
ar
X

iv
:2

30
1.

07
49

2v
2

 [
cs

.A
R

]
 2

0
Ja

n
20

23

Failure Tolerant Training with
Persistent Memory
Disaggregation over CXL

Miryeong Kwon, Junhyeok Jang, Hanjin Choi

KAIST

Sangwon Lee, Myoungsoo Jung

KAIST and Panmnesia

Abstract—This paper proposes TRAININGCXL that can efficiently process large-scale

recommendation datasets in the pool of disaggregated memory while making training fault

tolerant with low overhead. To this end, i) we integrate persistent memory (PMEM) and GPU into

a cache-coherent domain as Type-2. Enabling CXL allows PMEM to be directly placed in GPU’s

memory hierarchy, such that GPU can access PMEM without software intervention.

TRAININGCXL introduces computing and checkpointing logic near the CXL controller, thereby

training data and managing persistency in an active manner. Considering PMEM’s vulnerability,

ii) we utilize the unique characteristics of recommendation models and take the checkpointing

overhead off the critical path of their training. Lastly, iii) TRAININGCXL employs an advanced

checkpointing technique that relaxes the updating sequence of model parameters and

embeddings across training batches. The evaluation shows that TRAININGCXL achieves 5.2×

training performance improvement and 76% energy savings, compared to the modern

PMEM-based recommendation systems.

DEEP LEARNING based recommendation sys-

tems take the majority of machine resources in

diverse production servers and datacenters (1). In

practice, many production-level recommendation

models (RMs) require highly-accurate services to

prevent Hyperscalers from undesirable losses in

revenues. This insists on large-sized models and

feature vectors to train (i.e., embeddings), which

are even much bigger than the largest deep neural

network-based model such as Transformers. For

This paper has been accepted at the IEEE Micro, Special Issue on
Emerging System Interconnects on Jan 2023. The final version
of the manuscript will be available soon and this material is
presented to ensure the timely dissemination of scholarly and
technical work.

example, several studies have reported that the

production-level RMs often consume more than

tens of terabyte/petabyte memory spaces (2).

In addition, it is important for the RMs to be

failure tolerant as they should be trained many

days or weeks without an accuracy degradation.

To this end, the RMs periodically store their

current training snapshots in persistent storage as

checkpoints (3). Even though the checkpoints are

essential for system failure recovery, it is often

considered the performance bottleneck in diverse

computing domains, including the RMs (3).

To address these challenges, several ap-

proaches have been proposed to employ high-

performance solid-state drives (SSDs) and expand

their host memory using SSDs as backend stor-

IEEE Micro 1

http://arxiv.org/abs/2301.07492v2

Appears in the IEEE Micro, Special Issue on Emerging System Interconnects, 2023 (Preprint)

age media (4; 5). For example, (4) store large-

scale embedding tables while keeping only the

feature vectors, frequently accessed from the host

computing-resources (CPU/GPU), in their local

memory. While this SSD-integrated memory ex-

pansion technique can handle the large-sized in-

put data, they unfortunately suffer from severe

performance degradation. This is because RM’s

embedding lookup tasks often generate small-

sized reads with a random pattern whereas SSDs

are optimized for other types of bulk I/O opera-

tions.

Furthermore, all the prior approaches require

explicit checkpoints for fault recovery. Since em-

bedding updates on SSDs can degrade the train-

ing performance significantly, the existing RMs

utilize the SSDs for only memory expansion

purposes. Note that the write latency of SSDs

is longer than the latency of all conventional

memory operations by many orders of magnitude.

The writes also introduce many internal tasks,

such as garbage collection, making the training

performance unacceptable in many cases (6).

We propose TRAININGCXL that can effi-

ciently process large-scale RM datasets in the

underlying memory pool, disaggregated over com-

pute express link (CXL). TRAININGCXL makes

deep learning training fault tolerant without im-

posing the checkpointing overhead as well. Our

contributions can be summarized as follows:

• Intelligent CXL memory expansion. TRAIN-

INGCXL forms a non-volatile memory expander

(CXL-MEM) having many persistent memory

modules (PMEM) as a Type-2 of CXL 3.0 (7).

We also introduce Type-2’s device coherent agent

(DCOH) to GPU, called CXL-GPU. Since TRAIN-

INGCXL integrates CXL-MEM and CXL-GPU

into the same cache coherent domain, all the

input/output embeddings are exchanged between

those two without any software intervention run-

ning on the host CPU. In our architecture, CXL-

MEM employs simple computing and checkpoint-

ing logic along with a Type-2 endpoint controller,

which can perform embedding operations and

failure tolerance management near PMEM.

• Batch-aware checkpoint. To achieve high

training bandwidth, TRAININGCXL lets CXL-

GPU and CXL-MEM perform multi-layer per-

ceptrons (MLP) and embedding operations simul-

taneously. However, the model and embedding

Figure 1: Training process of DLRM.

updates for the end of each batch process make

the training latency yet longer. To address this, we

propose batch-aware checkpoint that is aware of

each shape of the individual batch and performs

undo logging in background. Practically, such a

background undo logging scheme is infeasible for

most applications as the target location where the

system needs to update is unavailable before their

computation completes. Since we can know the

next batch’s embedding structure at each training

stage in advance, our scheme logs appropriate

models and embeddings to CXL-MEM in parallel

with RM’s training tasks.

