
DEPARTMENT: EXPERT OPINION

RadioML Meets FINN: Enabling Future RF
ApplicationsWith FPGA Streaming
Architectures
Felix Jentzsch , Paderborn University, 33098, Paderborn, Germany

Yaman Umuroglu , Alessandro Pappalardo , and Michaela Blott , AMD, D24 T683, Dublin, Ireland

Marco Platzner , Paderborn University, 33098, Paderborn, Germany

Deep neural networks (DNNs) are penetrating into a broad spectrum of
applications and replacing manual algorithmic implementations, including the
radio frequency communications domain with classical signal processing
algorithms. However, the high throughput (gigasamples per second) and low
latency requirements of this application domain pose a significant hurdle for
adopting computationally demanding DNNs. In this article, we explore highly
specialized DNN inference accelerator approaches on field-programmable gate
arrays (FPGAs) for RadioML modulation classification. Using an automated end-to-
end flow for the generation of the FPGA solution, we can easily explore a spectrum
of solutions that optimize for different design targets, including accuracy, power
efficiency, resources, throughput, and latency. By leveraging reduced precision
arithmetic and customized streaming dataflow, we demonstrate a solution that
meets the application requirements and outperforms alternative FPGA efforts by
3.5� in terms of throughput. Against modern embedded graphics processing units
(GPUs), we measure >10� higher throughput and >100� lower latency under
comparable accuracy and power envelopes.

D eep learning is rapidly expanding into new
horizons, including the communications
space. Traditionally, this is a mature field of

engineering, where solutions are carefully crafted by
experts. However, the ever-increasing complexity of
communication networks has prompted the explora-
tion of deep neural networks (DNNs) for various use
cases, ranging from traffic monitoring tasks to the
physical interface design of radio frequency (RF) sys-
tems.1 The latter is one example of the “RadioML”
domain, where conventional radio signal processing
is replaced by DNN-based processing. While this
approach has shown great potential,2 it also comes
with great challenges, as radio signals are handled
exclusively at the edge, often on highly constrained

mobile devices that lack the compute or energy bud-
get to run modern DNNs with sufficient performance.
Traditional compute accelerators, such as graphics
processing units (GPUs), are well-optimized for the
huge DNNs in vision-based applications, but models
used for RadioML pose a different challenge as they
are typically much smaller and operate on short
frames of time-series data. In turn, the live processing
of an RF signal demands extreme throughput and
ultra-low latency, which lies well beyond what is cur-
rently possible with GPUs.

To tackle these unique challenges of RadioML, joint
specialization of the hardware accelerator and the DNN
itself is key. Field-programmable gate arrays (FPGAs)
offer theflexibility andparallelism to satisfy these require-
ments, but harnessing this potential is difficult, especially
for nonexperts or under tight development time con-
straints. Here, wemake the case for automatically-gener-
ated, custom-tailored accelerators for quantized DNNs,
enabled by Xilinx’ open-source FINN compiler framework.
These accelerators follow the streaming dataflow archi-
tectural paradigm, involving layer-parallel processing of

0272-1732 � 2022 IEEE
Digital Object Identifier 10.1109/MM.2022.3202091
Date of current version 28 October 2022.

November/December 2022 Published by the IEEE Computer Society IEEE Micro 125

https://orcid.org/0000-0003-4987-5708
https://orcid.org/0000-0003-4987-5708
https://orcid.org/0000-0003-4987-5708
https://orcid.org/0000-0003-4987-5708
https://orcid.org/0000-0003-4987-5708
https://orcid.org/0000-0002-3700-5935
https://orcid.org/0000-0002-3700-5935
https://orcid.org/0000-0002-3700-5935
https://orcid.org/0000-0002-3700-5935
https://orcid.org/0000-0002-3700-5935
https://orcid.org/0000-0001-9386-5510
https://orcid.org/0000-0001-9386-5510
https://orcid.org/0000-0001-9386-5510
https://orcid.org/0000-0001-9386-5510
https://orcid.org/0000-0001-9386-5510
https://orcid.org/0000-0002-7833-4057
https://orcid.org/0000-0002-7833-4057
https://orcid.org/0000-0002-7833-4057
https://orcid.org/0000-0002-7833-4057
https://orcid.org/0000-0002-7833-4057
https://orcid.org/0000-0002-6893-063X
https://orcid.org/0000-0002-6893-063X
https://orcid.org/0000-0002-6893-063X
https://orcid.org/0000-0002-6893-063X
https://orcid.org/0000-0002-6893-063X

the input stream, which departs from conventional com-
pute arrays and enables deep pipelining and memory
accessminimization.

