
Revizor: Testing Black-Box CPUs against Speculation Contracts
Oleksii Oleksenko∗
Christof Fetzer

TU Dresden
Dresden, Germany

Boris Köpf
Microsoft Research
Cambridge, UK

Mark Silberstein
Technion

Haifa, Israel

ABSTRACT
Speculative vulnerabilities such as Spectre and Meltdown expose
speculative execution state that can be exploited to leak informa-
tion across security domains via side-channels. Such vulnerabilities
often stay undetected for a long time as we lack the tools for sys-
tematic testing of CPUs to find them.

In this paper, we propose an approach to automatically detect
microarchitectural information leakage in commercial black-box
CPUs. We build on speculation contracts, which we employ to spec-
ify the permitted side effects of program execution on the CPU’s
microarchitectural state. We propose a Model-based Relational Test-
ing (MRT) technique to empirically assess the CPU compliance with
these specifications.

We implement MRT in a testing framework called Revizor, and
showcase its effectiveness on real Intel x86 CPUs. Revizor auto-
matically detects violations of a rich set of contracts, or indicates
their absence. A highlight of our findings is that Revizor managed
to automatically surface Spectre, MDS, and LVI, as well as several
previously unknown variants.

1 INTRODUCTION
The instruction set architecture (ISA) specifies the functional be-
havior of a CPU but abstracts from its implementation details (mi-
croarchitecture). This abstraction enables rapid development of
hardware optimizations without requiring changes to the software
stack; unfortunately, it also obscures the security impact of these
optimizations. Over the last decade researchers discovered numer-
ous microarchitectural zero days, including Spectre-style attacks
that use microarchitectural state to exfiltrate secret information
obtained during transient execution [23, 26]. The problem is ex-
pected to get worse as Moore’s law subsides and CPU architects
are compelled to apply ever more aggressive optimizations [37].

Speculation contracts (short: contracts) [18] have been proposed
as a way out of this situation by providing a specification of the
microarchitectural side effects. Contracts declare which ISA opera-
tions an attacker can observe through a side channel, and which
operations can speculatively change the control/data flow. For ex-
ample, a contract may state: an attacker can observe addresses of
memory stores and loads, and the CPU may mispredict the targets
of conditional jumps. If a CPU implementation permits the attacker
to observe more than that (e.g., addresses of loads after mispre-
dicted indirect jumps), the CPU violates the contract, indicating an
unspecified leak in the microarchitecture.

∗Work partially done at Microsoft Research Cambridge.

For software developers, contracts are a foundation for microar-
chitecturally secure programming: they spell out the assumptions
that are required for checking that mitigations are effective and
code is free of leaks. For example, a recent survey [9] classifies exist-
ing tools for detecting speculative vulnerabilities in the language of
contracts. For hardware developers, contracts can provide a target
specification that describes the permitted microarchitectural effects
of the CPU’s operations, without putting further constraints on
the hardware implementation. Thus, contracts hold the promise
to achieve for speculative vulnerabilities what consistency models
have provided for memory consistency [3].

Despite the contracts’ potential, so far they have only been used
for establishing security guarantees of small white-box models
of CPUs with toy ISAs [18]. In the context of real-world CPUs,
several existing tools (e.g., Medusa [28], SpeechMiner [51], and
CheckMate [41]) target automated detection of known types of
speculative leaks, but not contract violations in general. Thus, it
has been an open challenge to test contract compliance of real-
world CPUs, with complex ISAs and absent (or intractable) models
of the microarchitecture.

Approach. In this paper, we propose a method and a tool for test-
ing real-world CPUs against speculation contracts. Our method,
calledModel-based Relational Testing (MRT), is a randomized search
for “evidence” of contract violations, i.e., for counterexamples to
contract compliance.

Such a counterexample is a specific instance where the CPU
leaks more information than the contract permits. In particular, a
counterexample is an instruction sequence together with a pair of
inputs that produce the same observations according to the contract
(contract trace), but different microarchitectural side-effects on the
CPU (hardware trace).

MRT searches for counterexamples by creating samples—random
instruction sequences (test cases) together with random inputs—
and checking if any of them constitutes a counterexample. A key
observation is that this check does not require an explicit model of
the microarchitecture. This is because one only needs to compare
traces of the same kind, that is, contract traces to contract traces, and
hardware traces to hardware traces. This enables side-stepping the
need for establishing a connection between them via a model of the
microarchitecture (as done in [18]) and enables testing commercial
black-box CPUs. However, the search for counterexamples on real-
world CPUs poses a new set of challenges:

The first challenge is to cope with the intractable search space:
ISAs typically include hundreds of instructions, dozens of regis-
ters, and permit large memory spaces. This creates an intractable
number of possibilities for both test cases and for inputs to them.
Moreover, there are no means to measure coverage for black-box
CPUs, which precludes a guided search. We solve this problem by
using an incremental generation process that aims to create ample

ar
X

iv
:2

10
5.

06
87

2v
3

 [
cs

.C
R

]
 8

 F
eb

 2
02

2

,

opportunities for speculation: (1) We perform testing in rounds,
where we start by generating short instruction sequences with few
basic blocks, a small subset of registers, and where we confine all
memory accesses to a narrow memory range. (2) After each round
without counterexample, we invoke a diversity analysis that counts
the number of tested instruction patterns that we expect to in-
duce speculative leaks. This analysis triggers reconfiguration of the
test generator to gradually expand the search space in subsequent
testing rounds.

The second challenge is to obtain deterministic hardware traces
from modern high-performance CPUs with complex and unpre-
dictable microarchitectures. For this we (1) create a low-noise mea-
surement environment where we execute test cases in complete
isolation and perform a side-channel attack (e.g., Prime+Probe on
the L1D cache) to detect leakage into the microarchitecture, and (2)
we control the microarchitectural context using a technique we call
priming: Priming collects traces for a large number of pseudoran-
dom inputs to the same test case in sequence. In this way, execution
with one input effectively sets the microarchitectural context for
the next input. This enables collection of hardware traces with
predictors primed in a diverse but deterministic fashion, which is
key to obtaining comprehensive and stable hardware traces.

The third challenge is to generate contract traces for complex
ISAs such as x86. To tackle this challenge we implement executable
contracts by instrumenting an existing ISA emulator with a check-
pointing mechanism similar to [32], which enables us to explore cor-
rect and mispredicted execution paths, and to record the contract-
prescribed observations during program execution.

Tool & Evaluation.We implement MRF as a testing framework Re-
vizor1. The current implementation supports only Intel x86, which
we chose as a worst-case target for our method: a superscalar CPU
with several unpatched microarchitectural vulnerabilities, no de-
tailed descriptions of speculation mechanisms, and no direct control
over the microarchitectural state.

We evaluated Revizor on two different microarchitectures, Sky-
lake and Coffee Lake, and with different microcode patches. We
test these targets against a sequence of increasingly permissive
contracts. This gradually filters out common violations, and nar-
rows down on more subtle violations. The key highlights of our
evaluation are:

(1) When testing a patched Skylake against a restrictive con-
tract that states that speculation exposes no information,
Revizor detects a violation within a few minutes. Inspection
shows the violation stems from the leakage during branch
prediction, i.e. a representative of Spectre V1.

(2) When testing Skylake with V4 patch disabled against a con-
tract that permits leakage during branch prediction (and is
hence not violated by V1), Revizor detects a violation due to
address prediction, i.e., a representative of Spectre V4.

(3) When further weakening the contract to permit leaks during
both types of speculation, Revizor still detects a violation.
This violation is a novel (minor) variant of Spectre where the

1Revizor is a name of a classical play by Nikolai Gogol about a government inspector
arriving into a corrupt town for an incognito investigation.

timing of variable-latency instructions (which is not permit-
ted to leak according to the contract) leaks into L1D through
a race condition induced by speculation.

(4) When making microcode assists possible during collection
of the hardware traces, Revizor surfaces MDS [7, 44] on the
same CPU and LVI-Null [43] on a CPU patched against MDS.

(5) When used to validate an assumption that stores do not mod-
ify the cache state until they retire, made in recent defence
proposals [46, 53], Revizor discovered that this assumption
does not hold in Coffee Lake.

(6) In terms of speed, Revizor processes over 200 test cases per
hour for complex contracts, and with several hundreds of
inputs per test case, which enables discovery of Spectre V1,
V4, MDS, and LVI-Null in under two hours, on average.

Summary. In summary, starting from simple contracts, Revizor
could automatically generate gadgets that represent all three of the
known types of speculative leakage: speculation of control flow, ad-
dress prediction, and speculation on hardware exceptions. Notably
(and perhaps surprisingly), Revizor finds them within only a few
hours of testing on an ordinary desktop PC, despite the enormous
size of the search space. The reason is that counterexample search
is not akin to finding a needle in a haystack. Instead, microarchi-
tectural leaks manifest in many programs, and it is sufficient to
find only one of them. This result demonstrates the practicality of
testing complex real-world CPUs against speculation contracts.

The source code is publicly available under:
https://github.com/hw-sw-contracts/revizor

2 BACKGROUND: CONTRACTS
2.1 Hardware Traces and Side-channel Leakage
We consider an abstract side-channel attack model whereby an
adversary can use side-channels [33, 42, 52] to extract secret in-
formation about a victim program 𝑃𝑟𝑜𝑔 execution. Specifically, we
focus onmicroarchitectural side-channels, such as cache timing.We
define a hardware trace as a sequence of all the observations made
through the side-channel after each instruction during a program
execution.

