning model is suitable for deploying on resource

2

constraint autonomous systems such as Crazyflie.

language to guide RL agents have gained a great
interest among Al researchers [4]. These meth-
ods have shown improvement in making agents
autonomous and able to understand human lan-
guage. Instructions are processed using language
processing techniques to generate text embedding
to feed the agent. Besides making it easy to
specify goals and rewards, language can be used
to convey constraints and improve the safety of
RL agents. Hardware implementation of Neural
Networks (NN) has gained a lot of attention in
recent years. But most of the previous research in
the NN-based RL domain has only focused on the
algorithm and theoretical aspects, and very few
works have considered hardware implementation
for RL [5]. In this work, we propose an approach
to implement a hardware-friendly NN-based RL
for resource constrained autonomous agents to
make them able to interpret the natural language
instructions [6] and to perform instructed tasks
in real-world scenarios. To achieve this, we used
several RL environments and integrated a lan-
guage instruction module into them. Then, to
have an efficient language-guided RL, we remove
hardware-intensive language modules. Moreover,
we address the energy efficiency trade-off of the
RL model on different instruction and image
input sizes. Finally, we implemented the efficient
model on a tiny drone to measure the power
consumption and performance of the model.
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Efficient Guiding Reinforcement
Learning Agent with Language

In traditional RL, agents interact with the en-
vironment through a set of actions A to maximize
the reward R. We build off of the traditional
method which considers Markov Decision Pro-
cess (MDP), defined by the tuple (S, A, P, R,~)
where S and A are the state and action spaces,
respectively. v € (0,1) is the discount factor and
T (s'|s,a) represents the transition distribution.
The goal of the RL agent is to find the optimal
policy P that maximizes the reward function R.
The trajectory is a sequence of state actions.

Goals can be specified using various ways.
One popular way is by using language instruc-
tions. Language is a set of structured and fixed
instructions that have been given to the RL agent
to accomplish desired tasks. Figure 1 illustrates
the system overview of the proposed approach.
The proposed system architecture consists of two
main parts: agent and efficient RL edge model.
RL agent explores an environment and takes
feedback to reach a goal given in the language
module as an instruction. The language module
consists of a Gated Recurrent Unit (GRU), which
translates the instruction in the form of a text
to a vector of text embedding. For instance,
if we have a set of words {“go”, “to”, “the”,
“sphere”, “box”, “triangle”} a combination of
them creates a command such as “go to the
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sphere”. Each word corresponds to a number,
and in this way, a vector of numbers means a
command. RL agent also receives states in the
form of an image and produces a vector of image
embedding. Later, the output of the language
module is concatenated with the output of the
Convolutional Neural Network (CNN) and passed
through Fully-Connected (FC) layers.

In this paper, we used several instructions to
guide the agent. Therefore, the language module
is used for the training phase to process the
human language-based commands and to gener-
ate a set of vectors corresponding to a specific
instruction using GRU. We extract the encoded
vector of that command during the training and
store them in LUT as shown in Table 1 because,
despite showing great performance in tasks such
as processing the natural human language, GRUs
are hard to port on the hardware and are also
computing-intensive. One scalable way to address
this problem is to replace the language module
during the inference with a LUT since it can
significantly speed up the computation during the
inference. Therefore, to have an efficient deploy-
ment of language-guided RL on edge devices
during the inference phase, the bulky language
module is replaced with a simple vector-map. The
vector-map can feed the saved instruction vectors
to the agent to increase the efficiency of the
design. In this way we can significantly reduce
the power consumption and make the RL model
suitable to be deployed on resource constrained
edge devices. Moreover, for experiments with
n goals, n separate vectors will be generated
making this architecture appropriate for multiple
goals, as opposed to binary encoding.

Experimental Setup

In this section, we explain the environ-
ments and setup used for evaluating the per-
formance of the proposed approach. Figure 2
shows three different RL environments that are
chosen in a way that each environment repre-
sents variant level of policy complexity: Gym
Mini-Grid, Gym Mini-World and Air-Learning
environments. For each environment, we de-
fined the reward function for the agent as
R=1 — 0.2 x (current_step/max_step)
if the agent performs the instructed task, and 0
otherwise. All of the models consist of GRU,
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Table 1. Example of language instruction constraints used
in three different environments to instruct the desired

policy to the agent.