Byway of example,we study one of themost popular
RadioML use cases: automatic modulation classifica-
tion. In this task, a DNN is trained to classify themodula-
tion scheme [e.g., frequency modulation (FM), binary
phase-shift keying (BPSK), quadrature amplitude modu-
lation (QAM)-16, etc.] of a received signal. We use the
open “RadioML 2018” dataset fromDeepSig,3 which cov-
ers awide range ofmodulation types and signal-to-noise
ratios (SNRs) and provides a baseline 1-D convolutional
neural network (CNN), showing that it can outscore tra-
ditional classification based on engineered features,
such as higher ordermoments.

In this work, we first make the case for a well-
suited target platform for modulation classification
and present our end-to-end tool flow to accelerate
the involved CNN. Then, we report on several FINN-
generated prototypes and compare them with related
FPGA implementations and GPU platforms.

CASE FOR RadioML ON RFSoC
Next-generation radio architectures need platforms
that can address a wide range of requirements with the
same basic hardware. This adaptability is critical to
accommodate emerging and ever-changing standards.
FPGAs have historically provided flexible solutions for
implementing the digital front-end and interfacing
requirements of recent radio generations. RF system-
on-chip (RFSoC) devices, such as Xilinx’ Zynq Ultra-
Scale RFSoC, improve this level of flexibility by integrat-
ing RF-sampling data converters into a single chip, next
to an ARM-based processing system and programma-
ble logic fabric. Direct RF sampling, together with opti-
mized digital signal processing (DSP) engines, offers a
much more flexible approach to traditional analog

frequency translation and filtering by enabling much of
the signal processing to be done in the digital domain.
This also eliminates the need for external input/output
interfaces, which can consume a significant amount of
power. In addition, the availability of FPGA programma-
ble logic on the same device enables direct integration
of downstream applications, such as DNN processing.

Figure 1 shows how such a DNN accelerator can be
integrated on an RFSoC for classifying the modulation
of a received I/Q modulated signal, commonly used for
software-defined radios (SDRs). The datapath begins
with the analog-to-digital converter (ADC), which sam-
ples the RF signal at up to 4 gigasamples per second
(GS/s). Next, the samples pass through the configurable
digital down-converter block, where a quadrature mixer
shifts the signal from its carrier frequency down to the
equivalent baseband signal. The resulting streams of in-
phase (I) and quadrature (Q) components can then be
down-sampled by a factor of one to eight using decima-
tion filters before they are stored in a first-in–first-out
(FIFO) gearbox buffer, resulting in an output data rate
between 4 and 0.5 GS/s for the maximum ADC sample
rate. In the case of our modulation classification exam-
ple, this I/Q signal representation corresponds to
approximately 2.5million frames of length 1,024. Figure 1
illustrates two exemplary frame segments of BPSK-
modulated signals at 0- and 30-dB SNR. Data streams
within the FPGA are implemented via the AXI-Stream
protocol and feed in and out of the inference accelera-
tor. The final output is a frame’s classification result.

FINN FRAMEWORK FOR
STREAMING DNN ARCHITECTURES

The open-source framework FINN4 generates special-
ized DNN accelerators for FPGAs using streaming
dataflow architectures, with the hardware architec-
ture customized to the specifics of a DNN topology

FIGURE 1. RFSoC integration of (simplified) RF front-end and DNN accelerator. Input frame examples are taken from the modula-

tion classification dataset and come in the form of baseband in-phase/quadrature (I/Q) components (orange/blue).