• Embedding lookup and checkpoint relax-

ation. While our batch-aware checkpoint can hide

the relatively long latency of CXL-MEM’s writes,

the training performance can yet degrade owing

to read-after-write (RAW) caused by embedding

operations between two adjacent batches; RMs

read some of newly-updated embeddings at the be-

ginning of each batch, but the reads can be stalled

because of the writes (for the embedding updates)

issued right before. Unfortunately, the training

also suffers performance degradation when our

batch-aware checkpoint is slower than the MLP

computation in CXL-GPU. TRAININGCXL re-

laxes the order of embedding lookups and check-

points, and it reschedules them to remove the

RAW conflict issues and checkpointing overhead.

This relaxation can make CXL-GPU and CXM-

MEM operations fully overlap each other, thereby

improving the training bandwidth further.

Our evaluation results show that training per-

formance can be improved by 5.2×. TRAIN-

INGCXL also achieves 76% energy savings, com-

pared to modern PMEM-based recommendation

systems.

2 IEEE Micro

Background

Recommendation Model Training

Meta AI’s DLRM (8) is a representative RM

used for personalized item recommendations. To

achieve a higher accuracy and better represen-

tation capacity, DLRM exploits both sparse fea-

tures (categorical information) and dense features

(continuous information). Because of these dis-

tinct characteristics between the spare and dense

features, they are encoded by different types of

processing operations before going through the

main training task, called Top-MLP. While the

dense features are learned and encoded into in-

put(s) of the top-MLP using conventional matrix-

multiplication operations, called Bottom-MLP, the

sparse features are processed by a set of embed-

ding operations (e.g., table lookup/update).

Figure 1 shows a single-batch training process

of DLRM. Considering different levels of the

computing intensiveness, the bottom-MLP oper-

ations are all performed in GPU, whereas the

embedding operations are practically processed

at the host-side (CPU). For these embedding

operations, the host reads the target embedding

vectors from the underlying storage by referring

to the corresponding table indices (residing in the

sparse features). Note that production-scale em-

bedding tables often exceed tens to hundreds TBs,

which unfortunately cannot be accommodated in

the target system’s local memory. The host then

aggregates the retrieved embedding vectors using

simple arithmetic (e.g., add/subtract) and gener-

ates new embedding vectors as another input of

the top-MLP. As the bottom-MLP and embedding

operations are simultaneously processed in differ-

ent places (i.e., GPU and CPU), each encoded

input data for the top-MLP can be prepared in

parallel thereby saving the training time at some

extent (4). To put the encoded inputs into a same

vector space, GPU performs a feature interac-

tion (e.g., concatenation) and the top-MLP, which

trains the result of the feature interaction in this

forward-propagation step (FWP). The backward-

propagation step of RM training (BWP) is similar

to FWP, but all its operations are processed in

the reverse order. BWP takes gradient errors

as an input (instead of FWP’s input features)

and updates model parameters/embeddings to im-

prove the model accuracy. The gradient errors are

Figure 2: CXL architecture and CXL device

types.

calculated by the differences between the FWP

results and labels (truth grounds). Note that all the

updated model parameters (e.g., MLPs’ weights

and embeddings) should be checkpointed in the

underlying storage for each end of all the batches.

Compute Express Link (CXL)

CXL is an open industry standard intercon-

nect, which allows multiple heterogeneous (com-

puting) devices to share large-scale memory

spaces in a cache-coherent manner. Figure 2

shows a system architecture that enables CXL.

The system consists of three essential hardware

components: i) CXL-enabled host CPU(s), ii)

CXL switch(es), and iii) CXL device(s). CXL de-

vices can be incarnated by leveraging the design

of conventional peripheral devices (e.g., acceler-

ator and memory expander), but they should ac-

commodate appropriate CXL protocol interfaces

for their specific purposes. CXL switches can

interconnect the host CPU(s) and multiple CXL

devices in a disaggregated manner. Note that a

CXL network (per CPU’s root-complex) can have

upto 4095 CXL devices, which can all the host

to secure sufficient memory space to use (7).

All these CXL hardware components can have a

unified memory space, referred to as Host Physi-

cal Address (HPA) as their shared memory pool.

To this end, CXL supports three sub-protocols

(CXL.io, CXL.cache, and CXL.mem).

Based on how to combine these sub-protocols,

CXL devices can be classified into Type-1, Type-

2, and Type-3. CXL.io is mandatory for all

the types of hardware, allowing a CXL device

to expose device registers to HPA as memory-

mapped IO (MMIO) registers. Using this proto-

col, the host CPU can discover or configure the

underlying CXL devices (by reading/writing the

MMIO registers). In addition to CXL.io, Type-

1 and Type-3 need to support CXL.cache and

3

Appears in the IEEE Micro, Special Issue on Emerging System Interconnects, 2023 (Preprint)

(a) Cache-coherent

domain.

(b) Internals of CXL-

MEM.

Figure 3: TRAININGCXL’s system architecture.

CXL.mem, respectively. Note that Type-2 is rec-

ommended to have all three sub-protocols as it

is designed toward having both computing and

memory resources at the backend. The memory

resources of Type-2 is accessed by host through

CXL.mem, while Type-2’s computing resources

can buffer data residing in the HPA into its

internal cache with CXL.cache. Internal cache’s

cacheline states are tracked by device coherency

engine (DCOH) (7) to guarantee cache-coherency

with other CXL devices.