We represent the hardware trace as the output of a function
𝐴𝑡𝑡𝑎𝑐𝑘

𝐻𝑇𝑟𝑎𝑐𝑒 = 𝐴𝑡𝑡𝑎𝑐𝑘(𝑃𝑟𝑜𝑔, 𝐷𝑎𝑡𝑎,𝐶𝑡𝑥)
that takes three input parameters: (1) the victim program 𝑃𝑟𝑜𝑔;
(2) the input 𝐷𝑎𝑡𝑎 processed by the victim’s program (i.e., the ar-
chitectural state including registers and main memory); (3) the
microarchitectural context 𝐶𝑡𝑥 in which it executes.

The information exposed by a hardware trace depends on the
assumed side-channel and threat model.
Example: If the threatmodel includes attacks on a data cache,𝐻𝑇𝑟𝑎𝑐𝑒
is composed of the cache set indexes used by 𝑃𝑟𝑜𝑔’s loads and stores.
If it includes attacks on an instruction cache, 𝐻𝑇𝑟𝑎𝑐𝑒 contains the
addresses of executed instructions.

A program leaks information via side-channels when its hard-
ware traces depend on the inputs (𝐷𝑎𝑡𝑎): We assume the attacker
knows 𝑃𝑟𝑜𝑔 and can manipulate𝐶𝑡𝑥 , hence any difference between
the hardware traces implies difference in 𝐷𝑎𝑡𝑎, which effectively
exposes information to the attacker.

https://github.com/hw-sw-contracts/revizor

Revizor: Testing Black-Box CPUs against Speculation Contracts ,

Observation Clause Execution Clause
Load expose: ADDRESS None

Store expose: ADDRESS None

Cond. None speculate:
Jump if(INVERTED_CONDITION){

IP = IP + TARGET}

Other None None

Table 1: Summary of MEM-COND. Note that the execution
clause describes the speculative behavior of a conditional
jump, as the jump takes place (IP is updated) if the condi-
tion is false, the opposite of the non-speculative execution.

Intuitively, hardware traces encompass the microarchitectural
leaks during the program execution on a given CPU, including
speculative execution. For example, the trace will record a sensitive
memory access during a branch misprediction, such as the leak
exploited in Spectre [23].

2.2 Legitimate Exposure as a Contract
We now show how speculation contracts can be used to specify the
information legitimately exposed by each instruction.

A speculation contract [18] specifies the information that can
be exposed by a CPU during a program execution under a given
threat model. For each instruction in the CPU ISA (or a subset
thereof), a contract describes the information exposed by the in-
struction’s (observation clause) and the externally-observable
speculation that the instruction may trigger (execution clause).
When a contract covers a subset of ISA, the leakage of unspecified
instructions is undefined.
Example: Consider a contract called MEM-COND (summarized in
Table 1). Through the observation clauses of loads and stores, the
contract prescribes that addresses of all memory access may be
exposed (henceMEM). The execution clause of conditional branches
describes their misprediction, thus the contract prescribes that
branch targets may be mispredicted (hence COND). This way, the
contract models a data cache side channel on a CPU with branch
prediction.

A contract trace 𝐶𝑇𝑟𝑎𝑐𝑒 contains the sequence of all the ob-
servations the contract allows to be exposed after each instruction
during a program execution, including the instructions executed
speculatively. Conversely, the information that is not exposed via
𝐶𝑇𝑟𝑎𝑐𝑒 is supposed to be kept secret.

We represent a contract as a function 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡 that maps the
program 𝑃𝑟𝑜𝑔 and its input 𝐷𝑎𝑡𝑎 to a contract trace 𝐶𝑇𝑟𝑎𝑐𝑒:

𝐶𝑇𝑟𝑎𝑐𝑒 = 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡 (𝑃𝑟𝑜𝑔, 𝐷𝑎𝑡𝑎)

Example: Consider the program in Figure 1, executed with an input
data={x=10,y=20}. The MEM-COND contract trace is ctrace=
=[0x110,0x220], representing that the load at line 1 exposes the
accessed address during normal execution, and the load at line 3
exposes its address during speculative execution triggered by the
branch at line 2.

1 z = array1[x] # base of array1 is 0x100
2 if (y < 10)
3 z = array2[y] # base of array2 is 0x200

Figure 1: Example of Spectre V1

A CPU complies [18] with a contract when its hardware traces
(collected on the actual CPU) leak at most as much information as
the contract traces. Formally, we require that whenever any two
executions of any program have the same contract trace (imply-
ing the difference between inputs is not exposed), the respective
hardware traces should also match.

Definition 1. A CPU complies with a 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡 if, for all pro-
grams 𝑃𝑟𝑜𝑔, all input pairs (𝐷𝑎𝑡𝑎, 𝐷𝑎𝑡𝑎′), and all initial microarchi-
tectural states 𝐶𝑡𝑥 :

𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡 (𝑃𝑟𝑜𝑔, 𝐷𝑎𝑡𝑎)=𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡 (𝑃𝑟𝑜𝑔, 𝐷𝑎𝑡𝑎′)
=⇒ 𝐴𝑡𝑡𝑎𝑐𝑘(𝑃𝑟𝑜𝑔, 𝐷𝑎𝑡𝑎,𝐶𝑡𝑥)=𝐴𝑡𝑡𝑎𝑐𝑘(𝑃𝑟𝑜𝑔, 𝐷𝑎𝑡𝑎′,𝐶𝑡𝑥)

This approach is called relational reasoning, and is natural for
expressing information flow properties [10]. In the corresponding
terminology [39], Def 1 requires that any program that is non-
interferent with respect to a contract must also be non-interferent
on the CPU.

Conversely, a CPU violates a contract if there exists a program
𝑃𝑟𝑜𝑔, a microarchitectural state Ctx, and two inputs 𝐷𝑎𝑡𝑎, 𝐷𝑎𝑡𝑎′
that agree on their contract traces but disagree on the hardware
traces. We call the tuple (𝑃𝑟𝑜𝑔,𝐶𝑡𝑥, 𝐷𝑎𝑡𝑎, 𝐷𝑎𝑡𝑎′) a contract coun-
terexample. The counterexample witnesses that an adversary can
learn more information from hardware traces than what the con-
tract specifies. A counterexample indicates a potential microarchi-
tectural vulnerability that was not accounted for by the contract.
Example: Consider a contract, called MEM-SEQ, which allows expo-
sure of memory accesses (similarly to MEM-COND), but limits it to
only non-speculative accesses. A CPU that leaks on speculatively
executed branches will violate MEM-SEQ. Its counterexample is
the program in Figure 1 together with inputs data1={x=10,y=20}
and data2={x=10,y=30} and a context that triggers a mispredic-
tion: The contract trace for both inputs is ctrace=[0x110]. How-
ever, when the CPU mispredicts the branch (line 2) and specu-
latively accesses memory (line 3), the hardware traces will di-
verge (htrace1=[0x110,0x220] and htrace2=[0x110,0x230]) .
Yet, this is not a counterexample to MEM-COND, because its con-
tract traces already expose the memory accesses on both paths of a
branch.

2.3 Concrete Contracts of Speculation
A contract is constructed from a combination of an observation and
execution clauses. We first describe individual clauses, and then
show how they form concrete contracts.

,

Observation clauses:
• MEM (Memory Address): exposes the addresses of data loads
and stores. Represents a data cache timing side-channel at-
tack.

• CT (Constant-Time): extends MEM by additionally expos-
ing Program Counter. Represents both data and instruction
cache attacks. Based on a typical threat model for constant-
time programming (hence the name), except it does not ex-
pose the execution time of variable-latency operations.

• ARCH (Architectural Observer): extends CT by additionally
exposing the values loaded frommemory. Represents a same-
address-space attack, such as assumed in the Speculative
Taint Tracking paper [53].

Execution clauses:
• SEQ: observations are only collected during sequential execu-
tion (in-order, nonspeculative). This is a model of a processor
that allows speculation but constrains the information leaked
during the speculation when combined with the appropriate
observation clause.

• COND: observations are also collected after conditional jump
misprediction. That is, they are collected from both correct
and mispredicted paths. The length of the mispredicted path
is limited by a predefined speculation window.

• BPAS: observations are collected after store bypass: all stores
are speculatively skipped. Themis-speculated execution rolls
back after the speculation window as in COND.

• COND-BPAS: Combination of COND and BPAS.

Full contracts.We illustrate how the clauses form a contract with
examples:
Example: CT-COND exposes addresses of all memory accesses and
of all control-flow transitions, including those on mispredicted
paths of conditional branches. CT-COND models a CPU vulnerable
to Spectre V1 attacks.
Example: ARCH-SEQ exposes addresses and values of non-speculative
loads and stores. There is a subtle difference fromMEM-SEQ. While
MEM-SEQ disallows speculative leakage of any values, ARCH-SEQ
disallows leakage of only speculatively loaded values. This is equiv-
alent to transient noninterference[53].

3 CHALLENGES OF TESTING CONTRACT
COMPLIANCE

In this work, we leverage contracts to check compliance of complex
commercial CPUs under realistic threat models. Assuming that a
contract properly exposes the expected information leakage in a
CPU, finding a counterexample would signify an unexpected, hence
potentially exploitable, leakage.

While the original paper [18] proved compliance on an abstract
CPU with toy assembly, testing compliance of a real hardware CPU
with complex ISA poses significant challenges.

3.1 How to Find a Counterexample?
The search space for counterexamples is all possible programs,
inputs, and all microarchitectural contexts. Such an immense search
space cannot be explored exhaustively, thus requiring a targeted
search.

CH1: Binary Generation. While a contract prescribes which in-
structions are permitted to speculate and expose information, we
search for unexpected speculation and leakage, thus we need to
collect traces that encompass all the instructions. Furthermore, a
particular sequence of instructions is usually required to produce an
observable leakage, thus we need to test different instruction se-
quences. Moreover, to trigger an incorrect speculation (e.g., a branch
misprediction), we need to prime the microarchitectural state in
diverse ways. All of it calls for a search strategy that tests diverse
instruction sequences with diverse inputs, but with a priority to
those that are likely to leak or to produce speculation.

