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Abstract—Boosting the task accuracy of tiny neural networks (TNNs) has become a
fundamental challenge for enabling the deployments of TNNs on edge devices
which are constrained by strict limitations in terms of memory, computation,
bandwidth, and power supply. To this end, we propose a framework called
NetDistiller to boost the achievable accuracy of TNNs by treating them as
sub-networks of a weight-sharing teacher constructed by expanding the number of
channels of the TNN. Specifically, the target TNN model is jointly trained with the
weight-sharing teacher model via (1) gradient surgery to tackle the gradient conflicts
between them and (2) uncertainty-aware distillation to mitigate the overfitting of the
teacher model. Extensive experiments across diverse tasks validate NetDistiller’s
effectiveness in boosting TNNs’ achievable accuracy over state-of-the-art methods.
Our code is available at https:// github.com/ GATECH-EIC/ NetDistiller .

T he recent record-breaking performance of neu-
ral networks (NNs) has spurred their increased
application across various scientific and en-

gineering disciplines. In parallel, it is projected that
the worldwide number of Internet of Things (IoT) con-
nected devices will reach 30.9 billion units by 2025 [1].
Deploying NN-powered intelligence on numerous IoT
devices is of significant importance, as it enables
the utilization of edge-collected data for various on-
device intelligent functionalities that could potentially
revolutionize human life. This tremendously growing
demand has given rise to the field of tiny neural
networks (TNNs) which have attracted substantially
increasing attention. This is because TNNs enable small
and inexpensive edge devices to work directly on local
data at a lower power and computing cost, leading
to both reduced latency and enhanced privacy as it
alleviates or even eliminates the necessity of internet
connectivity for sharing and centralizing the data on a
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cloud server. However, the achievable task performance
of TNNs remains unsatisfactory due to their limited
model capacity. Hence, improving the task performance
of TNNs has become a fundamental challenge for
enabling their wide-scale adoption, which is highly
desired in numerous real-world edge applications.

To tackle the aforementioned challenge and thereby
unlock the potential of TNNs at the edge, there has been
an increasing research effort towards boosting their
achievable task performance. In particular, it has been
shown that training TNNs is fundamentally different
from training large NNs. For example, the authors of
[2] identify that TNNs suffer from under-fitting due to
their limited model capacity, in contrast to large NNs,
which are prone to over-fitting. They also observe that
data augmentation and regularization techniques, which
enhance ImageNet accuracy for over-parameterized
large NNs like ResNet50, have a detrimental effect on
the accuracy of TNNs, such as MobileNetV2-Tiny [3],
which is 174× smaller than ResNet50.

Drawing inspiration from prior arts, we hypothesize
that augmenting the model capacity (e.g., channels)
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FIGURE 1. An overview of NetDistiller. The target TNN is a student model serving as a sub-network within a weight-sharing
teacher model, constructed by expanding the number of channels of the target TNN. The teacher and student models are trained
simultaneously while the teacher model is trained with the ground truth labels and the objective for training the student model is
input-adaptively decided between an in-situ distillation mechanism and the ground truth labels based on its output uncertainty.
To alleviate the gradient conflict issue observed during the training process, the teacher’s gradients are modified via gradient
surgery to remove the conflicting components based on the student’s gradients.

during training enables TNNs to acquire additional
knowledge, resulting in improved task accuracy. In
vanilla knowledge distillation [4], the knowledge en-
coded by a large model is transferred to a smaller one
by training the small model with the outputs and/or
activations of the large model. As a result, the small
model is able to achieve a higher accuracy by mimicking
the behaviors of the large model. In this work, we
advocate a new in-situ knowledge distillation scheme,
which is orthogonal to the vanilla one, further boosting
the achievable task performance of TNNs. We make
the following contributions:

• We are the first to demonstrate that integrating a
weight-sharing supernet with in-situ distillation
can serve as an effective training recipe for
boosting the achievable task performance of
TNNs. Specifically, we propose a framework
named NetDistiller, which incorporates the target
TNN as a student model within a weight-sharing
supernet that acts as a teacher model to boost
the task performance of the trained TNNs without
incurring any inference overhead.