126 IEEE Micro November/December 2022

EXPERT OPINION

and particular datatypes used. Each layer is instanti-
ated with its designated compute units in hardware.
On-chip data streams interconnect the compute units
to form the desired network topology. The small and
compact size of reduced-precision quantized DNNs
(QNNs) allows us to scale performance of the acceler-
ator via reduced resource requirements of lower preci-
sion operators and store all parameters on the chip,
thus avoiding external memory bottlenecks. To
achieve high accuracy for low precision QNNs, we
leverage the open-source PyTorch library Brevitas.5

Hardware Architecture
Figure 2 visualizes the FINN-generated architecture for
a CNN, which comprises a balanced pipeline of com-
puting blocks connected through on-chip streams.
FINN maps each fully connected DNN layer to a dedi-
cated compute block, the matrix–vector threshold unit
(MVTU). The MVTU performs matrix multiplication
between input activations and weights, followed by the
so-called “multithreshold” operation, which applies the
nonlinear activation function and quantization to the
output in a single, efficient step. Convolution layers are
based on the same MVTU structure by lowering them
to matrix–matrix multiplications where the MVTU is
fed by a sliding window unit (SWU), a special stream
buffer that enables windowed access to the input fea-
turemapwhileminimizingmemory requirements.

The MVTU is parameterized in terms of input, out-
put, and weight precision, as well as the type of
resource [e.g., look-up tables (LUTs) or block memory
(BRAM)] used for its internal weight and threshold
memories. Furthermore, the MVTU can be parallelized

in various dimensions limited only by the DNN
topology and the available programmable logic resour-
ces. The dimensions comprise P parallel processing
elements (PEs), which determine the number of out-
put channels processed in parallel, and S single-
instruction–multiple-data (SIMD) input channel lanes
for each PE. To further scale small DNNs, such as the
ones for RadioML, we extend FINN to support an addi-
tional degree of parallelism by processing M output
positions simultaneously.

FINN Compiler Tool Flow
Figure 3 shows the FINN tool flow, which has a modu-
lar structure that allows the user to interactively gen-
erate a specialized architecture for a specific DNN.
The framework provides a front-end, the FINN com-
piler with its transformation and analysis passes, and
high-level synthesis (HLS)-based back-end to explore
the design space in terms of resource and perfor-
mance constraints. While users can build a custom
step-by-step flow using the provided infrastructure,
FINN also offers an automatic build flow that opti-
mizes common DNN topologies based on a perfor-
mance target and device constraints. Internally, FINN
is built around an end-to-end intermediate representa-
tion (IR) based on the open neural network exchange
(ONNX) format for DNN graphs. The IR also serves as
the input format for quantized models, which are
exported from a training front-end, such as Brevitas.

Starting from the input model, the FINN compiler per-
forms three phases of graph transformation passes,
which analyze and change the IR to gradually map it to a
synthesizable accelerator architecture. In the preparation

FIGURE 2. Simplified architectural overview of the FINN-generated streaming accelerator. Omits padding, pooling, and gearbox

buffers between layers.

November/December 2022 IEEE Micro 127

EXPERT OPINION

phase, DNNgraph nodes are rearranged or fused tomake
them compatible with how the back-end building
blocks operate, for example, in terms of data layout.
This includes convolution lowering and a “streamlining”
process to merge quantization and batch-normaliza-
tion factors into multithreshold operations. The map-
ping phase associates layers with the configurable
operators implemented by the FINN HLS library, such
that each node corresponds to a Vitis HLS Cþþ func-
tion call, which can later be synthesized to an IP block.
In the tuning phase, the resource and parallelism con-
figurations of the MVTUs are determined. A “folding”
process assigns compute resources via a selection of
P , S, andM to each layer to obtain the desired through-
put within a balanced pipeline. Bottlenecks due to
bursty behavior are avoided by automatically inserting
stream buffers. FINN employs various analysis tools to
guide the mapping phase. These include model-based
performance and resource estimates, as well as simu-
lation and reporting on all abstraction levels.

Finally, FINN generates code from the IR, synthe-
sizes, and stitches the layers together. The resulting
standalone IP core can be integrated into any design
or deployed quickly with the generated shell project
and driver for Xilinx Alveo and PYNQ platforms.