CH2: Input Generation. For an input to be useful in forming a
counterexample, we need another input that produces the same
contract trace. Such inputs are called effective inputs. The ineffective
inputs which produce a unique contract trace constitute a wasted
effort as they cannot, by definition, reveal contract violation. This
challenge calls for a more structured input generation approach
rather than a simple random one, as the probability that multiple
random inputs will produce the same contract trace is low.

3.2 How to Get Stable Hardware Traces on a
Real CPU?

CH3: Collection of Hardware Traces. CPUs have no direct in-
terface to record information leaked in hardware traces, such as
addresses accessed in a speculative path. Thus, we have to per-
form indirect sampling-based measurements, which are inevitably
imprecise and incomplete.

CH4: Uncontrolled Microarchitectural State. Black-box CPUs
normally have no direct way to set the microarchitectural context
for test execution as required by Def 1. For example, branch predic-
tors are not accessible architecturally, and some are not even dis-
closed. Moreover, speculation depends on multiple, often unknown
factors, such as fine-grained power saving [29, 38], or contention
on shared resources. Thus, speculation can happen nondetermin-
istically, and cause divergent traces without a real information
leak (false positive). On the other hand, if the speculation is never
triggered during the measurement, speculative leaks cannot be
observed, leading to false compliance (false negative).

CH5: Noisy Measurements. The measurements are influenced
by neighbour processes on the system, by hardware mechanisms
(e.g., prefetching), and by inherent imprecision of the measurement
tools (e.g., timing measurements). This challenge differs from CH4
as it affects the measurement precision rather than the program ex-
ecution. The noise may result in divergence between the otherwise
equivalent traces, leading to a false positive.

3.3 How to Produce Contract Traces?

CH6: Collection of Contract Traces. All contracts in [18] are
defined for a toy assembly; it is unclear how to collect traces for a
contract describing a complex ISA. To allow realistic compliance
check, we need work with real binaries generated via standard
compiler tool chain. Hence, we need a method to automatically col-
lect contract-prescribed observations for a given program executed
with a given input.

Revizor: Testing Black-Box CPUs against Speculation Contracts ,

Figure 2: Main flow of Model-based Relational Testing.

4 MODEL-BASED RELATIONAL TESTING
We present Model-based Relational Testing (MRT), our approach to
identifying contract violations in black-box CPUs. Here we provide
a high-level description, with the technical details to follow (§5).
Figure 2 shows the main steps.
Test case and input generation. We sample the search space
of programs, inputs and microarchitectural states to find coun-
terexamples. The generated instruction sequences (test cases) are
comprised of the ISA subset described by the contract. The test
cases and respective inputs to them are generated to achieve high
diversity and to increase speculation or leakage potential (§5.1 and
§5.2).
Collecting contract traces.We implement an executable Model
of the contract to allow automatic collection of contract traces for
standard binaries. For this, we modify a functional CPU emulator to
implement speculative control flow based on a contract’s execution
clause, and to record traces based on its observation clause (§5.4).
Collecting hardware traces. We collect hardware traces by ex-
ecuting the test case on the CPU under test and measuring the
observable microarchitectural state changes during the execution
according to the threat model. The executor employs several meth-
ods to achieve consistent and repeatable measurements (§5.3).
RelationalAnalysis.We analyze the contract and hardware traces
to identify violations of Def 1. This requires relational reasoning:

(1) We partition inputs into groups, whichwe call input classes.
All inputs within a class have the same contract trace. Thus,
input classes correspond to the equivalence classes of equal-
ity on contract traces. Classes with a single (ineffective) input
are discarded.

(2) For each class, we check if all inputs within a class have the
same hardware trace.

If the check fails on any of the classes, we found a counterexam-
ple that witnesses contract violation (§5.5).
Diversity-guided generation. The testing process is performed
in rounds, where earlier rounds exercise smaller search space (i.e.,
shorter instruction sequences, fewer basic blocks) to speed up test-
ing. After each round that did not yield a counterexample, we invoke
a test case diversity analysis which may trigger reconfiguration of
the test generator to produce richer test cases, gradually expanding
the search space (§5.6).

1 OR RAX, 468722461

2 AND RAX, 0b111111000000

3 LOCK SUB byte ptr [R14 + RAX], 35

4 JNS .bb1

5 JMP .bb2

6 .bb1: AND RCX, 0b111111000000

7 REX SUB byte ptr [R14 + RCX], AL

8 CMOVNBE EBX, EBX

9 OR DX, 30415

10 JMP .bb2

11 .bb2: AND RBX, 1276527841

12 AND RDX, 0b111111000000

13 CMOVBE RCX, qword ptr [R14 + RDX]

14 CMP BX, AX

Figure 3: Randomly generated test case

5 DESIGN AND IMPLEMENTATION
We build a tool Revizor that implements MRT for practical end-to-
end testing of x86 CPUs against speculation contracts. We describe
the individual components of Revizor and how they address the
challenges outlined in §3.

5.1 Test Case Generator
The task of the test case generator is to sample the search space of
all possible programs. As described in CH1, the sampling should be
diverse, so that we have a chance to observe an unexpected leakage
or speculation. Fully random generation, however, might lead to
generating incorrect programs, e.g., with invalid control flow or
memory accesses, leading to unhandled exceptions during their ex-
ecution. This is why we rely on a randomized generation algorithm
which imposes a certain structure on the generated instruction
sequence and its memory accesses. It works as follows:

(1) Generate a random Directed Acyclic Graph (DAG) of basic
blocks;

(2) Add jump instructions (terminators) at the end of basic block
to ensure the control flow matches the DAG.

(3) Add random instructions from the tested ISA subset;
(4) Instrument instructions to avoid faults:
(a) mask memory addresses to confine them within a dedi-

cated memory region, which we call sandbox;
(b) modify division operands to avoid division by zero;

(5) Compile the test case into a binary.
The total number of instructions, functions, and basic blocks per

test, as well as the tested instruction (sub)set are specified by the
user. We borrow the ISA description from nanoBench [2].
Example: Figure 3 shows a test case example, produced in multiple
steps: 1○ The generator created a DAG with three nodes. 2○ Con-
nected the nodes by placing either conditional or direct jumps (lines
4–5, 10). 3○ Added random instructions until a specified size was
reached (lines 1, 3, 7–9, 13, 14). 4○ Masked the memory accesses
and aligned to the sandbox base in R14 (lines 2, 6, 12).

We use DAG as a basis for the generation process to confine
the control flow and avoid infinite loops. The limitation of this
approach is that we do not test loops, which may prevent Revizor

,

from detecting loop-based contract violations. However, it is only a
technical limitation and, in the future, it could be solved by analyz-
ing the control flow of test cases and enforcing loop termination at
generation time.

Improving input effectiveness. Using many hardware registers
and larger sandbox results in low input effectiveness (CH2), as
it increases the likelihood of unique contract traces that cannot
be used for relational testing. To improve input effectiveness, the
generator generates programs with only four registers, confines
the memory sandbox to one or two 4K memory pages, and aligns
memory accesses to a cache line (64B). To test different alignments,
the accesses are further offset by a random value between 0 and 64
(the same within a test case but different across test cases).

5.2 Input Generator
An input is a set of values to initialize the architectural state, which
includes registers (including FLAGS) and the memory sandbox. Re-
vizor creates random inputs with a 32-bit PRNG.

The initial number of inputs per test case is configured up-front,
and it increases every time the diversity analyser triggers a recon-
figuration (§5.6)

Improving input effectiveness. Higher entropy of the PRNG
leads to lower input effectiveness (CH2), because the probability of
finding colliding contract traces decreases. We amend this issue by
artificially reducing the PRNG entropy bymasking some output bits;
lower entropy results in higher input effectiveness but smaller range
of tested values. We expect that more sophisticated techniques for
creating inputs (e.g., based on symbolic execution) would be able
to achieve high effectiveness without manipulating the PRNG.

5.3 Executor
The executor has three tasks: (1) collect hardware traces when
executing test cases on the CPU (CH3), (2) set themicroarchitectural
context for the execution (CH4), and (3) eliminate measurement
noise (CH5).

Collecting hardware traces. To collect traces we employ meth-
ods used by side-channel attacks, but in a fully controlled environ-
ment. This allows us to record hardware traces corresponding to
the measurements of a powerful worst-case attacker, and spot all
consistently-observed leaks via the microarchitectural state. The
process involves the following steps:

(1) Load the test case into a dedicated region of memory,
(2) Set memory and registers according to the inputs,
(3) Prepare the side-channel (e.g., prime cache lines),
(4) Invoke the test case,
(5) Measure the microarchitectural changes (e.g., probe cache

lines) via the side-channel, thus producing a trace.

The measurement (steps 2–5) repeats for all inputs, thus produc-
ing a hardware trace for each test case-input pair.

Our implementation supports several measurement modes:

• Prime +Probe [33], Flush +Reload [52], and Evict +Reload [16]
modes use the corresponding attack on L1D cache.

• In *+Assist mode, the executor includes microcode assists. It
clears the “Accessed” bit in one of the accessible pages such
that the first store or load triggers an assist 2.

Example: The hardware trace corresponding to running executor
in L1D Prime+Probe mode is a sequence of bits, each representing
whether a specific cache set was accessed by the test case or not.
E.g., the following trace indicates observed memory accesses to
sets 0,4,5: 10001100000000000000000000000000

Setting themicroarchitectural context.We cannot directly con-
trol the microarchitectural context before the test execution (CH4).
To deal with this, we develop a technique called priming, where
we collect traces for a large number of pseudorandom inputs (§5.2)
to the same test case in a sequence. In this way, execution with
one input effectively sets the microarchitectural context for the
next input. This enables collection of hardware traces with predic-
tors primed in diverse but deterministic fashion, which is key to
obtaining traces that are stable enough for equality checks.