• We identify that vanilla in-situ distillation can
cause serious gradient conflicts between the
supernet teacher and the sub-network student
(i.e., the target TNN). Specifically, we find that up
to 50% of the weight gradients in the student
model have negative cosine similarities with
those of the teacher model. This results in poor
convergence when these gradients accumulate
on their shared weights. Furthermore, vanilla in-
situ distillation tends to induce overfitting in the
teacher model, thus diminishing the effectiveness

of our in-situ distillation.
• To alleviate both the two issues identified

above, NetDistiller proposes two solutions: (1)
remove the conflicting gradients by projecting the
teacher’s conflicting gradients onto the normal
plane of the student’s gradients, and (2) integrate
an uncertainty-aware distillation to dynamically
select the student loss function between the Kull-
back–Leibler divergence and the cross-entropy
loss based on the certainty of the student model’s
output. These enhancements enable NetDistiller
to unleash the promising effectiveness of in-situ
distillation in more favorably training TNNs.

• We perform extensive evaluations and ablation
studies to validate the effectiveness of our Net-
Distiller framework for boosting the achievable
accuracy of TNNs when compared to the state-of-
the-art (SOTA) method. For instance, we observe
a 2.3% higher accuracy over NetAug [2], when
training the MobileNet-V3-w0.35 model on the Im-
ageNet dataset. We understand that NetDistiller
has opened up a new perspective for boosting
the achievable task performance of TNNs and
enriched the field of knowledge distillation.

RELATED WORK
Efficient / Tiny Neural Networks. Significant progress
has been made in designing efficient and mobile-
friendly NNs. For example, MobileNets [5] utilize Depth-
wise Separable Convolutions, which replace a standard
convolution layer with a combination of depthwise
convolution and pointwise convolution, demonstrating
the potential for reducing computational costs while
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maintaining task accuracy. In parallel to manually
designed efficient networks and compression schemes,
automated machine learning has been successfully
used via neural architecture search [6], [7]. In contrast
to the above techniques, our proposed framework aims
to improve the inference accuracy of TNNs via in-situ
distillation where the target TNN architecture is used
as a sub-network student of a weight-sharing supernet
teacher model.

Knowledge Distillation. Knowledge Distillation
(KD) [8] refers to the idea of transferring knowledge
acquired by a pre-trained and over-parameterized
(teacher) model to a small (student) model that is
more suitable for edge deployment. Specifically, the
small model usually has insufficient capacity to learn a
concise knowledge representation, and KD empowers
the student model to learn the exact behavior of the
teacher model by mimicking the teacher’s outputs at
each level, i.e., soft labels. In this work, we advocate a
new in-situ distillation scheme, namely, NetDistiller to
enhance the task performance of TNNs. In contrast to
vanilla KD where the teacher model is a large NN pre-
trained on a different dataset and the student model is
a separate smaller model, NetDistiller is an orthogonal
approach that incorporates the TNN as a student sub-
network within a weight-sharing supernet that acts as
the teacher model for in-situ distillation.

Network Augmentation. The authors in [2] propose
network augmentation, known as NetAug, to boost the
accuracy of tiny deep learning by alleviating the under-
fitting issue. Specifically, NetAug dynamically augments
the network during training, incorporating the tiny model
as a sub-model within a larger model for auxiliary
supervision in addition to its independent functionality.
In contrast, NetDistiller provides an alternative scheme
to boosting the performance of TNNs via in-situ knowl-
edge distillation. In particular, the TNN in NetDistiller
acts as a sub-network (student) in a static weight-
sharing supernet (teacher) constructed by expanding
the channels of the target TNN. In the experimental
results section, we provide a comparative study of the
proposed NetDistiller with the SOTA scheme NetAug
and find that NetDistiller outperforms NetAug, e.g.,
achieves 2.3% higher accuracy when training the
MobileNet-V3-w0.35 model on the ImageNet dataset.

The NetDistiller FRAMEWORK
Our proposed NetDistiller is a training recipe for boost-
ing the accuracy of TNNs by incorporating the target
TNN as a student model (sub-network) within a weight-
sharing supernet, which acts as a teacher model.
Through in-situ distillation, NetDistiller distills and trans-

fers the knowledge from a supernet teacher model to
the sub-network student model which is our target TNN.
In this section, we first describe the construction of
the weight-sharing supernet from the TNN followed
by practical implementation of our in-situ distillation.
Next, we describe techniques to resolve the gradient
conflicts between the teacher and student models, as
well as mitigate the over-fitting issue in the teacher
model during the final training stage via uncertainty-
aware distillation. Finally, we discuss the training and
the inference overheads incurred by NetDistiller.