Brevitas
Brevitas5 is a PyTorch extension for neural network quan-
tization, with a focus on quantization-aware training
(QAT). It provides building blocks tomodel a reducedpre-
cision inference data path at training time. Due to its flex-
ibility, DNN models can be adopted to target different
styles of fixed-point computing. By accounting for the
additional error introduced by quantization at training
time, QAT provides superior results in terms of accuracy
compared to post-training quantization approaches and

can gracefully scale the precision of both parameters
and activations down to binary values.

For a given target datatype, Brevitas exposes multi-
ple hyperparameters that a user can tune to adjust the
quantization algorithm to the particular training prob-
lem at hand. For example, the scale factor of a given
datatype, which for traditional fixed-point datatypes is
a power-of-two number, can be set to a user-defined
constant, a user-initialized value learned with backpro-
pagation, or a value initialized according to some sta-
tistics and then learned with backpropagation.

Once the network has been trained, Brevitas can
export it to a downstream toolchain by encoding it in
an intermediate format. For use in the FINN framework,
Brevitas extends ONNX by introducing ad hoc quanti-
zation nodes to specify custom fixed-point datatypes.

MODULATION CLASSIFICATION
CASE STUDY

We choose the automatic modulation classification
use case to showcase the potential of the FINN
approach for RadioML.

Models and Training
We train our models on the RadioML 2018 dataset,
which contains signals in 24 different modulation
schemes at an SNR range from �20 dB to þ30 dB. To
limit the design space and provide a better compari-
son with related work, we stay very close to the
“VGG10” topology proposed alongside the dataset by
DeepSig.3 This DNN consists of seven one-dimen-
sional convolution layers with a kernel size of three,
each followed by batch-normalization, ReLU activa-
tion, and max-pooling to reduce the output feature
map size by half. This CNN block is followed by two

FIGURE 3. Overview of the FINN compiler flow.

128 IEEE Micro November/December 2022

EXPERT OPINION

dense layers and a final dense classification layer.
Besides the weight and activation quantization, we
adjust only the number of filters in the convolution
layers (Fc) as we found this to be the second-most
effective method for trading off accuracy and com-
pute cost.

For all models, we quantize inputs to a fixed 8-bit
range determined by statistical analysis of the dataset
to yield a low quantization error at high SNR (� 6 dB)
for most modulations. Two variants of single-sideband
amplitude modulation deviate from the Gaussian-like
distribution of other modulations and perform some-
what worse with quantization, which we deem an
acceptable tradeoff. We observe that the relative SNR
of the data that the network is trained and tested on
has a large impact on recognition performance. While
low-SNR environments are important for practical
applications, we focus on training and testing on high-
SNR data for brevity and to facilitate comparisons to
related work.

During training, we approximate the compute
cost for each model by calculating the number of
“bit-operations” (BOPS) as a sum of all multiply-and-
accumulate operations weighted by their respective
operand bit-widths since this metric exhibits an approx-
imately linear relationship to resource consumption of
the resulting FINN accelerators under the same folding
configuration. We find that quantizing weights and acti-
vations for the original VGG10 topology with Fc ¼ 64

below a bit-width of 4 does not result in a compelling
utilization-accuracy tradeoff. Instead, decreasing the
number of convolution filters to Fc ¼ 32 yields better

accuracy and less cost than the original VGG10
quantized to 2-bit weights and activations, even if
4-bit precision is kept for the more quantization-sensi-
tive input CNN layer. We refer to this smallermodel vari-
ant as “VGG10-S” and select it alongside the original
model for accelerator generation.

Prototype Results
Based on the two models VGG10 and VGG10-S, we
build three distinct accelerator prototypes, each in a
different corner of the vast design space. We target
the XCZU28DR RFSoC device found on the ZCU111
and PYNQ RFSoC 2�2 development boards. Table 1
shows key metrics of the prototypes. Prototype “FINN
A” is based on VGG10 and represents the most accu-
rate—but resource-intensive—implementation with a
peak accuracy of 94.1%, a 2.6 p.p. drop from the float-
ing point (FP) baseline we trained to 96.7% accuracy.
As for performance, FINN is configured to apply full
parallelism across the input and output channel
dimension, limiting throughput to one sample per
FPGA clock cycle, with an actual throughput that is
slightly lower (246 MS/s at 250 MHz) due to padding
and pipeline inefficiencies. Note that we report
throughput in samples per second instead of frames
per second to decouple it from the frame size, which
is 1,024 as in training.