Persistent Memory Disaggregation

TRAININGCXL disaggregates memory de-

vices from CPU/GPU and integrates all of them

into a single system over CXL. Our CXL-enabled

memory expander employs PMEMs, which ex-

hibit similar performance to DRAM and provide

large-scale memory capacity. Thanks to the back-

end PMEM, TRAININGCXL can reduce the over-

head imposed by heavy reads/writes (for embed-

dings), compared to the existing RM system. In

addition, TRAININGCXL uses PMEM for mem-

ory expansion as well as leverages its non-volatile

characteristics to support failure tolerant train-

ing with low overhead. Lastly, TRAININGCXL

alleviates the data movement overhead between

GPU and memory expander by exploiting the

advantages that CXL sub-protocols offer.

System Architecture

Figure 3a shows an overview of the proposed

TRAININGCXL’s system architecture. TRAIN-

INGCXL proposes two CXL devices: a CXL-

enabled GPU (CXL-GPU) and a PMEM-based

memory expander (CXL-MEM). These are de-

signed as Type-2 and connected to a host CPU

through CXL Switch(es). Because of their de-

vice type, CXL-MEM’s internal memory can be

exposed to CXL-GPU’s local memory and vice

versa. To accelerate RM processing, CXL-MEM

manages all the embedding operations instead

of the host CPU. Since the host CPU is free

from processing embeddings in TRAININGCXL,

it is only responsible for running RM training

software (e.g., PyTorch or TensorFlow).

Designing CXL-MEM. Figure 3b illustrates

CXL-MEM composed by the frontend and back-

end modules. The backend employs multiple

PMEMs and corresponding memory controllers to

achieve a high degree of data parallelism for large-

scale embedding tables as well as model check-

points. The aggregated memory space of PMEMs

is exposed to CXL-MEM’s frontend through sys-

tem interconnect, which consists of i) a CXL

controller that implements all the three CXL sub-

protocols, ii) a computing logic that processes

embedding operations (lookup/update), and iii) a

checkpointing logic that automatically creates the

model checkpoints. To initialize computing logic,

the host CPU sets CXL-MEM’s MMIO registers

with embedding vector length and learning rate,

which are required by embedding operations. In

addition, it is important to store the MLP param-

eters’ memory address and the size of MLP pa-

rameters to allow checkpointing logic read MLP

parameters from CXL-GPU. We will explain how

this information is used by CXL-MEM’s comput-

ing and checkpointing logic with more details, in

the “CXL-MEM’s Checkpoint Support” section.

(a) Conventional software framework. (b) TrainingCXL’s hardware.

Figure 4: Comparison of recommendation model training procedure.

4 IEEE Micro

(a) Data placement. (b) Cache flush with DCOH.

Figure 5: CXL-based automatic data movement.

CXL-based Automatic Data Movement

Since TRAININGCXL adopts a heterogeneous

computing system, it is inevitable to move RM

training’s intermediate data across a set of CXL

devices. However, this data movement has been

managed by the RM training software running on

the host CPU. To remove non-negligible software

overhead, TRAININGCXL proposes a hardware

automation approach that moves data by leverag-

ing CXL hardware components.

Performance impacts. Figure 4a demonstrates

the performance impact of the conventional

software-based data movement approaches. Us-

ing the FWP as an example, the software of-

floads bottom-MLP and embedding lookup to

CXL-GPU and CXL-MEM, respectively. They

notify the completion of the operation to the

software through cudaStreamSynchronize;

after that, the software can start to copy the new

embedding vectors from CXP-MEM to CXL-

GPU (e.g., cudaMemcpy) and request CXL-

GPU to perform feature interaction and top-MLP.

These software overhead can be eliminated with

CXL-based automatic data movement as shown

in Figure 4b. TRAININGCXL’s CXL hardware

components are responsible for data movement

and RM training operations can be synchronized

by checking whether all input data are ready or

not.

Design of hardware automation approach. The

insight behind CXL-based automatic data move-

ment is to leverage CXL.cache to transfer data.

To move the data using CXL.cache, the data

should be stored where it will be used as an

operation input. For example, the input data of

feature interaction (e.g., reduced embedding vec-

tor) should be stored in the CXL-GPU’s device

memory and cached in the CXL-MEM’s internal

cache as shown in Figure 5a. Then the CXL-

MEM’s DCOH flushes every cacheline of the

Figure 6: Execution of batch-aware checkpoint.

reduced embedding vector, which is updated by

embedding lookup as shown in Figure 5b. Simi-

larly, in the case of BWP, the input data of the em-

bedding update (e.g., embedding gradient) should

be stored in the CXL-MEM’s device memory and

cached in the CXL-GPU. Then the embedding

gradient is flushed by the CXL-GPU’s DCOH and

transferred to the CXL-MEM.

Failure Tolerance Management
This section will explain 1) how the check-

pointing overhead is removed from the critical

path of RM training, and 2) how CXL-MEM’s

checkpointing logic can perform checkpointing

automatically in the background.

Batch-aware Checkpoint

The conventional SSD-based failure tolerance

management is performed in a redo log manner.