Yet priming may result in undesirable artifacts. For this, recall
that MRT searches for inputs𝐷𝑎𝑡𝑎1 and𝐷𝑎𝑡𝑎2 from the same input
class, but with divergent hardware traces:

𝐴𝑡𝑡𝑎𝑐𝑘(𝑃𝑟𝑜𝑔, 𝐷𝑎𝑡𝑎1,𝐶𝑡𝑥) ≠ 𝐴𝑡𝑡𝑎𝑐𝑘(𝑃𝑟𝑜𝑔, 𝐷𝑎𝑡𝑎2,𝐶𝑡𝑥)

Due to priming, however, the contexts for each input is different,
and the actual equality check is:

𝐴𝑡𝑡𝑎𝑐𝑘(𝑃𝑟𝑜𝑔, 𝐷𝑎𝑡𝑎1,𝐶𝑡𝑥1) ≠ 𝐴𝑡𝑡𝑎𝑐𝑘(𝑃𝑟𝑜𝑔, 𝐷𝑎𝑡𝑎2,𝐶𝑡𝑥2)

Therefore, the divergence of traces could be caused by differences in
the microarchitectural contexts𝐶𝑡𝑥1 and𝐶𝑡𝑥2. For example, earlier
inputs can train branch predictors in a way that would prevent
speculation for the latter inputs.

To filter such cases and verify that the divergence is caused by
inputs and by contexts, we swap 𝐷𝑎𝑡𝑎1 and 𝐷𝑎𝑡𝑎2 in the priming
sequence, which enables us to test 𝐷𝑎𝑡𝑎1 with the context 𝐶𝑡𝑥2
and vice versa. That is, we test the following:

𝐴𝑡𝑡𝑎𝑐𝑘(𝑃𝑟𝑜𝑔, 𝐷𝑎𝑡𝑎1,𝐶𝑡𝑥2) = 𝐴𝑡𝑡𝑎𝑐𝑘(𝑃𝑟𝑜𝑔, 𝐷𝑎𝑡𝑎2,𝐶𝑡𝑥2)
∧ 𝐴𝑡𝑡𝑎𝑐𝑘(𝑃𝑟𝑜𝑔, 𝐷𝑎𝑡𝑎1,𝐶𝑡𝑥1) = 𝐴𝑡𝑡𝑎𝑐𝑘(𝑃𝑟𝑜𝑔, 𝐷𝑎𝑡𝑎2,𝐶𝑡𝑥1)

If this condition holds, we discard the divergence as a measurement
artifact, otherwise we report a contract violation.
Example: Consider two inputs with the same contract trace but dif-
ferent hardware traces; in the original sequence of inputs, the first
was at position 100 (𝑖100) and the second at 200 (𝑖200). For priming,
the executor tests sequences (𝑖1 . . . 𝑖99, 𝑖200, 𝑖101 . . . 𝑖199, 𝑖200) and
(𝑖1 . . . 𝑖99, 𝑖100, 𝑖101 . . . 𝑖199, 𝑖100). The executor will consider it a false
positive if 𝑖100 at position 200 produces the same trace as 𝑖200 at
position 200, and vice versa.

Eliminating measurement noise. Hardware traces in the same
input class may also diverge (and thus incorrectly considered as con-
tract violation) due to several additional sources of inconsistencies
which we eliminate as follows:

(1) Eliminating measurement noise (CH5). The executor uses
performance counters for cache attacks by reading the L1D
miss counter before and after probing a cache line. It proved
to give more stable results than timing readings.

2Microcode assist is a situation when the CPU redirects the control to an internal
microcode routine to execute a complex operation, such as setting a page table bit.

Revizor: Testing Black-Box CPUs against Speculation Contracts ,

(2) Eliminating external software noise (CH5). We run the execu-
tor as a kernel module (based on nanoBench [2]). A test is
executed on a single core, with hyperthreading, prefetching,
and interrupts disabled. The executor also monitors System
Management Interrupts (SMI) [21] to discard those measure-
ments polluted by an SMI.

(3) Reducing nondeterminism (CH4). We repeat each measure-
ment (50 times in our experiments) after several rounds of
warm-up, and discard one-off traces as likely caused by noise.
We then take the union of all traces collected from the execu-
tions of a test case with the same input, which encompasses
all consistently observed variants of speculative behavior
under different microarchitectural contexts.

Example: Consider again the test case in Figure 3. If the branch
in line 6 is speculated differently across the runs, one input may
produce different traces:

00001010000001000000000000000001
00001000000001000000000000000001
The first trace is with a misprediction (cache set 7), and the

second without. The merged trace is:
00001010000001000000000000000001

Discarding all outliers observed only once during the test might
miss rare cases that reveal real leaks. However, we found it neces-
sary from the practical perspective: each reported violation requires
manual investigation. Since the outliers turned out to be notori-
ously hard to reproduce and verify, we opted to focus on the leaks
that are easier to distinguish from the noise.

5.4 Model
Model’s task is to automate the collection of contract traces (CH6).
We achieve this by executing test cases on an ISA-level emulator
modified according to the contract. The emulator implements the
contract’s execution clause, such as exploring all speculative exe-
cution paths, followed by a rollback, and it collects observations
based on the observation clause. The resulting trace is a list of ob-
servations collected while executing a test case with a single input.
We base our implementation on Unicorn [34], a customizable x86
emulator, modified to implement the clauses listed in §2.3.

Observation Clauses.When the emulator executes an instruction
listed in the observation clause, it records its exposed information
into the trace. This happens during both normal and speculative
execution, unless the contract states otherwise.
Example: Consider the test case Figure 3 and the contract MEM-
SEQ. As prescribed by the contract, the model records the accessed
addresses when executing lines 3, 7, 13 (Figure 3). Suppose, the
branch (line 4) was not taken; the store (line 3) accessed 0x100;
and the load (line 13) accessed 0x340. Then, the contract trace is
ctrace=[0x100, 0x340].

Execution Clauses are implemented similarly to the speculation
exposure mechanism introduced in SpecFuzz [32]: Upon encounter-
ing an instruction with a non-empty execution clause (e.g., a branch
in MEM-COND), the emulator takes a checkpoint. The emulator
then simulates speculation as described by the clause until (1) the
test case ends, (2) the first serializing instruction is encountered, or

(3) the maximum possible speculation depth is reached3. Then, it
rolls back and continues normal execution.

As multiple mispredictions may happen together, the emulator
supports nested speculation through a stack of checkpoints: When
starting a simulation, the checkpoint is pushed, and afterwards, the
emulator rolls back to the topmost checkpoint.

Practically, however, nested speculations greatly reduce the test-
ing speed, which is why we disable nesting by default. This arti-
ficially reduces the amount of permitted leakage by the contract,
potentially causing false violations (since hardware traces would
still include nested speculations). To identify such false violations,
Revizor re-executes all reported violations with nesting enabled.

5.5 Analyzer
The analyzer compares traces by using relational analysis (§4). As
hardware traces are obtained as the union of observations collected
from the same input in different microarchitectural contexts (§5.3),
we relax requiring equality of hardware traces to requiring only
a subset relation. Specifically, we consider two traces equivalent
if every observation included in one trace is also included in the
other trace.

The intuition behind the heuristic is as follows. If the mismatch
is caused by an inconsistent execution of a speculative path among
the inputs, one of the inputs executed fewer instructions, therefore
fewer observations would appear in the trace, but those that appear
match. In contrast, if the mismatch is caused by a secret-dependent
instruction, the traces contain the same number of observations, but
their values differ. To validate this intuition, we manually examined
multiple such examples and did not observe any real violation.

5.6 Test Diversity Analysis
If a testing round did not detect any violation, we need to decide
how to improve the chances of finding one in the next round. As we
test black-box CPUs we cannot measure coverage of the exercised
CPU features to guide the test generation in the next round.

Instead, we seek to estimate the likelihood to exercise new specu-
lative paths with the current configuration of the test case generator
by analyzing the diversity of the tests we ran so far (CH1). We cap-
ture diversity tests using a new measure called pattern coverage,
which counts data and control dependencies that are likely to cause
pipeline hazards. We expect higher pattern coverage to correlate
with higher chances to surface speculative leaks. Therefore, if a
testing round does not improve the pattern coverage of the tests so
far, new speculative paths are unlikely to be explored. To facilitate
generation of more diverse tests, Revizor then increases the num-
ber of instructions and basic blocks per test. We now discuss this
approach in more details.
Patterns of instructions. We define patterns in terms of instruc-
tion pairs. To simplify the counting of pattern coverage we require
that the instructions are consecutive, which corresponds to the
worst case for creating hazards. We distinguish three types:

(1) A memory dependency pattern is two memory accesses to
the same address. We consider 4 patterns: store-after-store,
store-after-load, load-after-store, load-after-load.

3The speculation depth is a configurable parameter. In our experiments, we used 250
instructions, based on the ROB size in Skylake CPUs.

,

1 AND RAX, 0b111111000000 ; LFENCE

2 LOCK SUB byte ptr [R14 + RAX], 35

3 JNS .bb1 ; LFENCE

4 JMP .bb2

5 .bb1: AND RCX, 0b111111000000

6 REX SUB byte ptr [R14 + RCX], AL

7 .bb2: LFENCE

Figure 4: Minimized test case, representative of Spectre V1.

(2) A register dependency pattern is when one instruction uses
a result of another instruction. We consider 2 patterns: de-
pendency over a general-purpose register, and over FLAGS.