“FINN B” is the smallest prototype and applies the
same configuration to the VGG10-S model, resulting in
the same performance, but lower accuracy at 91.0%.
For “FINN C,” we scale up the parallelism by extending

TABLE 1. Results of FINN prototypes against existing FPGA implementations. Utilization for XCZU28DR device.

Implementation FINN A FINN B FINN C Best from
Tridgell et al.6

Best from
den Boer et al.7

Topology (Fc , Fd) VGG10 (64, 128) VGG10-S (32, 128) VGG10-S (32, 128) VGG10-L (128, 512) Other 1D-Conv

Parameters 161,000 72,000 72,000 636,000 14,000

Quantization
(weight/activation)

4 bits (5-bit first
layer)

4 bits 4 bits weights: ternary
activations: mixed

6 bits

Frequency 250 MHz 250 MHz 250 MHz 250 MHz 250 MHz

LUTs (util.) 267,000 (63%) 65,000 (15%) 229,000 (54%) 211,000 (50%) 106,000 (25%)

Flip-flops (util.) 120,000 (14%) 42,000 (5%) 131,000 (15%) 324,000 (38%) 61,000 (7%)

BRAM blocks (util.) 56 (5%) 25 (2%) 26 (2%) 512 (47%) 0 (0%)

DSP slices (util.) 0 (0%) 0 (0%) 0 (0%) 1407 (33%) 137 (3%)

Accuracy @ 30 dB 94.1% 91.0% 91.0% 80.2% 71.8%

Throughput
[samples/s]

246 million 246 million 1750 million 500 million 250 million

Latency [ms] 11.7 11.3 2.6 8.0 4.6

November/December 2022 IEEE Micro 129

EXPERT OPINION

FINN to allow simultaneous processing of up to 8
samples/cycle. This unlocks the unprecedented per-
formance of 1.75 GS/s at a latency of just 2.6 ms. This
increases resource efficiency (throughput over utiliza-
tion) by a factor of 2. We attribute this nonlinear scal-
ing mainly to synthesis optimization: due to the
pooling structure, a balanced pipeline that takes in
multiple samples simultaneously has to apply full
channel unfolding to more layers, which allows for the
elimination of PE multiplexing logic and zero-weight
multiplications. This results in a device utilization of
54%, with significant resources still available for addi-
tional features or performance scaling. In general,
adjusting parallelism and bit-width alone can scale the
implementation to performance, resource, or accuracy
targets well beyond what we show here.

Table 1 also includes top-performing accelerators
from related work that target the same device family.
The implementation described in Tridgell et al.6 uses a
larger variant of the model with more convolution and
dense filters (Fd) but applies harsh quantization with
ternary weights and mixed activation formats. The
DNN is mapped to hardware using a custom HDL-gen-
eration framework. The reported peak accuracy is sig-
nificantly lower than our results and the design
manages only 2 samples/cycle, despite the relatively
high resource consumption.

In contrast, the prototype shown in den Boer et al.7

implements a custom HLS-based mapping tool and

focuses on smaller CNN topologies, but uses 6-bit oper-
ands. Even for their largest model, accuracy is low
(71.8%) and the reported throughput is 1 sample/cycle.
Further related work is discussed in the sidebar.

GPU Comparison
To compare performance and energy efficiency with
current GPUs, we use NVIDIA’s TensorRT tool to run
automatically optimized inference benchmarks on the
Tesla V100 data-center GPU and two modules of the
Jetson embedded GPU family: the previous-genera-
tion TX2 and the current-generation Xavier NX, which
we run in its lowest (10 W) and highest (20 W) power
modes. The Xavier NX also features dedicated INT8
compute support for more efficient DNN inference.
We utilize this by applying 8-bit post-training quantiza-
tion to the FP models using TensorRT, incurring an
accuracy drop from 96.7% to 94.1% for VGG10 and
from 95% to 92.1% for VGG10-S, although this may be
alleviated via QAT.