In other words, the updated embedding vectors

and bottom/top-MLP parameters have been per-

manently stored at the end of each training epoch

(before starting the next batch training). To take

checkpointing off the critical path of RM training,

TRAININGCXL proposes a batch-aware check-

point that performs checkpointing in an undo log

manner. It leverages RM training’s characteristic

that embedding vector indices to be updated can

be known in advance even if the batch training

is not completed yet. Since the sparse features

include that information, RM training software

sets them in the MMIO register for every batch to

store embedding and MLP logs by utilizing the

idle time of CXL-MEM as shown in Figure 6.

CXL-MEM’s Checkpoint Support

To support batch-aware checkpoint, we first

split the CXL-MEM’s memory space into data

and log regions. Each of these regions is for

computing logic and checkpointing logic to store

embedding tables and embedding/MLP logs, re-

5

Appears in the IEEE Micro, Special Issue on Emerging System Interconnects, 2023 (Preprint)

Figure 7: CXL-MEM’s automatic checkpoint.

spectively. Since embedding/MLP logs are man-

aged in the separated region, CXL-MEM can

easily recover the RM model by referring to the

log region when there is a power failure.

Embedding logging. Figure 7 shows how the

checkpointing logic can generate checkpoint for

embedding table. The checkpointing logic refers

to the embedding vector indices from the sparse

feature (1), and creates embedding log by copy-

ing the embedding vectors from the data region

to the log region (2). When embedding log

is permanently stored, checkpointing logic sets

persistent flag as true (3). Since checkpointing

logic already backed up the embedding vectors in

the background, the embedding table in the data

region can be directly updated during embedding

update operation (4). Even if a power failure

occurs during an embedding update, training can

be resumed from that batch if the persistent flag

is set.

MLP logging. Unlike embedding logging, the

bottom/top-MLP parameters are stored in the

CXL-GPU. Therefore, the checkpointing logic

should send CXL.cache requests by referring to

MLP parameters’ memory address and size stored

in the MMIO registers (1). When the MLP

parameters are transferred from CXL-GPU, CXL-

MEM stores them in the log region (2). By

comparing the number of transferred MLP pa-

rameters and the MLP parameters’ size stored

in the MMIO register, checkpointing logic can

recognize whether the MLP log is fully check-

pointed. When all MLP parameters are safely

stored, checkpointing logic sets the persistent flag

as true for the MLP log (3). If the persistent

flag is set for both the embedding and MLP log,

checkpointing logic deletes the old checkpoint

written in the previous batch (4).

Figure 8: Dependency (top) vs. relaxed (bottom).

Relaxation of Failure Tolerant Training

TRAININGCXL proposes training relaxation

techniques that can eliminate performance degra-

dation caused by PMEM-based CXL-MEM de-

sign.

Relaxed Embedding Lookup

PMEM’s read performance is similar to that of

DRAM. However, it can be degraded if a read is

requested right after a write for the same physical

layout of PMEM. This phenomenon is known

as read-after-write (RAW) (9), and can be found

between the embedding update of the Nth batch

and the embedding lookup of the (N+1)th batch.

(10) analyzed that 80% of embedding vectors are

trained for the consecutive batches, and this report

indicates that RAW can be frequently observed

during RM training.

Relaxation. As shown in the top of Figure 8,

(N+1)th batch’s embedding lookup has been per-

formed when (N+1)th batch’s embedding table is

prepared (by completing the Nth batch). In other

words, there is operation dependency between the

Nth batch’s embedding update and the (N+1)th

batch’s embedding lookup. However, since the

embedding lookup and update are composed of

addition/subtraction-based arithmetic, the opera-

tion dependency between embedding lookup and

update can be relaxed by utilizing the commuta-

tive property of addition. Thus, TRAININGCXL

proposes relaxed embedding lookup as shown in

the bottom of Figure 8. The conventional (N+1)th

batch’s embedding lookup is now split into two

steps. First, the embedding lookup is performed

at Nth batch with the Nth batch’s embedding

table. After that, the embedding update for the

reduced embedding vector is performed when the

embedding gradient is ready.

6 IEEE Micro

(a) Accuracy. (b) Schedule.

Figure 9: Relaxed batch-aware checkpoint.

Relaxed Batch-aware Checkpoint

Although batch-aware checkpoint can miti-

gate the slow PMEM writes by overlapping

checkpointing with CXL-GPU’s feature interac-

tion and top-MLP, checkpointing overhead can be

observed if the checkpoint time is longer than the

idle time that CXL-MEM can exploit.

Relaxation. Figure 9a shows the training accu-

racy according to the batch number difference

between the embedding and the MLP log. As

shown in Figure, the accuracy degradation satis-

fies the business needs (0.01%) (3) even when

the batch gap of the two logs differs by hundreds.

This observation indicates that the bottom/top-

MLP does not need to be checkpointed for every

batch, although the embedding log should be per-

manently stored for every batch since the original

embedding tables are updated for every batch.

Thus, TRAININGCXL proposes a relaxed batch-

aware checkpoint that can schedule MLP logging

across multiple batches as shown in Figure 9b.

Since the purpose of checkpointing relaxation is

to hide its overhead from user experience, the

MLP logging should be stopped when CXL-GPU

completes the top-MLP operation. However, it is

difficult for CXL-MEM to know whether CXL-

GPU completes the MLP operation or not. Thus,

CXL-GPU supports this checkpointing relaxation

by responding to the CXL-MEM’s CXL.cache

request only when it processes feature interaction

and top-MLP.