NetDistiller’s Enabler 0: Constructing the
Weight-Sharing Teacher Model
NetDistiller expands the target TNN’s channels to
construct a weight-sharing supernet that functions as
the teacher model. Thus, the target TNN acts as
a sub-network model. Both the student and teacher
models share weights across all convolution layers
while maintaining their respective Batch-Normalization
layers, which account for different running statistics (i.e.,
means and variances) of their activation values. As a
novel training recipe for augmenting the capacity of
a target TNN to alleviate under-fitting issues and to
boost accuracy, NetDistiller constructs a teacher model
with 3× channel numbers as the target TNN. Figure 1
depicts the above-described construction of the weight-
sharing teacher model from the target TNN.

NetDistiller’s Enabler 1: In-Situ Distillation
The goal of our in-situ distillation is to stabilize the
training of the supernet and improve the performance
of sub-networks. In particular, TNNs are more likely
to get stuck in local minimums due to insufficient
capacity, which limits their performance compared
to over-parameterized large NNs [2]. To tackle this,
NetDistiller integrates the target TNN as a sub-network
student model within a weight-sharing supernet teacher
model constructed by expanding the channels of the
target NN as demonstrated in Figure 1. To the best of
our knowledge, NetDistiller is the first to demonstrate
that applying in-situ distillation to a weight-sharing
supernet [9] can serve as an effective training recipe
for boosting the achievable task performance of TNNs.

Specifically, in-situ distillation leverages the ‘soft
labels’ predicted by the supernet as the supervision
signals to the sub-network student model during each
training iteration while using ground truth labels for
the teacher model. Formally, at training iteration n, the
supernet parameter W is updated by

W n ← W n−1 + ηg(W n−1),
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where η is the learning rate, and:

g(W n−1) = ∇W

(
LD(W )+

Lstu
(
[W , Wstu ]; W n−1))∣∣∣

W=W n−1

(1)

Here, LD is the cross-entropy loss of the supernet
teacher on a training dataset D, W and Wstu denote the
teacher and student models, respectively, and Lstu is the
student loss modulated by uncertainty-aware distillation
(introduced in the Enabler 3 section). Additionally, the
distillation process in NetDistiller is single-shot, i.e., it
is implemented in-situ during training without additional
computation and memory cost, unlike two-step vanilla
KD where a large model has to be trained first.

NetDistiller’s Enabler 2: Gradient Surgery for
Resolving Gradient Conflicts
Considering that the gradients from both the student
and the teacher models accumulate on the shared
weights, we identify that vanilla in-situ distillation may
cause serious gradient conflicts between the super-
net teacher and sub-network student (target TNN).
Specifically, we find that up to 50% of the student
model gradients have a negative cosine similarity with
those of the teacher model. Inspired by the PCGrad
[10] which performs gradient surgery for multi-task
learning, NetDistiller tackles this by projecting the
conflicting teacher gradients to the normal plane of
student gradients, thereby removing the conflicting
components in the teacher gradients and improving
the performance of TNNs. Specifically, let ∇lstu and
∇ltea denote the gradients of the student and the
teacher models, respectively. We define ϕ as the
angle between the above two gradients and g as
the final gradient for updating the weights. In order
to guarantee the student model training, we project
the conflicting teacher’s gradient, proj(∇ltea), when the

cosine similarity cos(ϕ) =
∇lstu .∇ltea

∥∇lstu∥∥∇ltea∥
is negative,

which is formulated as follows:

g = ∇lstu + proj(∇ltea), where

proj(∇ltea) =

∇ltea −
∇lTtea∇lstu

∥∇lstu∥2
∇lstu , if cos(ϕ) < 0

∇ltea, otherwise

(2)

NetDistiller’s Enabler 3: Uncertainty-aware
Distillation
Since the student and the weight-sharing teacher
models are jointly trained from scratch and the over-
parameterized teacher model converges faster than
the student one, we observe that the supernet teacher

model suffers from over-fitting at the final training stage.
In addition, [11] advocates that large models have the
largest improvement on samples where the small model
is most uncertain. As for certain examples, even those
where the small model is not particularly accurate, large
models are often unable to improve. Based on these
insights, we hypothesize that the teacher model is not
always a good teacher during the whole training.