Figure 4 shows the resulting throughput over
latency, both in logarithmic scale, against the dis-
cussed FPGA accelerators. For the GPUs, we report
end-to-end latency, which includes data transfer and
synchronization overhead that typically ranges from
1% to 10% in this case. While the streaming accelera-
tors take in samples as they are supplied from the digi-
tal radio front-end, and do not even need to buffer a
single frame before computation begins, GPUs require

FIGURE 4. Throughput versus latency of VGG10 inference on various platforms. GPU results are batch-size-dependent and

report end-to-end host latency. FPGA results assume a direct input data feed and report compute latency.

130 IEEE Micro November/December 2022

EXPERT OPINION

the aggregation of frames into batches to utilize their
computing power. This is evident in our measure-
ments, as peak throughput (153 MS/s for Xavier NX)
and minimum latency (260 ms for Xavier NX) are not
achievable at the same time. Regardless, even this
latency is 100� higher than that of our prototype FINN
C. When comparing our solution to devices of a similar
power envelope, i.e., the embedded GPUs, it becomes
clear how only the FPGA streaming accelerator is
capable of keeping up with the RF data rate of multi-
ple gigasamples per second, all while delivering excep-
tional microsecond latency. We expect the direct
RFSoC integration to only amplify this advantage for
real-world systems, where additional overhead will be
needed to feed signals to GPUs.

Figure 5 compares measured power efficiency in
terms of energy per processed sample of FINNaccelera-
tors and embedded GPUs. Our fastest and most effi-
cient prototype consumes 16.5 W and is 17� more
power efficient than the INT8 VGG10 on Xavier NX with
10.5 W, albeit with 3.1 p.p. lower accuracy. For a fairer
comparison, we also run VGG10-S on the Xavier NX.
Even if we assume that quantization-aware training
could improve the INT8 accuracy to FP level, FINN A
would lie within one percentage point of accuracy while
delivering 1.4� the efficiency and 2.3� the throughput.

Scalability
To demonstrate FINN’s scalability beyond the accu-
racy-optimized prototypes discussed before, we syn-
thesize accelerators for larger VGG10 instances and
two additional topology families: VGG24, a deeper vari-
ant of VGG10 with 3� the convolution layers, and
“BacalhauNet,”8 the winning DNN of the “Lightning-
Fast Modulation Classification” problem statement of
the 2021 ITU AI in 5G Challenge, which features depth-
wise-separable convolutions with wide kernel dimen-
sions and residual connections. We measure DNN size

as inference compute cost per classification (in BOPS)
and scale it for each topology family via the number of
convolution filters. As a third variable, the generated
accelerators target two levels of throughput. Figure 6
plots the resulting FPGA utilization, showcasing the
proportional relationship between accelerator LUT
count and DNN size.

AVOIDING OBSTRUCTIVE MANUAL
DESIGN EFFORTS, THE OPEN-SOURCE
FINN FRAMEWORK AUTOMATICALLY
GENERATES DNN ACCELERATORS
AND REACHES UNPRECEDENTED
RESULTS IN ALL RELEVANT METRICS,
INCLUDING ENERGY EFFICIENCY.

In summary, VGG24 scales best to larger models,
especially when compared to the original 6-bit Bacal-
hauNet. A more sensible 4-bit variant performs close
to VGG10 at a nominal throughput of 1 sample/cycle
and scales just as well to the extremely parallel 8 sam-
ples/cycle configuration, reaching the real-world per-
formance of 1.8-GS/s and 1.5-ms latency at 250 MHz. In
some scenarios, the DNN scaling method does not
quite allow for full device utilization due to underlying
tool limitations. A fair power comparison against INT8
TensorRT execution on the Xavier NX platform is

FIGURE 5. Power efficiency of FINN accelerators versus NVI-

DIA Jetson GPU platforms (batch-64, INT8).
FIGURE 6. Scaling to larger DNNs and different topologies.