Evaluation
Hardware prototype. The CXL-enabled RISC-

V host CPU, CXL switch, CXL-GPU, and CXL-

MEM are prototyped using a set of Xilinx Alveo

U200s and a customized FPGA hardware devices.

Figure 10 shows CXL-MEM’s hardware proto-

type as an example, which includes a CXL device

(3.0) controller, four memory controllers, com-

Embedding table storage CPU Memory GPU

SSD Intel 750 800GB

Intel

i5-9600K

3.7GHz

4×16GB

DRAM

NVIDIA

RTX 3090

(Emulated by Vortex)

PMEM Intel Optane PMEM 512GB

PCIe

Xilinx Alveo U200 &

Emulating PMEM 64GB

CXL-D

CXL-B

CXL

Table 1: Test environment.

puting/checkpointing logic. The computing logic

consists of a set of adders, multipliers, and scratch-

pad memory to store interim embedding vectors.

The checkpointing logic has a CXL DMA engine

and two counters, which deal with data copying

for the embedding and MLP log. Note that the

memory controllers emulate the PRAM latency

by delaying DRAM responsiveness to make its

memory performance similar to PMEM (11). For

CXL-GPU, we port Vortex (12) into our platform

using Xilinx IPs (rather than its original Altera

IPs). However, its instruction set architecture can-

not support diverse CUDA kernels that our RM

systems and workloads use. We thus emulate the

kernel latency in Vortex by replaying per-batch

MLP computation cycles, which are extracted

from 3090 GPU. The software interfaces such

as cudaMemcpy are implemented using Vortex’s

DMA engine working on a PCIe address space

that our CXL and Xilinx IPs handle.

Test configurations. We prepare three different

configurations, SSD (SSD), PMEM (PMEM), and

PCIe-attached PMEM (PCIe) based on the un-

derlying media where the embedding tables are

stored into. While embedding operations of SSD

and PMEM are performed on the host CPU, PCIe

is capable of near-data processing like our CXL-

Figure 10: Prototype of CXL-MEM.

Latency (vs. DRAM) Bandwidth (vs. DRAM)

Read Write Read Write

PMEM 3x 7x 0.6x 0.1x

SSD 165x 0.02x

Table 2: Device performance characteristics (nor-

malized to DRAM performance).

7

Appears in the IEEE Micro, Special Issue on Emerging System Interconnects, 2023 (Preprint)

RM1 RM2 RM3 RM4

Input data set Random Random Random Criteo Kaggle

Features dim 32 32 32 16

Dense features 13 13 13 13

Embed. table 20 80 20 52

Sparse features 80 80 20 1

Bottom-MLP
13-8192-

2048-32

13-8192-

2048-323

13-10240-

4096-32

13-16384-

2048-512-16

Top-MLP 256-64-1 512-128-1 512-128-1 512-128-1

Table 3: Recommendation system models.

MEM. Moreover, SSD leverages host DRAM to

cache embedding vectors. We also prepare three

TRAININGCXL configurations to breakdown our

contributions: 1) CXL-MEM without any schedul-

ing supports (CXL-D), 2) CXL-D with batch-

aware checkpoint (CXL-B), and 3) CXL-B with

relaxed training techniques (CXL). Table 1 sum-

marizes the detailed hardware specifications we

used for all test configurations, while Table 2

lists up device performance characteristics such

as latency and bandwidth for read or write (which

are normalized to that of DRAM).

Model configuration. We use open source

DLRM benchmark and prepare four recommenda-

tion system models (RM) for evaluation as listed

in Table 3. RM1, RM2, and RM3 are based on

model parameters from (13), while RM4 is based

on (8). RM1 and RM2 are embedding-intensive

models, requiring the lookup of 80 embedding

vectors per embedding table. In particular, RM2

has 4× many embedding tables than RM1, mak-

ing it the most embedding-intensive model among

RM1∼4. On the other hand, RM3 and RM4 are

MLP-intensive models because the number of

embedding vectors to lookup or the number of

embedding tables is not that many compared to

RM1 and RM2. Note that we set the embedding

table larger and the bottom-MLP deeper than the

original model to reflect increases in dense and

sparse features in the real world. In addition, we

consider Criteo Kaggle’s embedding table access

distribution when randomly generating sparse

feature input for RM1∼3 to evaluate the RAW

impact similar to the real datasets.

Overall Training Latency

Figure 11 shows RMs’ average batch

training time. For the embedding-intensive

models (RM1/RM2), PMEM exhibits 949×
faster RM training time (including T-MLP,

B-MLP, Transfer, and Embedding, except

SS
D

PM
EM

PC
Ie

CX
L-

D
CX

L-
B

CX
L0

5
10
15
20

17k

Av
g.

 S
in

gl
e

Ba
tc

h
Tr

ai
ni

ng
 T

im
e

(m
s)

 Checkpoint T-MLP B-MLP Transfer Embedding
RM1

21%

EMB-intensive MLP-intensive

SS
D

PM
EM

PC
Ie

CX
L-

D
CX

L-
B

CX
L0

20

40

47k RM2

SS
D

PM
EM

PC
Ie

CX
L-

D
CX

L-
B

CX
L0

4
8

12
16
20

20k RM3

25%

SS
D

PM
EM

PC
Ie

CX
L-

D
CX

L-
B

CX
L0

4
8

12
25k RM4

26%

0
4
8 21%

Figure 11: Training time breakdown.

for Checkpoint) than SSD, on average.