In light of this, we propose a technique called
uncertainty-aware distillation (UD) to dynamically select
the student loss functions between the Kullback–Leibler
(KL) divergence and cross-entropy losses based on the
certainty of the student model output (see Figure 1).
Specifically, we measure the uncertainty via the entropy
of the student outputs. When the entropy of the student
output is high (i.e., uncertain), the student is distilled
by the weight-sharing teacher via the KL divergence
loss, otherwise, the student is trained by the ground
truth label via the cross-entropy loss. We formulate this
process as follows:

Lstu =

{
KL(Wstu(x), W (x)), uncertainty ≥ T

CE(Wstu(x), y), otherwise
(3)

Here, T denotes the uncertainty threshold; Lstu

denotes the student model loss; KL() and CE() denote
the KL divergence loss and the cross-entropy loss,
respectively; x and y denote the input data and the
ground truth labels; and uncertainty denotes the entropy
of the student model outputs Wstu(x).

Analysis of Training and Inference Overhead
In contrast to the two-step distillation process in vanilla
KD, NetDistiller performs one-shot in-situ distillation
of knowledge from the supernet teacher to the sub-
network student model without any additional com-
putation and memory cost. Similar to that of NetAug,
NetDistiller introduces zero extra inference overhead
because only the target TNN is used during inference,
enabling the deployment of TNNs feasible on resource-
constrained edge devices. Despite expanding the target
TNN model by 3×, we observe a mere 20% increase in
the training time of NetDistiller to that of vanilla TNNs.

EXPERIMENTAL RESULTS

Experiment Setup
Models. We benchmark NetDistiller with SOTA TNNs
training methods, e.g., NetAug [2], and KD [4], on five
commonly adopted TNNs [3], [2], including MobileNet-
V2-Tiny, MobileNet-V2 (w0.35 and w1.0), MobileNet-
V3, MCUNet (256kb-1mb), and ProxylessNAS (w0.35,
w1.0). In particular, w0.35 indicates the models have
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TABLE 1. Benchmark NetDistiller with SOTA methods for training TNNs. r160: The input image resolution is 160 × 160. w0.35:
The model has 0.35× number of channels than the vanilla one.

Model
MobileNet-V2-Tiny MCUNet MobileNet-V3, r160 ProxylessNAS, r160 MobileNet-V2, r160

r144 r176 w0.35 w0.35 w1.0 w0.35 w1.0

Params 0.75M 0.74M 2.2M 1.8M 4.1M 1.7M 3.5M
MACs 23.5M 81.8M 19.6M 35.7M 164.1M 30.9M 154.1M

Baseline 51.7% 61.5% 58.1% 59.1% 71.2% 56.3% 69.7%
NetAug [2] 53.3% 62.7% 60.3% 60.8% 71.9% 57.8% 70.6%

In-situ 54.1% 62.7% 62.1% 60.7% 71.2% 58.5% 71.2%
In-situ + PCGrad [10] 54.5% 63.4% 62.3% 61.3% 72.5% 59.0% 72.0%

NetDistiller (ours) 54.8% 64.2% 62.6% 61.5% 72.8% 59.3% 72.6%

TABLE 2. Ablation study of channel expansion rates on
MobileNet-V2-w0.35 (MBV2-w0.35) and MobileNet-V3-w0.35
(MBV3-w0.35). Different teacher sizes in the first row indicate
the channel expansion rates. Considering the limited improve-
ment (0.2%) between ×4 and ×3 teachers on MobileNet-V2-
w0.35 model and the training efficiency, the teacher with ×3
size is selected in NetDistiller.

Teacher Size Baseline ×2 ×3 ×4 ×5

MobileNet-V2-0.35 56.3% 58.0% 58.5% 58.7% 58.3%
MobileNet-V3-0.35 58.1% 61.3% 62.1% 61.8% 61.8%

0.35 times of channels over the vanilla one (i.e., w1.0).
Following the model definitions in [2], the channels of
w0.35 models are round to products of 8.