#  Instructions Vector-Map  Environments
1 Use the red door {1,4,6,9} Mini-Grid

2 Go through the blue door {2,5,7,9} Mini-Grid

3 Open the gray door {3.4,8,9} Mini-Grid

4 Pick up the red box {1.4,5.8} Mini-World

5 Go to the blue box {2.4,6,8} Mini-World

6  Lift to the blue box {3,4,7,8} Mini-World

7  Fly to the red sphere {1,4,5,7} Air-Learning
8  Aviate towards the red sphere {2,457} Air-Learning
9  Fly to the blue sphere {3.4,6,7} Air-Learning

convolutional, and fully-connected layers. The
agent is trained using Proximal Policy Optimiza-
tion (PPO) [8] in all three environments.

Gym Mini-Grid [9]

Mini-Grid Go-to-Door is a minimalistic 2D
environment for RL research which is illustrated
in Figure 2 (a). In this environment, there are
multiple doors of different colors. The goal of
the agent is to navigate towards the instructed
door with a specific color and exit the room
by opening the door. We designed a scenario
in which the agent starts in a room with four
doors, one on each wall. The agent receives an
instruction vector as an input, commanding it to
go towards a door: “go to the red door”. Episodes
terminate at 128 steps if the agent can not finish
the instructed task, or violate it and receive a
negative reward.

Gym Mini-World [10]

To observe the performance of the proposed
method in an environment with higher complex-
ity, we evaluated the models performance in the
Mini-World environment, a 3D environment de-
signed for RL and robotics research. The agent
can navigate in different rooms and manipu-
late objects using first-person, as shown in Fig-
ure 2 (b). In our experiments, we set up a scenario
where the agent is in a room with two boxes: red
and blue. Depending on the instruction, the agent
has to reach one of the boxes.

Air-Learning [11]
Air-Learning is designed specifically targeted
for aerial robotics and autonomous Unmanned
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Figure 2. Snapshots of the three software environments: (a) Mini-Grid, (b) Mini-World, (c) Simple Air-Learning,
and (d) Complex Air-Learning in which the agent is instructed to learn the desired policy, while the environment
complexity increases in the order. In the Mini-Grid environment, the agent is instructed to open a specific door
and exit the room. In the Mini-World environment, the agent is requested to navigate toward a colored box in
a 3-D environment. In Air-Learning, the agent is a drone flying in a realistic environment and is instructed to
find and hover over a certain object, while avoiding the obstacles during navigation. All environments back-
end is modified so that the agent could be instructed using the proposed language-based RL architecture, the

software codes can be found in UMBC-EEHPC GitHub.

Aerial Vehicles (UAVs) in 3D environment and
offers the most complex setting for our drone
experiments. It generates high-fidelity photo-
realistic environments with domain randomiza-
tion and flight physics model for the UAVs to
fly in. We designed a scenario in Air-Learning in
which a drone starts at a random location in a
10mx10m room and receives an instruction for
navigating toward an object. The model receives
324x244 RGB images from the drone’s camera
as its input and generates actions to navigate to-
ward an object in the environment. Each episode
is terminated after 200 steps if the agent does not
perform the instructed task. Figure 2 (c) shows
an overview of the Air-Learning environment.
As illustrated in Figure 2 (d), we increase the
complexity of the environment by adding several
obstacles for the drone to avoid while navigating
towards the goals.
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Simulation Results and Evaluation

We evaluated and measured the performance
of each model in the related environments. The
neural network architecture of all the agents for
these environments consists of text embedding
for the instruction, and three convolutional layers
that are followed by two fully connected layers,
which eventually generate the agent’s action. To
evaluate the performance, we measured the suc-
cess rate which is the number of times the agent
reaches the given goal over the total number of
experiments during training. Figure 3 (top row)
shows that the success rate has an increasing trend
and the value loss has a decreasing trend. The
final success rate for the Mini-Grid and Mini-
World environments were 98% after 2 Million
steps of training, and 95% after 10 Million steps
of training, respectively. The value loss is also
shown for these two environments. As shown
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Figure 3. Success rate achieved by the proposed language-guided RL agent in the Mini-Grid, Mini-World, and
Air-Learning environments with respect to the number of episode steps. The Air-Learning experiments consist
of simple and complex configurations with obstacles as well as a comparison with baseline RL. The proposed
technique in the Air-Learning environment achieves near 100% success rate after 25K steps whereas the
baseline does not improve beyond 30% even after 100K steps.