(3) A control dependency pattern is an instruction that modifies
the control flow followed by any other instruction. In this
paper we consider 2 patterns: conditional and unconditional
jumps. Larger instruction sets may include indirect jumps,
calls, returns, etc.

We say that a programwith an inputmatches a pattern if that pat-
tern is found in two consecutive instructions in the corresponding
instruction stream. Since a single input cannot form a counterex-
ample, a pattern is covered if a program and two inputs in the same
input class match the pattern.

To provide opportunities for interaction between different spec-
ulation types, we count not just individual patterns, but also their
combinations.
Implementation. We implement tracking of patterns as part of
the Model (§5.4): While collecting contract traces of a test case, the
model also records the executed instructions and the addresses of
memory accesses. These data are later analyzed to find the patterns
in the instruction streams.
Coverage Feedback. We use pattern combination coverage as
feedback to the test generator. We begin with test cases of size
𝑛 and with at most 𝑚 basic blocks, tested with 𝑘 inputs (e.g., 10
instructions, 2 blocks, 50 inputs per test case). We continue until
all individual patterns are covered. Then, we increase the sizes
by constant factors (e.g., 15 instructions, 3 blocks, 75 inputs), and
continue testing until all combinations of 2 patterns are covered,
and so on.

5.7 Postprocessor
When a violation is detected, the test case is passed to the postpro-
cessor, which minimizes the test case in three stages:

First, the postprocessor creates a minimal input sequence: It re-
moves inputs until it finds the smallest sequence to correctly prime
the microarchitectural state for the violation. Second, it creates
a minimal test case: It removes one instruction at a time while
checking for violations. Third, it minimizes the speculative part: It
adds LFENCEs, starting from the last instruction, while checking for
violations. The resulting region without fences is the location of
leakage.
Example: Figure 4 is a minimized version of Figure 3. The high-
lighted region without LFENCEs is the location of leakage: The store
(line 2) delays the jump (line 3), thus sufficiently prolonging the
speculation. The jump mispredicts and goes to line 5. This causes a

speculative execution of SUB (line 6), which has a memory operand
and thus leaks the value of RCX.

6 EVALUATION
In this section, we demonstrate Revizor’s ability to expose con-
tract violations and automatically identify speculative execution
vulnerabilities in two generations of Intel CPUs.

6.1 Experimental Setup
We test multiple CPUs, ISA subsets, and threat models against
several contracts. The experiments are summarized in Table 2.
CPUs (rows 1 and 2).We run our experiments on two machines.
The first has Intel Core i7-6700 CPU (Skylake), the second an Intel
Core i7-9700 CPU (Coffee Lake). We analyze Skylake with Spec-
tre V4 microcode patch enabled and disabled. Coffee Lake has a
hardware MDS patch.
Instruction Sets (row 3).We build our test cases from the follow-
ing subsets of x864:

• AR: in-register arithmetic, including logic and bitwise;
• MEM: memory operands and loads/stores;
• VAR: variable-latency operations (divisions).
• CB: conditional branches;

This totals in the following number of unique instructions: AR—
325; AR+MEM—678; AR+MEM+VAR—687; AR+CB—359; AR+MEM+CB—710,
AR+MEM+CB+VAR—719.

We select these particular subsets of instructions to structure the
description of results. As we will see next, each of them surfaces a
different type of contract violations.
Threat Models (row 4). We tested contracts against two threat
models, Prime+Probe and Prime+Probe+Assist (see §5.3). Note that
Flush/Evict+Reload would produce equivalent traces, as we use a
4KB sandbox, and the 64 L1D cache sets (observed by P+P) corre-
spond to 64 memory blocks in a 4KB region (observed by F+R).
Configuration. Generation started from 8 instructions, 2 memory
accesses, and 2 basic blocks per test case; 2 bits of input entropy; 50
inputs per test case. The parameters increased over testing rounds.

6.2 Testing Results
We report our findings when testing the targets in Table 2 against
different contracts. We tested each for 24 hours or until the first
violation was found. The results are in Table 3.
Target 1: Baseline. As a baseline, we test the most narrow instruc-
tion set AR containing only arithmetic operations on Skylake (with
V4 patch disabled) using the weakest threat model (P+P without
assists). We expect the target to comply with the most restrictive
contract (CT-SEQ). The experiments confirm it: Revizor did not
detect violations (column 1 of Table 3). Since other contracts are
more liberal, the target also complies with more liberal contracts.
This experiment shows that Revizor successfully mitigates measure-
ment noise and filters the artifacts of non-deterministic execution,
producing no false violations.

4We do not consider bit count, bit test, and shift instructions because Unicorn some-
times emulates them incorrectly.

Revizor: Testing Black-Box CPUs against Speculation Contracts ,

Target 1 Target 2 Target 3 Target 4 Target 5 Target 6 Target 7 Target 8
CPU Skylake Skylake Coffee Lake
V4 patch off on on
Instruction Set AR AR+MEM AR+MEM+VAR AR+MEM+VAR AR+MEM+CB AR+MEM+CB+VAR AR+MEM

Executor Mode Prime+Probe Prime+Probe+Assist
Table 2: Description of the experimental setups.

Target 1 Target 2 Target 3 Target 4 Target 5 Target 6 Target 7 Target 8
CT-SEQ × ✓ (V4) ✓ (V4) × ✓ (V1) ✓ (V1) ✓ (MDS) ✓ (LVI-Null)
CT-BPAS ×∗ × ✓ (V4-var∗∗) ×∗ ✓ (V1) ✓ (V1) ✓ (MDS) ✓ (LVI-Null)
CT-COND ×∗ ✓ (V4) ✓ (V4) ×∗ × ✓ (V1-var∗∗) ✓ (MDS) ✓ (LVI-Null)
CT-COND-BPAS ×∗ ×∗ ✓ (V4-var∗∗) ×∗ ×∗ ✓ (V1-var∗∗) ✓ (MDS) ✓ (LVI-Null)
∗ we did not repeat the experiment as a stronger contract was already satisfied. ∗∗ the violation represents a novel speculative vulnerability.

Table 3: Testing results. ✓ means Revizor detected a violation; × means Revizor detected no violations within 24h of testing.
In parenthesis are Spectre-type vulnerabilities revealed by the detected violations.

Target 2: Memory Accesses.When augmenting the instruction
set with memory accesses to AR+MEM (for the same CPU and threat
model), Revizor detects violations of CT-SEQ and CT-COND.Upon
manual inspection, we identify those violations as representative of
Spectre V4 (Speculative Store Bypass) [14]. Revizor does not detect
violations of CT-BPAS and CT-COND-BPAS, which is expected as
they permit the store bypass5.
Target 3: Variable-latency Instructions.When further augment-
ing the instruction set with divisions (the only variable-latency
instructions in the base x86 [1]) to AR+MEM+VAR, Revizor finds vi-
olations of CT-BPAS and CT-COND-BPAS. Upon inspection, they
reveal a novel variant of Spectre V4 that leaks the timing of division
(not permitted to be exposed according to the contract). We discuss
this variant in §6.3.
Target 4: V4 Patch.We change the experiment described in Tar-
get 3 by enabling the V4 patch on Skylake. Our experiments do
not surface any contract violations, showing that the V4 patch is
effective, also against the novel V4 variant.
Targets 5–6: Conditional Branches. When augmenting AR+MEM
with conditional branches to AR+MEM+CB, Revizor detects violations
of CT-SEQ and CT-BPAS. Upon inspection, these are representative
of Spectre V1 [23]. Revizor detects no violations of CT-COND and
CT-COND-BPAS, which is expected as the contracts permit exposing
accesses during the execution of a mispredicted branch.

When further augmenting the instruction set with variable-
latency instructions to AR+MEM+CB+VAR, Revizor detects violations
of CT-COND and CT-COND-BPAS. Similar to Target 3, the violations
represent novel variants of Spectre V1.
Target 7: Microcode Assists. We now perform experiments with
a different threat model, corresponding to an adversary that can
cause microcode assists. To test the assists in isolation, we test
AR+MEM, and we enable V4 patch to avoid violations caused by V4.
Revizor now detects violations of all contracts, which we identify
as representative of MDS [7, 40].
5During the Artifact Evaluation process, Revizor discovered an unexpected coun-
terexample in this experiment, where Target 2 violates CT-BPAS. It is described in
§A.6

1 b = variable_latency(a)
2 if (...) # misprediction
3 c = array[b] # executed if the latency is short

Figure 5: New Spectre V1 variant (V1-Var), found by Revizor.

Target 8: MDS Patch.We repeat the experiment in Target 7, but
now on Coffee Lake, which has a hardware MDS patch. Revizor
detected violations on it as well, which we identify as LVI-Null [43],
a known vulnerability of the MDS patch.
Summary. We see that Revizor successfully discovered several
known and also unknown vulnerabilities, fully automatically, with-
out manual intervention.

6.3 Novel Variants Discovered
Revizor discovers two new types of speculative leakage of the in-
struction latency. As they represent variations on Spectre V1 and
V4, and the existing defences prevent them, we did not report them
to Intel. Yet they should be considered when developing future
defences, hence we describe them next.

The latency of some operations (e.g., division) depends on their
operand values. The timing difference exposes the values to the
attacker who can measure the program’s execution time. However,
as Revizor discovered, the timing can also impact the cache state,
thus leaking through caches as well.

Figure 5 shows a simplified version of the V1 variant. The key
observation is that leakage happens due to a race condition:

• if the variable-latency operation (line 1) is faster than the
branch instruction (line 2), then the memory access (line 3)
could leave a speculative cache trace.

• otherwise, the speculation will be squashed before the opera-
tion completes, and the memory access will not be executed.