Datasets. Following [2], we consider the ImageNet
dataset with an input resolution of r144, r160, and r176
for different target TNNs. In the external knowledge
distillation experiments, the input resolution for the
external teacher is set to r224 to match its pre-training
configuration. The object detection experiments are
trained on the PASCAL VOC 2007+2012 datasets and
evaluated on the PASCAL VOC 2007 validation set with
an input resolution of r416.

Evaluation Metrics. We evaluate NetDistiller and
the baseline methods in terms of the top-1 accuracy on
ImageNet and the average precision at IoU=0.5 (AP50)
for the object detection on PASCAL VOC.

Training Setting. Following the training setting in [2],
we train TNNs for 180 epochs using an SGD optimizer
with a momentum of 0.9 and an initial learning rate of
0.4 with a cosine learning rate scheduler. We adopt a
learning rate warm-up for 5 epochs and the gradients
are clipped to 1.0 during the whole training period. The
label smoothing technique with a factor of 0.1 is adopted
when using the ground truth label. For the NetDistiller
with uncertainty-aware distillation, we use the same
training recipe but increase the training epochs to 360.
The uncertainty threshold T is set to 3.75 based on
the empirical observation of our ablation study. All
the ImageNet experiments are run on 8 GPUs with
a batch size of 1024. As a recent paper [2] discovered

TABLE 3. Ablation study of gradient surgery on MobileNet-
V2-w0.35 and MobileNet-V3-w0.35 models for 360 epochs.
We disable gradient surgery and calculate the cosine-similarity
between the two gradients (teacher’s and student’s) of each
convolutional layer. The percentage values shown under
different epochs reflect the average ratio of the number of
layers with negative cosine-similarity (gradient conflicts) w.r.t.
the total number of layers in the model.

Epoch 1 90 180 270 360

MobileNet-V2-w0.35 51.5% 40.1% 37.4% 39.4% 38.2%
MobileNet-V3-w0.35 50.1% 45.2% 34.7% 38.5% 37.4%

TABLE 4. Ablation study of different uncertainty-aware dis-
tillation thresholds on MobileNet-V2-w0.35 and MobileNet-
V2-w1.0. The first row is the thresholds. The uncertainty-
aware distillation distills the student model if its output entropy
(uncertainty) is higher than the threshold and trains the student
model with ground truth labels otherwise.

Model
Uncertainty Threshold
2.5 3.75 5.0

MobileNet-V2-w0.35 59.1% 59.3% 58.9%
MobileNet-V2-w1.0 71.9% 72.6% 71.2%

that data augmentation and regularization could be
harmful to TNN training, we only utilize standard data
augmentations (e.g. random flip, random crop) and
disable regularization methods like dropout and drop
path. For transfer learning on the object detection task,
MobileNet-V2-w0.35 and MobileNet-V3-w0.35 models
are connected with a YOLO-v4 head. All the object
detection experiments are trained via an SGD optimizer
with a momentum of 0.9 and an initial learning rate of
1e-4 decayed by a cosine learning rate scheduler for
100 epochs with a batch size of 8.

Benchmark with SOTA TNN Training Methods
As shown in Table 1, our observations are as follows: (1)
NetDistiller improves up to 4.5% accuracy as compared
to all baselines and gains 2.3% higher accuracy than
the most competitive baseline NetAug on MobileNet-V3-
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TABLE 5. Ablation studies of combinatining NetDistiller and External knowledge distillation. KD: Distill the target TNN with an
external teacher (ImageNet pre-trained ResNet-50). NetDistiller w/o UD: Uncertainty-aware distillation is turned off in the external
KD experiments. NetDistiller+KD: The external teacher distills both NetDistiller teacher and student models.