This is because PMEM can be accessed in

a byte-addressable manner and its read/write

is faster than SSD. Since embedding tables

are stored across multiple PMEMs, PCIe,

CXL-D, CXL-B, and CXL can parallelize the

embedding vector accesses as well as increase

the performance of embedding operations.

Unfortunately, acceleration of embedding

operations with NDP-capable PMEM does

not work well for the MLP-intensive models

compared to embedding-intensive models. This

is because MLP-intensive models exhibit long

latency of B-MLP than embedding-intensive

models, thereby failing to fully overlap that

latency with Embedding. Specifically, CXL-D

shows 23% training time reduction compared to

PCIe on average. Its performance benefits come

from two reasons. First, all software overheads

caused by cudaStreamSynchronize and

cudaMemcpy are eliminated by automatic data

movement. Second, CXL-MEM’s checkpointing

logic can directly examine the MLP parameters

updated by CXL-GPU (for each batch) through

CXL.cache, which can hide the overhead behind

the time to compute (embedding operations).

CXL-B further improves training performance

than CXL-D by overlapping the checkpointing

with the CXL-GPU operations. Finally, our CXL

can reduce training time by 14% compared to

CXL-B by eliminating checkpointing and RAW

overheads through relaxed training techniques.

Resource Utilization Analysis

We analyze the utilization of computing and

memory resources, including CXL-GPU, CXL-

MEM’s computing logic, checkpointing logic, and

PMEM. We breakdown utilization timelines with

RM training operations to understand the pro-

posed contributions as shown in Figure 12.

Figure 12a shows training timeline of CXL-D.

8 IEEE Micro

During 0.6ms∼2.2ms, CXL-MEM is idle while

CXL-GPU performs feature interaction and top-

MLP operations. After CXL-MEM finishes the

embedding update operation at 4.9ms, the check-

pointing logic of CXL-MEM performs check-

pointing in a redo log manner, and the next batch

starts at 6.7ms. Compared to CXL-D, CXL-B

supports batch-aware checkpoints (cf. Figure

12b). Therefore, when forward propagation of

bottom-MLP is completed at 0.6ms, CXL-MEM’s

checkpointing logic starts to perform checkpoint-

ing. Checkpointing overhead is observed during

2.2ms∼2.5ms since the checkpointing time is

longer than the forward and backward propaga-

tion times of feature interaction and top-MLP

operations. Nevertheless, the training time is re-

duced by 1.6ms compared to CXL-D because

checkpointing is performed by fully utilizing

the idle time of CXL-MEM. Note that batch

1’s embedding lookup time increases in CXL-B

than CXL-D. This is because PMEM’s read-after-

write performance is observed due to consequent

embedding update (at batch 0) and embedding

lookup (at batch 1) operations.

With the proposed training relaxation tech-

niques, CXL not only maximizes computing

and memory resource utilization but also im-

proves training time (cf. Figure 12c). Re-

laxed batch-aware checkpoint is observed during

1.4ms∼2.2ms. Since MLP logging starts from

1.4ms and stops when the CXL-GPU’s top-MLP

operation is completed at 2.2ms, the checkpoint-

ing overhead is eliminated. Relaxed embedding

lookup is observed during 1ms∼1.4ms. By re-

laxing computational dependency to avoid read-

after-write, embedding lookup time is shortened

compared to CXL-B.

Power Analysis

In this subsection, we analyze energy con-

sumption between SSD, PMEM, and CXL; the

energy values of SSD and CXL are normalized

to those of PMEM for better understanding. For

comparison with high-performance training sys-

tems, we also add DRAM, which is an ideal con-

figuration where the entire embedding tables are

loaded into DRAM. As shown in Figure 13,

our proposed CXL exhibits the lowest energy

consumption across all RMs. However, the en-

ergy consumption difference between CXL and

0

60

U
til

iz
at

io
n

(%
)

B1Batch 0

EL

Top-MLP FWP
/BWP (TF/TB)

Bottom-MLP
BWP (BB)BF

Bottom-MLP
FWP (BF)

Checkpoint
(EmbedLog+MLPLog)Embed update (EU)

Embed
lookup (EL)

 C
XL-G

PU

 C
om

p
 C

heckpoint
 PM

EM

0

100

0 1 2 4 5 6 7
0

100

Time (ms)

(a) CXL-D.

0

60 C
XL-G

PU
C

om
p

 C
heckpoint

PM
EM

U
til

iz
at

io
n

(%
) BF TF/TB BB BF TF/TB

Embed update (EU) Embed
lookupEL Checkpoint Chkpt

0

100

0 1 2 4 5 6 7
0

100

Time (ms)

Batch 1Batch 0

(b) CXL-B.

0

60 C
XL-G

PU

 C
om

p
 C

heckpoint
 PM

EM

U
til

iz
at

io
n

(%
) BF TF/TB BB BF TF/TB

0

100
MLogELog EL1 EL2ELog MLogEUEL

0 1 2 4 5 6 7
0

100

Time (ms)

Batch 1Batch 0

(c) CXL.