As such, the hardware traces expose not only the accessed address,
but also the latency of the operation at line 1.

The discovered V4 variant exploits the same race condition; we
expect it to affect other speculative vulnerabilities as well.

,

Contract- Detection time
permitted V4-type V1-type MDS-type LVI-type
leakage (Target 2) (Target 5) (Target 7) (Target 8)
None 73m 25s (.7) 4m 51s (.9) 5m 35s (.7) 7m 40s (1.1)
V4 N/A 3m 48s (.7) 6m 37s (.8) 3m 06s (1.0)
V1 140m 42s (.6) N/A 7m 03s (.8) 3m 22s (.3)

Table 4: Detection time: the testing time elapsed before the
first detected violation. The numbers are mean over 10 mea-
surements; in parentheses are coefficients of variation. Most
vulnerabilities are automatically detected within minutes.
The second and third rows show that the detection is fast
even with multiple leakage types in a test case (details in
§6.5).

6.4 Validating Assumptions about Speculative
Execution

Several defence proposals (STT [53], KLEESpectre [46]) assume
that stores do not modify the cache state until they retire. We
use Revizor to validate this assumption. We modify CT-COND to
capture this assumption in the contract trace, and test our CPUs
against it. Revizor discovers no violations in Skylake, but finds
a counterexample on Coffee Lake. It looks similar to Spectre V1,
except the trace is left by a speculative store. This is an evidence
that the assumption is wrong and speculative stores can modify
the cache state. Notably, this result has been predicted by previous
work, CheckMate [41].

6.5 Detection Time
We next measure the time required to find a counterexample. We
test each of the targets in §6.2 that had violations (Targets 2, 5, 7, 8)
6 against CT-SEQ for 10 times and report the average time until the
first violation (row 1 of Table 4).

Revizor detected most violations in under 10 minutes while
still using short test cases . This demonstrates the importance
of diversity-driven feedback. Revizor took longer to find V4-like
violations as they require a longer speculation window, and the
hardware predictor is less prone to misprediction.
Coping withmultiple types of speculation leakages.Wemea-
sure how fast Revizor detects a violation when two types of specula-
tive leakage are present in the test case, but one of them is permitted
by the contract; that is, Revizor has to detect an unexpected leakage
while ignoring an expected leakage. The second and the third row
shows the detection time when Spectre V1 and V4 respectively are
permitted by the contract and are present in the test case, while
testing against CT-BPAS (V4 patch disabled). We observe that these
additional leakages did not hinder detection of the vulnerabilities,
albeit sometimes slowing down the detection because the model
has to execute speculative paths, and having more observations
reduces input effectiveness.
Number of Inputs to Violation.We analyze the number of ran-
dom inputs that are required to surface a violation of CT-SEQ with

6We did not measure the detection time of the variants discovered in Targets 3 and 6
as they are too rare for repeated measurements.

Violation V1 V1.1 V2 V4 V5-ret MDS-LFB MDS-SB
Type [23] [22] [23] [14] [24, 27] [40, 44] [7]

Inputs 6 6 4 62 2 2 12
Table 5: Detection of known vulnerabilities on manually-
written test cases. # Inputs is the average minimal number
of random inputs necessary to surface a violation.

1 a = array1[b]
2 if (...)
3 c = array2[a]

(a) CT-SEQ violation

if (...)
a = array1[b]
c = array2[a]

(b) ARCH-SEQ violation

Figure 6: Subtle difference in sensitivity of different con-
tracts.

manually-written test cases representing Spectre and MDS vulnera-
bilities. Table 5 reports an average of 100 experiments, each with a
different input generation seed. Revizor detected all violations with
few inputs (i.e., less than a second), illustrating the importance of
further research on targeted test case generation.

6.6 Contract Sensitivity
The classic Spectre V1 exploit [23] relies on two speculative

loads, where the address of the second leaks the value loaded by the
first, as in Figure 6b. Hardware defenses based on speculative taint
tracking (STT) [49, 53] prevent such leaks, but they do not intend
to prevent leaks of non-speculatively loaded data, as in Figure 6a.

MEM-SEQ and CT-SEQ contracts cannot be used to test STT-
like defenses as they forbid speculative leakage of any information
(i.e., both examples would violate them). Instead, we implement
ARCH-SEQ (§2.3), which permits exposure of non-speculative data,
but forbids leakage of speculatively loaded data. When testing Sky-
lake against ARCH-SEQ, Revizor indeed reports violations corre-
sponding to the classic V1 gadget (Figure 6b) and does not report
violations in Figure 6a.

7 SCOPE AND LIMITATIONS
False contract conformance (false negatives). In several tests,
Revizor did not detect violations (Table 3). This does not prove the
absence of leaks: it merely shows that the explored space contained
no counterexamples.

We see two potential sources of false negatives when we expand
to a broader range of testing targets: (1) Noisy measurements: to
detect Meltdown/Foreshadow, the executor will have to handle
faults, which may pollute the microarchitectural state and make the
hardware traces too noisy. (2) Low frequency of counterexamples:
some vulnerabilities require a complicated combination of events to
observe the leakage (e.g., CrossTalk [36]) or to trigger speculation
(e.g., Floating Point Value Injection [35]). Random sampling may
be too slow to find a counterexample that would surface them.

A false negative is also possible when the leak is observable only
through a certain side channel (other than L1D, used in this paper),
and this channel is too noisy to produce stable hardware traces.
For example, it may be the case for port contention channels. We

Revizor: Testing Black-Box CPUs against Speculation Contracts ,

note, however, that all known speculative vulnerabilities can be
observed through multiple channels, hence L1D measurements are
sufficient to detect them. Yet it is not guaranteed for the future,
currently-unknown vulnerabilities.
False contract violations (false positives). If the model incor-
rectly emulates ISA, it leads to false positives. Due to this reason, we
excluded from the tests some instructions that are not implemented
correctly in Unicorn. Non-determinism in the executor may also
cause false positives. However, we inspected a few counterexam-
ples in each of the experiments described in §6 and found no false
positives.
Generation of effective inputs. Revizor applies several restric-
tions to improve input effectiveness (CH2). This limits the test
diversity, and might cause false negatives. To eliminate them, fu-
ture work may develop a targeted generation method that ensures
effectiveness via program analysis, similar to Spectector [17] or
Scam-V [30].
Pattern coverage.We used hazards as a proxy for speculation. Yet
a hazard is not a sufficient condition for speculative leakage. For
example, to trigger Spectre V1, branch predictor must be mistrained,
and the speculation must be long enough to leave a trace. These pre-
conditions are hard to control on commercial CPUs and, thus, high
pattern coverage does not guarantee that speculation was exercised.
Improved heuristics to estimate the speculation opportunities in
generated test cases might lead to better results.
Other side-channels. Revizor currently supports only attacks on
L1D caches. For other side-channels, we have to implement them
within the executor (e.g., execution port attacks require reading of
the port load). For certain speculative attacks, the executor would
have to be modified (e.g., Meltdown requires handling of page
faults).
Scalability issues. In future, adding more features to Revizor and
expanding the range of testing targets may exacerbate the search
complexity. However, some optimizations may balance out the
added overheads: While covering more side channels will require
more testing time, improving the input generation process will
speed up the testing. Moreover, tests in different adversarial scenar-
ios can easily run in parallel, on different machines with the same
CPU model.
Granularity of measurements. Revizor currently collects hard-
ware traces once, after the execution of a test case. It means that
Revizor does not record the information that could be potentially
exposed by the order of memory accesses. To observe the order,
we could have probed caches concurrently with the test case exe-
cution, but it would introduce additional noise. Hence, we opted
for probing the final cache state, which is more deterministic, but
records less information.

8 RELATEDWORK
Black-box detection ofmicroarchitectural leaks. Several tools
test black-box CPUs to find speculative vulnerabilities: Medusa [28]
is a fuzzer for detecting variants of MDS. SpeechMiner [51] is a
tool to analyze speculative vulnerabilities. Both of them target
specific attacks, while Revizor detects vulnerabilities as violations
of a contract.

ABSynthe [15] and Osiris [48] automatically discover unknown
side channels. In contrast, Revizor detects unknown speculative
leaks into a known side-channel (e.g. L1D cache).

Scam-V [30] is a tool for testing CPUs against a model of side-
channel leakage. Their approach is similar to MRT, but their leakage
model does not encompass speculation and they focus on analyzing
simple, in-order CPUs (Cortex-A53) in which they identify unex-
pected leaks [31].

White-box detection of microarchitectural leaks. A number
of approaches use white-box information to detect microarchitec-
tural leaks. Fadiheh et al. [12] proposed a SAT-based boundedmodel
checker to find covert channels in RTL designs (in our terminology,
they check RTL against ARCH-SEQ). CheckMate [41] searches for
pre-defined vulnerability patterns in CPU designs. These tools are
not applicable to testing of commercial black-box CPUs.

Detection of architectural vulnerabilities. Several tools fuzz
for architectural vulnerabilities and ISA violations: TestRIG [50]
performs random testing of RISC-V designs. Coppelia [55] generates
software exploits for CPU designs. RFuzz [25] is a tool for fuzzing
on the RTL level.

Formal models of the ISA [4, 11, 13] could be augmented to cap-
ture speculation contracts, along the lines of our instrumentation
of Unicorn.

Information-flow checking. While information-flow checking
(verification and testing) of individual programs is awell-established
field (see, e.g., [5, 6, 39]) information-flow checking of language
runtimes or processors (which requires reasoning about all pro-
grams) has not been widely studied. Notable approaches are [20],
which generate random programs to surface non-interference vio-
lations in an information-flow monitor, and [54] who propose to
add information flow annotations to Verilog to detect timing leaks
at compile time.