Model Baseline KD NetDistiller w/o UD NetDistiller+KD

MobileNet-V2-Tiny, r144 51.7% 53.7% (+2.0%) 55.5% (+3.8%) 56.1% (+4.4%)
MobileNet-V2-w0.35, r160 56.3% 58.4% (+2.1%) 59.0% (+2.7%) 59.5% (+3.2%)
MobileNet-V3-w0.35, r160 58.1% 61.6% (+3.5%) 62.3% (+4.2%) 62.5% (+4.4%)
ProxylessNAS-w0.35, r160 59.1% 60.8% (+1.7%) 61.3% (+2.2%) 61.9% (+2.8%)

w0.35. (2) In-situ distillation contributes the most: TNNs
trained solely through in-situ distillation can either match
or surpass the SOTA TNNs training method, NetAug [2].
(3) Among all the models, TNNs gain an accuracy boost
of approximately 0.5% after the introduction of PCGrad
[10] to mitigate gradient conflicts. (4) Our proposed
NetDistiller, which combines the in-situ distillation with
PCGrad and uncertainty-aware distillation, proves to
be an effective training approach for enhancing the
attainable task performance of TNNs.

Ablation Studies of NetDistiller
Channel Expansion Rates of the Teacher Model.
Since NetDistiller expands the channels of TNNs to
create a weight-sharing supernet as the teacher model,
the channel expansion rate of the teacher model
plays a crucial role in determining the effectiveness
of the in-situ distillation mechanism. This is particularly
important considering that a thin teacher model may
have limited capacity, while an excessively wide teacher
may not effectively transfer its information. In order
to identify the optimal channel expansion rate, we
evaluate NetDistiller with ×2, ×3, ×4, and ×5 channel
expansion rates on top of two TNNs, MobileNet-V2-
w0.35 and MobileNet-V3-w0.35, respectively. As shown
in Table 2, we observe that: (1) all four teacher models
enhance the accuracy of TNNs, demonstrating the
overall efficacy of NetDistiller, and (2) MobileNet-V2-
w0.35 and MobileNet-V3-w0.35 achieve the highest
accuracy when the channel expansion rates are ×4
and ×3, respectively. To minimize the training overhead
caused by the expanded teacher model, we by default
set the channel expansion rate to ×3 in NetDistiller.

Quantify the Gradient Conflicts. Because of the
weight-sharing mechanism, the joint training of the
student and teacher models leads to the accumulation
of gradients on the same weights, inevitably resulting in
gradient conflicts. To verify the occurrence of gradient
conflicts at different training stages, we calculate the
ratio of layers with negative cosine similarity, averaged
over the validation set, in relation to the total number
of layers in the model throughout the training process.

The results in Table 3 demonstrate that the teacher and
student models indeed experience gradient conflicts,
with as many as 51.5% of layers exhibiting conflicting
gradients. To address this issue, the adoption of gradi-
ent surgery leads to an accuracy improvement of 0.5%
and 0.2% for MobileNet-V2-w0.35 and MobileNet-V3-
w0.35, respectively, as shown in Table 1.

Threshold of the Uncertainty-aware Distillation.
Our proposed uncertainty-aware distillation mechanism
dynamically selects the objective for the student model,
opting for either in-situ distillation or cross-entropy
based on the uncertainty of the student model’s out-
puts. To decide the uncertainty threshold, we validate
MobileNet-V2-w0.35 and MobileNet-V2-w1.0 models
with uncertainty thresholds of 5.0, 3.75, and 2.5, con-
sidering the entropy of ImageNet models is in the
range of [1.5, 10] when adopting a label smoothing
factor of 0.1. As shown in Table 4, we observe that
both models achieve their highest accuracy when
the uncertainty threshold is set to 3.75, resulting in
accuracy improvements of 0.3% and 0.6%, respectively,
as compared to NetDistiller without uncertainty-aware
distillation. Consequently, we adopt a default uncertainty
threshold of 3.75 when enabling uncertainty-aware
distillation, without any additional overhead.

Complementary Knowledge Distillation. A natural
baseline for evaluating NetDistiller is standard knowl-
edge distillation. Recent observations have suggested
that significant gaps between the teacher and student
models can lead to suboptimal knowledge distillation
performance [12]. Therefore, we hypothesize that (a)
our proposed in-situ distillation serves as a more
effective mechanism for enabling TNN training when
compared to knowledge distillation, and (b) knowledge
distillation is complementary to our method and can
be applied concurrently. To validate these hypotheses,
we distill the knowledge from an ImageNet pre-trained
ResNet-50 for both NetDistiller’s teacher and student
models. This process is referred to as external distilla-
tion to distinguish it from our in-situ distillation. We then
benchmark this approach against (1) vanilla NetDistiller
and (2) standard knowledge distillation. As shown in

6 NetDistiller: Empowering Tiny Deep Learning via In-Situ Distillation November 2023
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FIGURE 2. Visualizing the training process of NetDistiller and the baselines for MobileNet-V2-w0.35 and MobileNet-V3-w0.35
models. It reveals that NetDistiller significantly enhances both the training and evaluation accuracy of the TNNs. This highlights
the substantial potential of NetDistiller in strengthening TNNs and mitigating the underfitting problem.