Each data point represents a FINN-generated accelerator for

a DNN of the specified topology family and inference cost,

which is scaled along the x-axis by increasing the number of

convolution filters. Our three accuracy-optimized prototypes

(A, B, and C implementations from Table 1) are marked as sin-

gular experiments for reference.

November/December 2022 IEEE Micro 131

EXPERT OPINION

difficult without in-depth accuracy testing, but results
from our scaling experiments continue to suggest a
strong efficiency advantage for FINN, which ranges
from 3.4� for the largest VGG24 over 4.2� for the larg-
est 6-bit BacalhauNet to around 30� for the fast 4-bit
variants. In terms of raw performance, even the small-
est BacalhauNet does not surpass 65-MS/s through-
puts and 1-ms latency (batch-64) on the Xavier NX.

CONCLUSION
On the basis of modulation classification, we have
shown how FPGA streaming architectures suit DNN-
based RF signal processing perfectly, especially in
RFSoC systems with integrated radio front-ends.
Avoiding obstructive manual design efforts, the open-
source FINN framework automatically generates DNN
accelerators and reaches unprecedented results in all
relevant metrics, including energy efficiency. Com-
pared to current embedded GPUs, we achieve orders
of magnitude better latency (microseconds versus
milliseconds) and throughput (gigasamples per second
versus hundreds of megasamples per second), while
keeping the quantization-induced accuracy penalty
under control. Future work includes the implementa-
tion of a live RFSoC demonstrator and exploration of
promising DNN topologies and techniques, such as
ResNets and sparsity.

REFERENCES
1. T. J. O’Shea, K. Karra, and T. C. Clancy, “Learning to

communicate: Channel auto-encoders, domain

specific regularizers, and attention,” in Proc. IEEE

Int. Symp. Signal Process. Inf. Technol., 2016,

pp. 223–228.

2. T. Erpek, T. J. O’Shea, Y. E. Sagduyu, Y. Shi, and T. C.

Clancy, “Deep learning for wireless communications,”

2020, arXiv:2005.06068.

3. T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-air deep

learning based radio signal classification,” IEEE J. Sel.

Topics Signal Process., vol. 12, no. 1, pp. 168–179,

Feb. 2018.

4. M. Blott et al., “FINN-R: An end-to-end deep-learning

framework for fast exploration of quantized neural

networks,” ACM Trans. Reconfigurable Technol. Syst.,

vol. 11, no. 3, Dec. 2018, Art. no. 16.

5. A. Pappalardo, “Brevitas (software).”Accessed: Aug. 22,

2022. [Online]. Available: https://doi.org/10.5281/

zenodo.5779154

6. S. Tridgell, D. Boland, P. H. Leong, R. Kastner, A.

Khodamoradi, and Siddhartha, “Real-time automatic

modulation classification using RFSoC,” in Proc. IEEE

Int. Parallel Distrib. Process. Symp. Workshops, 2020,

pp. 82–89.

7. H. den Boer, R. Muller, S. Wong, and V. Voogt, “FPGA-

based deep learning accelerator for RF applications,”

in Proc. IEEE Mil. Commun. Conf., 2021, pp. 751–756.

RELATEDWORK

S DR systems with hardware acceleration are an

emerging field. Deepwave Digital released the first

commercial “AI Radio Transceiver” (AIR-T)9 in early 2020,

a device that integrates a transceiver, an FPGA, and an

NVIDIA Jetson TX2 embedded GPU with a GNU-Radio

software stack. The FPGA performs necessary DSP

tasks and acts as a bridge between the serial

transceiver interface and the GPU, which is responsible

for DNN inference. The system operates in the 100–200-

MS/s range and relies on the shared-memory

architecture of modern embedded GPUs to minimize

latency, as no additional memory copy between the host

(CPU) and GPU is necessary. In contrast, we combine all

functions into a single SoC and remove even the last

remaining external memory transfer between the

transceiver and the accelerator. We also address an

often mentioned argument against FPGA-based

solutions, the high development effort, with our

automated FINN tool flow.