Speculative leaks in software. Several tools target detection of
speculative leaks in software [8, 17, 19, 32, 45, 47]. They all rely on
(sometimes implicit) assumptions about the speculation in hard-
ware, see [9] for an overview. Revizor gives a first principled foun-
dation for validating such assumption on black-box CPUs.

9 CONCLUSION
We presented Model-based Relational Testing (MRT), a technique
to detect violations of speculation contracts in black-box CPUs. We
implemented MRT in a framework called Revizor, and used it to
test Intel CPUs against a wide range of contracts.

Our experiments show that Revizor effectively finds contract
violations without reporting false positives. The detected violations
include known vulnerabilities such Spectre,MDS, and LVI, aswell as
novel variants. This demonstrates thatMRT is a promising approach
for third-party assessment of microarchitectural security in black-
box CPUs.

Our work opens several avenues for future research, such as
white-box analysis of emerging CPUs and mechanisms for secure
speculation, coverage, and targeted testing, for which the open-
source release of Revizor will provide a solid foundation.

,

ACKNOWLEDGMENTS
We would like to thank Caroline Trippel and the anonymous re-
viewers for the constructive feedback, and Amaury Chamayou,
Sylvan Clebsch, Manuel Costa, Cédric Fournet, Marco Guarnieri,
Nuno Lopes, Saidgani Musaev, Robert Norton-Wright, and Alex
Shamis for discussions and encouragement.

This work was funded in part by DFG grant 389792660 as part
of TRR 248 (CPEC); the Cluster of Excellence EXC 2050/1 (CeTI,
project ID 390696704, as part of Germany’s Excellence Strategy); the
Cloud-KRITIS Project funded by the Sächsische Aufbaubank. This
work was also supported by the Technion Hiroshi Fujiwara Cyber
Security Research Center and the Israel National Cyber Directorate.
We gratefully acknowledge support from Israel Science Foundation
(Grant 1027/18).

A ARTIFACT APPENDIX
A.1 Abstract
The artifact for this paper includes the source code of Revizor, a set
of scripts for reproducing the results, and a description of how to use
them. They help to reproduce the contract violations described in
the paper and validate the claimed fuzzing speed. §A.6 additionally
describes a new violation discovered during the artifact evaluation.

A.2 Artifact Meta-Information
• Algorithm: Random testing of CPUs
• Hardware: x86 Intel CPU
• Metrics: Detected contract violations and testing speed
• Output: The test results and the violating test cases
• How much disk space required?: less than 1GB
• Howmuch time is needed to prepareworkflow (approximately)?:
1 hour

• Howmuch time is needed to complete experiments (approx-
imately)?: 10 days

• Publicly available?: Yes
• Code licenses (if publicly available)?: MIT
• Workflow framework used?: Yes
• Archived (provide DOI)?: 10.5281/zenodo.5865606

A.3 Description
Below is a brief description of the artifact. You can find more details
in the artifact’s README file.

How to access:
github.com/hw-sw-contracts/revizor-artifact

Hardware dependencies. The artifact requires at least one phys-
ical machine with an Intel CPU and with root access. Preferably,
there should be two machines, one with an 8th generation (or ear-
lier) Intel CPU and another with a 9th gen (or later) Intel CPU. To
have stable results, the machine(s) should not be actively used by
any other software.

Software dependencies:

• Linux v5.6+ and Kernel Headers
• Unicorn Engine 1.0.2+ with Python bindings
• Python 3.7+ with packages pyyaml, types-pyyaml, numpy,
iced-x86, mypy

• Bash Automated Testing System

System Configuration (Optional): For more stable results, dis-
able hyperthreading and boot the kernel on a single core.

A.4 Installation
(1) Get submodules:

from the project's root directory
> git submodule update --init --recursive

(2) Copy the ISA description:
> cp revizor/src/executor/x86/base.xml
revizor/src/instruction_sets/x86
> cp revizor/src/executor/x86/base.xml
x86.xml

(3) Install the executor:
> cd revizor/src/executor/x86
> sudo rmmod x86-executor
> make clean && make
> sudo insmod x86-executor.ko

A.5 Evaluation and Expected Results
The results of all next experiments will be stored in a corresponding
subdirectory of results/ with a timestamp. For example, if you
run Experiment 1 on 01.01.2022 at 13:00, the result will be stored
in: results/experiment_1/22-01-01-13-00

This directory will contain the experiment logs, detected viola-
tions, and aggregated results (when applicable).

A.5.1 Reproducing fuzzing results. The following script will test
each of the target-contract combinations in Table 3:
./experiment_1_main/run.sh

Note that the last target (here called target7-8) is dependent
on the machine. If you execute the script on an 8th gen (or earlier)
CPU, it will correspond to Target 7 in the table. Otherwise, it will
correspond to Target 8.

Note: The violations of Targets 3 and 6 (called V1-var and V4-var
in the paper) are very rare, and there is only a low chance that you
will be able to reproduce them. Unfortunately, such unpredictability
of the results is an unavoidable consequence of random testing.

A.5.2 Reproducing speculative store eviction. For this experiment,
you will need a 9th gen Intel CPU or later (in the paper, we tested
i7-9700).

To reproduce the violation reported in §6.4, execute the following
script, which will test the CPU against a version of CT-COND that
does not permit cache eviction by speculative stores.
./experiment_2_speculative_store_eviction/run.sh

The expected result is that the execution detects a violation
within an hour. (If you run this command on an earlier Intel CPU,
the expected result is no violations.)

A.5.3 Fuzzing speed and detection time.

(1) To measure the fuzzing speed, simply run Revizor for an
hour in a configuration that does not find violations:
> ./revizor/src/cli.py fuzz -s x86.xml
-i 200 -n 100000 --timeout 3600
-v -c test-nondetection.yaml

github.com/hw-sw-contracts/revizor-artifact

Revizor: Testing Black-Box CPUs against Speculation Contracts ,

Upon completion, Revizor will report the number of executed
test cases and the number of inputs.

(2) To measure the detection speed, execute:

./experiment_3a_detection_speed/run.sh

The results are expected to approximately match Table 4.
The reported numbers are the mean values of the amount
of time to detect each of the violations. The meaning of
the rows called "mds-*" depends on the target machine: If
the experiment is executed on an 8th gen (or earlier) CPU,
they represent MDS-type vulnerabilities. Otherwise, they
represent LVI-type.

(3) To measure the detection speed on handwritten test cases,
execute:

./experiment_3b_handwritten_test_cases/run.sh

The results are expected to approximately match Table 5. The
reported numbers are the average, median, minimum, and
maximum number of inputs that was required to detect each
of the violations with the given test case. The exact numbers
will differ slightly with each execution of this experiment,
because the input generation seeds are generated randomly.
Note: The last two test cases (MDS-SB and MDS-LFB) work
only on an 8th gen (or earlier) Intel CPU, because the later
generations are patched against MDS.

A.5.4 Reproducing ARCH-SEQ violations. To test the CPU against
CT-SEQ and ARCH-SEQ, execute:

./experiment_4_arch_vs_ct/run.sh

The expected result is that both contracts are violated. You can
find the counterexamples for both contracts in the results’ directory,
named ct-seq-violation.asm and arch-seq-violation.asm.

A.6 Novel Variant of Store Bypass
When an anonymous reviewer evaluated the first experiment, they
encountered a violation of CT-BPAS by Target 2, which we did
not observe in our previous experiments. Under investigation, it
appeared to be a new variant of Speculative Store Bypass. The
existing microcode patch provided by Intel mitigates this variant.

Below is a pseudocode of this violation:

1. *addr_slow = new_value;
2. x1 = *addr_fast;
3. x2 = *addr_slow;
4. y = array[x1 - x2];

Here, addr_fast is a pointer to an address in memory initial-
ized with old_value. When this code is executed, the pointer is
already assigned with the address. addr_slow is another pointer
assigned with the same address. However the address is calculated
dynamically and hence takes more time to resolve.

At line 1, the store overrides the memory value with new_value.
As the address take a long time to calculate, this store is delayed.

At line 2, the load fetches from the address. The CPUmay make a
prediction that addr_fast and addr_slow do not alias, and proceed
to speculatively fetch the now-outdated old_value; this is the
original Speculative Store Bypass.

At line 3, the CPU detects that lines 1 and 3 use the same ad-
dress, and forwards the new_value directly, without waiting for
the address to resolve.

As a result, two consecutive loads from the same address spec-
ulatively return two different values. The difference between the
values is exposed into a side channel by line 4.

Revizor labeled it as a violation of CT-BPAS because the leakage
is only possible when one of the loads bypasses the store, but not
both of them. This constitutes a violation of CT-BPAS, where all
loads can bypass an aliasing store.

REFERENCES
[1] Andreas Abel and Jan Reineke. 2019. uops.info: Characterizing latency, through-

put, and port usage of instructions on Intel microarchitectures. In ASPLOS.
[2] Andreas Abel and Jan Reineke. 2020. nanoBench: A low-overhead tool for running

microbenchmarks on x86 systems. In ISPASS.
[3] Jade Alglave. 2012. A formal hierarchy of weak memory models. Formal Methods

in System Design (2012).
[4] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E.

Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon French, Christo-
pher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell. 2019.
ISA Semantics for ARMv8-a, RISC-V, and CHERI-MIPS. In POPL.

[5] Michael Backes, Boris Köpf, and Andrey Rybalchenko. 2009. Automatic discovery
and quantification of information leaks. In 2009 30th IEEE Symposium on Security
and Privacy. IEEE, 141–153.

[6] Gilles Barthe, Pedro R D’argenio, and Tamara Rezk. 2011. Secure information
flow by self-composition. Mathematical Structures in Computer Science 21, 6
(2011), 1207–1252.