Table 5, we can observe that (1) vanilla NetDistiller
can outperform standard knowledge distillation, e.g., an
accuracy improvement of 3.8% and 4.2% on MobileNet-
V2-Tiny and MobileNet-V3-w0.35 respectively, thus
confirming our hypothesis (a); and (2) knowledge
distillation is orthogonal to NetDistiller, as applying
knowledge distillation on top of NetDistiller results in
4.4% accuracy improvements on MobileNet-V2-Tiny
and MobileNet-V3-w0.35, respectively, validating our
hypothesis (b).

Visualization of Training Trajectories
We present the training curves for MobileNet-V2-w0.35
and MobileNet-V3-w0.35 throughout the 180 epochs
of training using NetDistiller, as compared to the
corresponding standard training baselines, in Figure
2. Notably, we observe that both the training and
evaluation accuracy of NetDistiller consistently outper-
form the corresponding baselines at the same training
epoch. For instance, NetDistiller achieves a 2.7%
accuracy improvement for MobileNet-V2-w0.35 and an
impressive 4.2% accuracy improvement for MobileNet-
V3-w0.35 as compared to the baselines. Furthermore,
to attain a comparable accuracy, NetDistiller requires
fewer training epochs, resulting in a 44% reduction in
training epochs, as indicated in Figure 2.

Transfer Learning Study on Object Detection
To evaluate the generality of the representations
learned by NetDistiller, we transfer NetDistiller’s trained
MobileNet-V2-w0.35 and MobileNet-V3-w0.35 to a
downstream object detection task. We then compare
their performance against standard pre-trained models,
with or without knowledge distillation, on ImageNet.
Specifically, we replace the final pooling and linear
layers in MobileNet-V2-w0.35 and MobileNet-V3-w0.35
with the YOLO-v4 object detection head. As shown
in Table 6, NetDistiller consistently enjoys a better
transferability with a higher Average Precision (AP) of

TABLE 6. Transfer learning on object detection tasks using
PASCAL VOC 2007+2012 datasets and MobileNet-V2-w0.35
(MBV2) or MobileNet-V3-w0.35 (MBV3) models. Both of the
two models are connected with the YOLO-v4 detection head.
The model is initialized with NetDistiller pretrained weights
on ImageNet. We report the Average Precision at IoU=0.5
(AP50).

Model Baseline AP50 KD AP50 NetDistiller AP50

MobileNet-v2-w0.35 60.4% 61.1% 62.3%
MobileNet-v3-w0.35 63.6% 62.8% 65.2%

1.9% / 1.6% on MobileNet-V2-w0.35 / MobileNet-V3-
w0.35 as compared to the standard training baselines.
Note that although pre-trained features on classification
tasks may not be necessarily useful for downstream
tasks [2], which is also echoed with our results of KD
pre-trained MobileNet-V3-w0.35 in Table 6, NetDistiller
manages to improve the achievable AP by up to 1.9%
on both models. This emphasizes the broad applicability
of our method across diverse tasks and datasets.

CONCLUSION
Enhancing the task accuracy of TNNs is a critical
challenge in enabling their deployment on resource-
constrained IoT devices. Our proposed framework, Net-
Distiller, addresses this challenge by considering TNNs
as sub-networks of a weight-sharing teacher model,
achieved by expanding the number of channels in the
TNN. By incorporating gradient surgery to handle gra-
dient conflicts and uncertainty-aware distillation to alle-
viate teacher model overfitting, NetDistiller significantly
improves the achievable accuracy of TNNs. Extensive
experiments spanning various tasks demonstrate the
superior effectiveness of NetDistiller compared to SOTA
TNN training schemes. This advancement marks a
significant step towards realizing the full potential of
TNNs in real-world IoT applications.
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