Figure 12: Utilization of hardware resources.

other configurations varies greatly between RMs,

based on the type of computation intensity. For

example, embedding-intensive RM2 shows the

most significant energy savings, as much as 91%

compared to DRAM, whereas MLP-intensive RM4

only shows as much as 62% compared to PMEM.

The reason why embedding-intensive RMs show

more energy savings than MLP-intensive RMs is

mainly related to how much CXL-MEM shortens

the training time.

Although DRAM can train RMs faster than

SSD, it consumes more energy than SSD. This

is because DRAM requires more memory modules

to store the same size of embedding tables. That’s

why the energy consumption of DRAM is much

higher than that of PMEM during embedding

table accesses. However, when we compare the

energy consumption of DRAM and PMEM, there

are different trends between embedding-intensive

models (RM1 and RM2) and MLP-intensive

models (RM3 and RM4). In RM1 and RM2,

DRAM consumes more energy than PMEM due to

DRAM’s large energy consumption than PMEM.

On the other hand, the energy consumption of

PMEM is higher than that of DRAM in RM3 and

RM4. This is because PMEM should log the large

amount of bottom and top-MLP’s parameters,

whereas DRAM does not perform checkpointing.

9

Appears in the IEEE Micro, Special Issue on Emerging System Interconnects, 2023 (Preprint)

RM1 RM2 RM3 RM4
0.00
0.25
0.50
0.75
1.00

N
or
m
al
iz
ed

En
er
gy

PMEM
DRAM
SSD
CXL

91% 62%

Figure 13: Energy analysis.

Related Work

In-storage processing. Prior works proposed in-

storage processing (ISP) to solve data movement

overhead of SSD-based embedding table storage

(14; 15). While RecSSD (14) considers embed-

ding lookup as ISP, RM-SSD (15) offloads the

entire recommendation system to the underly-

ing storage device to eliminate the significant

GPU-SSD synchronization overhead further. In

the sense that the CXL-MEM can alleviate data

movement overhead, it is similar to the existing

in-storage processing works. However, TRAIN-

INGCXL is differentiated from existing works

as it guarantees a data persistency, and all data

movement is done by hardware without software

intervention.

Near-memory processing. There are also

DRAM-based near-memory processing schemes

(16; 17) to achieve high-performance inference

for recommendation systems. However, they

suffer from the limitation of memory expansion.

RecNMP (16) is implemented with the existing

memory interface (e.g., DDR4), which limits the

memory module expansion with the number of

CPUs. On the other hand, TensorDIMM (17)

proposes a disaggregated memory node that can

pool TensorDIMMs by leveraging NVSwitch.

However, there is a scalability limitation since

NVSwitch cannot be employed in a multi-tiered

manner. TRAININGCXL proposes a CXL-based

memory disaggregation approach, which can easy

to be expanded with the CXL 3.0’s multi-level

switching support. In addition, thanks to the

CXL-MEM’s on-card computing capability,

our work is differentiated from RecNMP

and TensorDIMM, which exploits on-DIMM

computing capability. CXL-MEM can perform

near-data processing without modification of

commodity memory modules, and its computing

capability is not limited by the memory media

capacity.

Conclusion
We propose TRAININGCXL that can effi-

ciently process large-scale recommendation mod-

els in the disaggregated memory pool by inte-

grating persistent memory and GPU into a single

cache-coherent domain. Our batch-aware check-

point can effectively hide checkpointing over-

head from the training process, and the relaxation

of embedding lookup removes RAW conflict is-

sues, thereby improving the training bandwidth.

Overall, our evaluation demonstrates that TRAIN-

INGCXL achieves 5.2× training performance im-

provement while consuming 76% lower energy

compared to the state-of-the-art PMEM-based rec-

ommendation systems.

Acknowledgement
We appreciate anonymous reviewers and

thanks for all the technical support of Panmnesia.

This work is protected by one or more patents.

Myoungsoo Jung is the corresponding author

(mj@camelab.org).

REFERENCES
1. Kim Hazelwood, Sarah Bird, David Brooks,

Soumith Chintala, Utku Diril, Dmytro Dzhul-

gakov, Mohamed Fawzy, Bill Jia, Yangqing

Jia, Aditya Kalro, et al. Applied machine

learning at facebook: A datacenter infrastruc-

ture perspective. In 2018 IEEE International

Symposium on High Performance Computer

Architecture (HPCA), pages 620–629. IEEE,

2018.

2. Dheevatsa Mudigere, Yuchen Hao, Jianyu

Huang, Zhihao Jia, Andrew Tulloch, Srini-

vas Sridharan, Xing Liu, Mustafa Ozdal, Jade

Nie, Jongsoo Park, et al. Software-hardware

co-design for fast and scalable training of

deep learning recommendation models. In

Proceedings of the 49th Annual International

Symposium on Computer Architecture, pages

993–1011, 2022.

3. Assaf Eisenman, Kiran Kumar Matam, Steven

Ingram, Dheevatsa Mudigere, Raghuraman

Krishnamoorthi, Krishnakumar Nair, Misha

Smelyanskiy, and Murali Annavaram.

{Check-N-Run}: a checkpointing system

for training deep learning recommendation

models. In 19th USENIX Symposium

on Networked Systems Design and

10 IEEE Micro

mailto:mj@camelab.org

Implementation (NSDI 22), pages 929–

943, 2022.