in Figure 3 (bottom row), for the model trained
in the Air-Learning environment, the RL agent
achieved reasonable task completion rate of 90%
and 86% after 100K steps for the simple and
complex environment, respectively. As a base-
line, we consider the same architecture without
the language module. However, after 35 hours
of training, the success rate is under 20% and
the agent failed to converge to one that could
successfully reach a given object. We also observe
that with addition of more objects in the envi-
ronment, the performance of the baseline model
reduces significantly as can be seen in Figure 3.
In the test phase we gave the agent some new
instructions with minor changes. For instance,
instead of “go to the red sphere” we gave “fly to
the red sphere”. The agent successfully handled
these minor changes. But, when we tested with
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instructions that are completely different from the
train set, we got a success rate of 40% over 250
experiments. To conclude, our model has no over-
fitting as long as the changes are minor.

Hardware Implementation and Results
To find the most efficient language-guided RL
model, we implemented the model with various
configurations on the Crazyflie nano drone [12].
We considered five different image input sizes:
324 %244, 259%x 195, 194x 146, 129x97, 64x48,
and four different input instruction text sizes:
256KB, 128KB, 64KB, and 32KB. As shown in
Figure 4 (a), Crazyflie consists of GAPS8 proces-
sor which has a RISC-V based PULP platform
with two compute domains: (1) a fabric controller
for controlling tasks and 512KB L2 memory
expandable and (2) a cluster domain with 8 cores
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Figure 4. (a) GAP8 architecture includes 8 parallel cores, L1, L2 and L3 memory. (b) GAP8 processor on the
Al-deck and Crazyflie with power measurement setup. (c) Energy consumption analysis on different instruction
text input and image input size. For each image size category the text size from left is equal to 256KB, 128KB,
64KB and 32KB, respectively. It shows decreasing input image size from 324x244 to 259x195 leads to achieve

up to 78% energy improvement.

Core 7

Image Size | Core Utilization | MDMA Utilization | Execution Time (ms)
324x244 68% 100% 3000
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Figure 5. Snapshots of GAP8-based Al-deck plat-
form that is used to get VCD traces for two different
image input sizes: (a) 324x244 and (b) 259x195.
(c) Core and Micro-DMA (MDMA) utilization is ex-
tracted from VCD traces.

for parallel computation of highly demanding
workloads and 64KB directly accessible L1 mem-
ory. We quantized our network using TFLite and
deployed it using GAPflow on the Crazyflie.
GAPflow includes NNTool and AutoTiler, which
NNTool parses and prepares TFLite models. Au-
toTiler converts the parsed model into optimized
C code that can be executed efficiently in parallel
by the 8 cores in the cluster.

Figure 4 (b) shows the Crazyflie drone, which
is used for the real-world implementation, along
with power measurement setup, using INA 219
sensor and Arduino board. The bar plots in Fig-
ure 4 (c) show the energy consumption that is
calculated based on collected latency and power
consumption results using the GAP8-based Al-
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deck platform. For all 20 models, the amount of
time each layer took to execute in both cycles
and microseconds was summed to get a total
time for the entire model. Afterwards, the model
was looped over and over again to collect power
data using the attached Arduino and INA 219.
From the collected results, it was found that
although the amount of instruction being input
to the neural network did have an effect on the
time-to-completion of each inference, the image
size had a much larger effect. Also, it was found
that certain image sizes, especially 324 x 244 took
what effectively seemed to be a disproportion-
ately large amount of time for the RL model to
process compared to image sizes that were not
very much smaller, such as the 259x195. The
result in Figure 4 (c) shows that by decreasing
20% of input image size we achieve up to 78%
energy improvement with 128KB text size while
achieving an 82% task completion success rate.
From the VCD traces shown in Figure 5, it ap-
pears that this is primarily coming down to usage
patterns of both the Cluster-DMA (CDMA) and
Micro-DMA (MDMA) units. The CDMA engine
is responsible for moving data between L1 and
L2 memory, L1 memory being an application-
managed scratchpad. The MDMA is responsi-
ble for transferring data between the different
peripherals attached to the GAPS8. For Neural
Networks (NN), it is used to move weights from
what is known as L3 memory, essentially extra
RAM attached to the HyperBus. This RAM is
much slower and more power-intensive than the
L1/L2 memory but stores significantly more data.
Figure 5 (a) shows within the 324x244 image
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Table 2. Hardware implementation results of the model extracted from Air-Learning environment on the commercial

off-the-shelf devices. We use same input image and text sizes in all platforms to extract results which are 259x195 and

128KB, respectively.