Regarding the use case modulation classification, we

highlight two state-of-the-art FPGA accelerator

approaches6,7 in Table 1. Other FPGA implementations

for modulation classification exist and include the use of

support vector machines10 for classification, DNN

processing of engineered statistical features,11 and even

spiking neural networks.12 However, most of these

approaches are not comparable to our work, e.g., due to

undisclosed data sets, or lack of a flexible toolchain and

meaningful GPU comparison. On the training side,

efforts have been made to create more resource-

efficient DNN topologies through the use of sparsity,

residual connections, depthwise convolutions, or

recurrent neural networks. We refer to Jdid et al.13 for a

survey.

132 IEEE Micro November/December 2022

EXPERT OPINION

https://doi.org/10.5281/zenodo.5779154
https://doi.org/10.5281/zenodo.5779154

8. J. Rosa et al., “BacalhauNet: A tiny CNN for lightning-

fast modulation classification,” ITU J. Future Evolving

Technol., vol. 3, no. 2, pp. 252–260, 2022.

9. J. Ferguson, P. Witkowski, W. Kirschner, and D. Bryant,

“Deepwave digital creates an AI enabled GPU receiver

for a critical 5G sensor,” white paper, 2020. [Online].

Available: https://developer.nvidia.com/blog/wp-

content/uploads/2020/01/NVIDIA_Blog_v2.pdf

10. C. Cardoso, A. R. Castro, and A. Klautau, “An efficient

FPGA IP core for automatic modulation classification,”

IEEE Embedded Syst. Lett., vol. 5, no. 3, pp. 42–45, Sep.

2013.

11. A. F. deCastro, R. S. R.Mill�eo, L. H. A. Lolis, andA. A.

Mariano, “Artificial neural network based automatic

modulation classification system applied to FPGA,” in

Proc. ACMSymp. Integr. Circuits Syst. Des., 2021, pp. 1–6.

12. A. Khodamoradi, K. Denolf, and R. Kastner, “S2N2: A

FPGA accelerator for streaming spiking neural

networks,” in Proc. ACM/SIGDA Int. Symp. Field-

Programmable Gate Arrays, 2021, pp. 194–205.

13. B. Jdid, K. Hassan, I. Dayoub, W. H. Lim, and M.

Mokayef, “Machine learning based automatic

modulation recognition for wireless communications:

A comprehensive survey,” IEEE Access, vol. 9,

pp. 57851–57873, 2021.

FELIX JENTZSCH is a Ph.D. student with Paderborn Univer-

sity. His research focuses on automated hardware/software

co-design for reconfigurable computing systems. Jentzsch

received a master’s degree in computer engineering from

Paderborn University. He is a Member of IEEE. Contact him

at felix.jentzsch@upb.de.

YAMAN UMUROGLU is a senior MTS with AMD, Dublin, Ire-

land. His research interests include full-stack view of DNNs

with a focus on high efficiency and spans hardware-network

co-design, techniques for efficient arithmetic, sparsity and

quantization. Contact him at yamanu@amd.com.

ALESSANDRO PAPPALARDO is a staff researcher with AMD,

Dublin, Ireland. His research interests include neural network

co-design and acceleration on reconfigurable hardware. Con-

tact him at alessand@amd.com.

MICHAELA BLOTT works as a Senior Fellow with AMD,

Dublin, Ireland. Her research interests include compute archi-

tectures, reconfigurable computing, and machine learning.

She is a Member of IEEE. Contact her at mblott@amd.com.

MARCO PLATZNER is a professor for computer engineering

with Paderborn University, Paderborn, Germany. His research

interests include reconfigurable computing, hardware-soft-

ware co-design, and parallel architectures. He is a Senior

Member of IEEE. Contact him at platzner@upb.de.

November/December 2022 IEEE Micro 133

EXPERT OPINION

https://developer.nvidia.com/blog/wp-content/uploads/2020/01/NVIDIA_Blog_v2.pdf
https://developer.nvidia.com/blog/wp-content/uploads/2020/01/NVIDIA_Blog_v2.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