4. Zehuan Wang, Yingcan Wei, Minseok Lee,

Matthias Langer, Fan Yu, Jie Liu, Shijie Liu,

Daniel G Abel, Xu Guo, Jianbing Dong,

et al. Merlin hugectr: Gpu-accelerated rec-

ommender system training and inference. In

Proceedings of the 16th ACM Conference on

Recommender Systems, pages 534–537, 2022.

5. Weijie Zhao, Jingyuan Zhang, Deping Xie,

Yulei Qian, Ronglai Jia, and Ping Li. Ai-

box: Ctr prediction model training on a

single node. In Proceedings of the 28th

ACM International Conference on Informa-

tion and Knowledge Management, pages 319–

328, 2019.

6. Chun-Feng Wu, Carole-Jean Wu, Gu-Yeon

Wei, and David Brooks. A joint management

middleware to improve training performance

of deep recommendation systems with ssds.

In Proceedings of the 59th ACM/IEEE De-

sign Automation Conference, pages 157–162,

2022.

7. CXL Consortium. Compute express link

specification 3.0, 2022.

8. Maxim Naumov, Dheevatsa Mudigere, Hao-

Jun Michael Shi, Jianyu Huang, Narayanan

Sundaraman, Jongsoo Park, Xiaodong Wang,

Udit Gupta, Carole-Jean Wu, Alisson G Az-

zolini, et al. Deep learning recommen-

dation model for personalization and rec-

ommendation systems. arXiv preprint

arXiv:1906.00091, 2019.

9. Gyuyoung Park, Miryeong Kwon, Pratyush

Mahapatra, Michael Swift, and Myoungsoo

Jung. {BIBIM}: A prototype {Multi-

Partition} aware heterogeneous new memory.

In 10th USENIX Workshop on Hot Topics in

Storage and File Systems (HotStorage 18),

2018.

10. Youngeun Kwon and Minsoo Rhu. Training

personalized recommendation systems from

(gpu) scratch: look forward not backwards.

arXiv preprint arXiv:2205.04702, 2022.

11. Zixuan Wang, Xiao Liu, Jian Yang, Theodore

Michailidis, Steven Swanson, and Jishen

Zhao. Characterizing and modeling non-

volatile memory systems. In 2020 53rd

Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO), pages 496–

508. IEEE, 2020.

12. Blaise Tine, Krishna Praveen Yalamarthy,

Fares Elsabbagh, and Kim Hyesoon. Vor-

tex: Extending the risc-v isa for gpgpu and

3d-graphics. In MICRO-54: 54th Annual

IEEE/ACM International Symposium on Mi-

croarchitecture, pages 754–766, 2021.

13. Udit Gupta, Samuel Hsia, Vikram Saraph,

Xiaodong Wang, Brandon Reagen, Gu-Yeon

Wei, Hsien-Hsin S Lee, David Brooks, and

Carole-Jean Wu. Deeprecsys: A system for

optimizing end-to-end at-scale neural recom-

mendation inference. In 2020 ACM/IEEE

47th Annual International Symposium on

Computer Architecture (ISCA), pages 982–

995. IEEE, 2020.

14. Mark Wilkening, Udit Gupta, Samuel Hsia,

Caroline Trippel, Carole-Jean Wu, David

Brooks, and Gu-Yeon Wei. Recssd: near

data processing for solid state drive based

recommendation inference. In Proceedings

of the 26th ACM International Conference on

Architectural Support for Programming Lan-

guages and Operating Systems, pages 717–

729, 2021.

15. Xuan Sun, Hu Wan, Qiao Li, Chia-Lin Yang,

Tei-Wei Kuo, and Chun Jason Xue. Rm-

ssd: In-storage computing for large-scale rec-

ommendation inference. In 2022 IEEE In-

ternational Symposium on High-Performance

Computer Architecture (HPCA), pages 1056–

1070. IEEE, 2022.

16. Liu Ke, Udit Gupta, Benjamin Youngjae Cho,

David Brooks, Vikas Chandra, Utku Diril,

Amin Firoozshahian, Kim Hazelwood, Bill

Jia, Hsien-Hsin S Lee, et al. Recnmp: Ac-

celerating personalized recommendation with

near-memory processing. In 2020 ACM/IEEE

47th Annual International Symposium on

Computer Architecture (ISCA), pages 790–

803. IEEE, 2020.

17. Youngeun Kwon, Yunjae Lee, and Minsoo

Rhu. Tensordimm: A practical near-memory

processing architecture for embeddings and

tensor operations in deep learning. In Pro-

ceedings of the 52nd Annual IEEE/ACM In-

ternational Symposium on Microarchitecture,

pages 740–753, 2019.

11

	Background
	Recommendation Model Training
	Compute Express Link (CXL)

	Persistent Memory Disaggregation
	System Architecture
	CXL-based Automatic Data Movement

	Failure Tolerance Management
	Batch-aware Checkpoint
	CXL-MEM's Checkpoint Support

	Relaxation of Failure Tolerant Training
	Relaxed Embedding Lookup
	Relaxed Batch-aware Checkpoint

	Evaluation
	Overall Training Latency
	Resource Utilization Analysis
	Power Analysis

	Related Work
	Conclusion
	Acknowledgement