Metric/Platform Macbook Pro  Nvidia Jetson TX2  Raspberry Pi  Crazyflie GAP8
Latency (ms) 23 70 103 550
Throughput (Labels/Sec) 43.5 14.3 9.7 1.8
Power (W) N/A 3.9 4.8 0.36
Performance (GOPS) 8.4 2.8 1.9 0.4
Energy/Inference (mJ) N/A 273 495 198

input size, both DMA units are active nearly the
entire execution time of the NN, thus causing
the processor to have to waste cycles waiting
for data. Figure 5 (b) shows, model with image
input size 259x195 used both DMA engines
much less frequently. Also, near the end of the
NN inference, the MDMA unit stops being used
entirely, while the CDMA unit is accessed much
less frequently. Based on power usage by each
NN, it was found that the smaller NN used less
energy at any given time. However, the total
execution time for inference was similar in each
case.

We also implemented the most efficient model
on several commercial off-the-shelf edge plat-
forms including Raspberry Pi, Nvidia Jetson
TX2, and Crazyflie GAP8 to measure throughput,
power consumption, and energy efficiency. All
platforms were configured to perform at their
peak performances. The implementation result
is summarized in Table 2. As is illustrated, the
server-based implementation achieved the best
throughput by producing 43.5 inferences per sec-
ond when running the model on a MacBook
Pro with ARM-based architecture which has 10
Core CPU running at maximum frequency of
3200 MHz and can achieve up to a peak per-
formance of 65 GFlops/Sec. Nvidia Jetson TX2
and Raspberry Pi implementation also achieved
14.3 and 9.7 inferences per second throughput
by consuming 273 mJ and 495 ml energy per
inference, respectively. Implementation on GAPS
and the extension board of the Crazyflie resulted
in 1.8 inferences per second by consuming only
0.36 Watts of power and 198 mJ energy.

To evaluate the performance of the model in
real world, we created a room similar to the Air-
Learning environment and deployed the model on
the Crazyflie nano drone [12]. In this scenario, the
UAV starts at a random location in a room and
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is instructed to find and navigate to the goal. In
addition to the difficulties in implementing GRUs
on resource constrained devices, another signifi-
cant challenge is in transferring trained models
from simulation to real world. Although, the
simulation environment is created to resemble the
real world, some visual differences affect the real
world performance leading to a low success rate.
Therefore, we had to find controls that work well
with Crazyflie in the real world. Additionally, due
to the power constraints on Crazyflie, there is
a very limited time for the UAV to reach the
goal, which led us to consider 200 steps as the
terminating point.

Conclusion

In this article, we presented an approach for
efficient deployment of language-guided Rein-
forcement Learning (RL) on resource constrained
autonomous systems. We evaluated the perfor-
mance of the proposed approach by testing it in
three RL environments with different levels of
complexity, including a realistic environment for
autonomous Unmanned Aerial Vehicles (UAVs).
By training the model in Air-Learning, a photo-
realistic environment and creating a real-world
replicate of the environment, we were able to
deploy the proposed efficient language-guided RL
on a tiny drone named Crazyflie.

Furthermore, we found the most energy-
efficient option for real-time deployment of the
language-guided RL model. To achieve this goal,
we measured power consumption and latency for
different image and instruction input sizes on
several off-the-shelf devices. In this work, we
explored several aspects, including algorithmic
design of the language-guided RL model, real-
world deployment of the proposed work, and
energy-efficient implementation of the model on
edge devices. To the best of our knowledge, there
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are no similar works that take all these mat-
ters into account while implementing an energy-
efficient language-guided RL model. Our pro-
posed method is also scalable to multi-agent use
cases where several agents can communicate and
share information such as location and task com-
pletion. We believe that the new wave of deploy-
ing RL algorithms on the edge devices, such as
autonomous UAVs or robotic applications, along
with the increase of open source RL environments
and frameworks, will result in great demand for
efficient implementation of RL applications and
facilitate future research in this direction.
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