[7] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Ma-
rina Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, Jo
Van Bulck, and Yuval Yarom. 2019. Fallout: Leaking Data on Meltdown-resistant
CPUs. In CCS.

[8] Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall, Deian Stefan, Tamara
Rezk, Gilles Barthe, Dean Tullsen, Deian Stefan, Tamara Rezk, and Gilles Barthe.
2020. Constant-Time Foundations for the New Spectre Era. In PLDI.

[9] Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi, Gilles Barthe, and
Deian Stefan. 2021. SoK: Practical Foundations for Spectre Defenses.
arXiv:2105.05801 [cs.CR]

[10] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. Journal of
Computer Security (2010).

[11] Ulan Degenbaev. 2012. Formal Specification of the x86 Instruction Set Architecture.
Ph.D. Dissertation. Universität des Saarlandes.

[12] Mohammad Rahmani Fadiheh, Dominik Stoffel, Clark W. Barrett, Subhasish
Mitra, and Wolfgang Kunz. 2019. Processor Hardware Security Vulnerabilities
and their Detection by Unique Program Execution Checking. In DATE.

[13] Shilpi Goel, Warren A. Hunt, and Matt Kaufmann. 2017. Engineering a Formal,
Executable x86 ISA Simulator for Software Verification.

[14] Project Zero Google. 2018. Speculative Execution, Variant 4: Speculative Store By-
pass. https://bugs.chromium.org/p/project-zero/issues/detail?id=1528. Accessed:
May, 2021.

[15] Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh Razavi.
2020. ABSynthe: Automatic Blackbox Side-channel Synthesis on Commodity
Microarchitectures. In NDSS.

[16] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches. In Usenix Security.

[17] Marco Guarnieri, Boris Köpf, Jose F. Morales, Jan Reineke, and Andres Sanchez.
2020. SPECTECTOR: Principled Detection of Speculative Information Flows. In
S&P.

[18] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. 2021. Hardware-
Software Contracts for Secure Speculation. In S&P.

[19] Shaobo He, Michael Emmi, and Gabriela Ciocarlie. 2020. ct-fuzz: Fuzzing for
Timing Leaks. In ICST.

[20] Catalin Hritcu, John Hughes, Benjamin C Pierce, Antal Spector-Zabusky, Dim-
itrios Vytiniotis, Arthur Azevedo de Amorim, and Leonidas Lampropoulos. 2013.
Testing noninterference, quickly. ACM SIGPLAN Notices 48, 9 (2013), 455–468.

[21] Intel Corporation. 2019. Intel® 64 and IA-32 Architectures Software Developer’s
Manual.

[22] Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative Buffer Overflows:
Attacks and Defenses. arXiv (2018). arXiv:1807.03757

[23] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
S&P.

https://arxiv.org/abs/2105.05801
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://arxiv.org/abs/1807.03757

,

[24] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu Song, and Nael
Abu-Ghazaleh. 2018. Spectre Returns! Speculation Attacks using the Return
Stack Buffer. In WOOT.

[25] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and Koushik Sen.
2018. RFUZZ: Coverage-directed fuzz testing of RTL on FPGAs. In ICCAD.

[26] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In Usenix Security.

[27] Giorgi Maisuradze and Christian Rossow. 2018. ret2spec: Speculative Execution
Using Return Stack Buffers. In CCS.

[28] Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz. 2020. Medusa:
Microarchitectural Data Leakage via Automated Attack Synthesis Background
Superscalar Memory Architecture. In Usenix Security.

[29] Alon Naveh, Efraim Rotem, Avi Mendelson, Simcha Gochman, Rajshree Chabuk-
swar, Karthik Krishnan, and Arun Kumar. 2006. Power and Thermal Management
in the Intel Core Duo Processor. Intel Technology Journal (2006).

[30] Hamed Nemati, Pablo Buiras, Andreas Lindner, Roberto Guanciale, and Swen
Jacobs. 2020. Validation of Abstract Side-Channel Models for Computer Archi-
tectures. In CAV.

[31] Hamed Nemati, Roberto Guanciale, Pablo Buiras, and Andreas Lindner. 2020.
Speculative Leakage in ARM Cortex-A53. arXiv (2020). arXiv:2007.06865

[32] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fetzer. 2020.
SpecFuzz: Bringing Spectre-type vulnerabilities to the surface. In Usenix Security.

[33] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-
termeasures: The Case of AES. In CT-RSA.

[34] Nguyen Anh Quynh and Dang Hoang Vu. 2015. Unicorn: Next generation CPU
emulator framework. In BlackHat USA.

[35] Hany Ragab, Enrico Barberis, Herbert Bos, and Cristiano Giuffrida. 2021. Rage
against the machine clear: A systematic analysis of machine clears and their
implications for transient execution attacks. In 30th USENIX Security Symposium
(USENIX Security 21). 1451–1468.

[36] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
2021. CrossTalk: Speculative Data Leaks Across Cores Are Real. In S&P.

[37] Jose Rodrigo, Sanchez Vicarte, Pradyumna Shome, Nandeeka Nayak, Caroline
Trippel, Adam Morrison, David Kohlbrenner, and Christopher W Fletcher. 2021.
Opening Pandora’s Box: A Systematic Study of New Ways Microarchitecture
Can Leak Private Data. In ISCA.

[38] Efraim Rotem, Eliezer Weissmann, Boris Ginzburg, Alon Naveh, Nadav Shulman,
and Ronny Ronen. 2019. Mechanism for saving and retrieving micro-architecture
context. US Patent App. 16/259,880.

[39] Andrei Sabelfeld and Andrew C Myers. 2003. Language-based information-flow
security. IEEE Journal on selected areas in communications 21, 1 (2003), 5–19.

[40] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad : Cross-Privilege-
Boundary Data Sampling. In CCS.

[41] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2018. CheckMate:
Automated Exploit Program Generation for Hardware Security Verification. In
MICRO.

[42] Eran Tromer, Dag Arne Osvik, and Adi Shamir. 2010. Efficient Cache Attacks on
AES, and Countermeasures. Journal of Cryptology (2010).

[43] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin,
Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, Frank Piessens, and Ku
Leuven. 2020. LVI: Hijacking Transient Execution through Microarchitectural
Load Value Injection. In S&P.

[44] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
Rogue In-flight Data Load. In S&P.

[45] Marco Vassena, Klaus V Gleissenthall, Rami Gökhan Kici, Deian Stefan, and Ranjit
Jhala. 2020. Automatically Eliminating Speculative Leaks from Cryptographic
Code with Blade. CoRR (2020).

[46] Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra,
and Abhik Roychoudhury. 2020. KLEESpectre: Detecting information leakage
through speculative cache attacks via symbolic execution. TOSEM (2020).

[47] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and
Abhik Roychoudhury. 2019. oo7: Low-overhead Defense against Spectre Attacks.
IEEE Transactions on Software Engineering (2019).

[48] Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz, and Christian
Rossow. 2021. Osiris: Automated Discovery of Microarchitectural Side Channels.
In Usenix Security.

[49] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F. Wenisch, and Baris Kasikci.
2019. NDA: Preventing Speculative Execution Attacks at Their Source. InMICRO.

[50] Jonathan Woodruff, Alexandre Joannou, Peter Rugg, Hongyan Xia, James Clarke,
Hesham Almatary, Prashanth Mundkur, Robert Norton-Wright, Brian Campbell,
Simon Moore, and Peter Sewell. 2018. TestRIG: Framework for testing RISC-V
processors with Random Instruction Generation. https://github.com/CTSRD-
CHERI/TestRIG. Accessed: May, 2021.

[51] Yuan Xiao, Yinqian Zhang, and Radu Teodorescu. 2020. SpeechMiner: A Frame-
work for Investigating and Measuring Speculative Execution Vulnerabilities. In
NDSS.

[52] Yuval Yarom and Katrina Falkner. 2014. Flush+Reload: A High Resolution, Low
Noise, L3 Cache Side-channel Attack. In Usenix Security.

[53] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and
Christopher W. Fletcher. 2019. Speculative Taint Tracking (STT): A Comprehen-
sive Protection for Speculatively Accessed Data. In MICRO.

[54] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. 2015. A
hardware design language for timing-sensitive information-flow security. In
ASPLOS.

[55] Rui Zhang, Calvin Deutschbein, Peng Huang, and Cynthia Sturton. 2018. End-
to-End Automated Exploit Generation for Validating the Security of Processor
Designs. In MICRO.

https://arxiv.org/abs/2007.06865
https://github.com/CTSRD-CHERI/TestRIG
https://github.com/CTSRD-CHERI/TestRIG

	Abstract
	1 Introduction
	2 Background: Contracts
	2.1 Hardware Traces and Side-channel Leakage
	2.2 Legitimate Exposure as a Contract
	2.3 Concrete Contracts of Speculation

	3 Challenges of Testing Contract Compliance
	3.1 How to Find a Counterexample?
	3.2 How to Get Stable Hardware Traces on a Real CPU?
	3.3 How to Produce Contract Traces?

	4 Model-based Relational Testing
	5 Design and Implementation
	5.1 Test Case Generator
	5.2 Input Generator
	5.3 Executor
	5.4 Model
	5.5 Analyzer
	5.6 Test Diversity Analysis
	5.7 Postprocessor

	6 Evaluation
	6.1 Experimental Setup
	6.2 Testing Results
	6.3 Novel Variants Discovered
	6.4 Validating Assumptions about Speculative Execution
	6.5 Detection Time
	6.6 Contract Sensitivity

	7 Scope and Limitations
	8 Related Work
	9 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Meta-Information
	A.3 Description
	A.4 Installation
	A.5 Evaluation and Expected Results
	A.6 Novel Variant of Store Bypass

	References

