
A Hopf-Lax Formula for the Level-Set Equation
and Applications to PDE-Constrained Shape

Optimisation
Daniel Kraft

University of Graz
Institute of Mathematics, NAWI Graz

Universitätsplatz 3, 8010 Graz, Austria
Email: daniel.kraft@uni-graz.at

Abstract—Level-sets are a flexible method to describe geome-
tries and their changes according to a speed field. This can be
used in a wide variety of applications. We will present a Hopf-
Lax formula that can be used to represent the solution of the
level-set equation as well as the described geometries directly.
This formula is a generalisation of existing results to the case
of speed fields without a uniform, positive lower bound. The
corresponding equation is of Hamilton-Jacobi type with a non-
convex Hamiltonian.

Our representation formula can be used both for theoretical
and numerical purposes. In the latter case, the Fast Marching
Method can be applied, leading to very efficient and robust
numerical calculations of the geometry evolutions. We will also
apply the level-set framework to an illustrative problem in PDE-
constrained shape optimisation, and present numerical results.

I. INTRODUCTION

In the context of shape optimisation, an important issue is
the description of geometric variables (i. e., the shape of some
domain) in terms of objects that are easier to handle within
a mathematical framework. Different classical possibilities to
describe such geometrical situations can be found in chapter 2
of [1]. A lot of literature about shape optimisation is dedicated
to the investigation of methods based on the transformation
of the studied geometry onto a reference domain. See, for
instance, [2] and [3] for extensive discussions of these types
of methods.

An alternative approach is the use of level-set methods as
introduced in [4] and analysed, for instance, in [5] extensively.
The basic idea is to use a function φ : Rn → R to describe a
domain Ω via its zero level-set, i. e.,

Ω = φ−1 ((∞, 0)) = {x ∈ Rn | φ(x) < 0} .

Assuming that φ is at least continuous, Ω defined in this way
is an open set. In the following, we will always denote the
boundary of such a domain by Γ = ∂Ω. One usually expects
that the zero level-set of φ is not “fat”, meaning that

Γ = ∂Ω = φ−1 ({0})

holds. The problem of “fattening” is treated (including suffi-
cient conditions for this property to hold true) in [6].

For changes of the geometry of Ω, we will use a level-
set variant of the classical speed method: The “direction” of
change can be characterised by a speed field F : Rn → R. For
any x ∈ Rn, the value F (x) describes the speed with which the
boundary of Ω moves in normal direction at this point. Positive
F means outward movement, negative F inward. F = 0
corresponds to parts of the geometry that do not change. In the
level-set framework, these changes in geometry are achieved
by making φ time-dependent. In particular, the time evolution
of φ matching the desired changes in geometry according to
a speed field F is governed by the level-set equation

φt(x, t) + F (x) |∇φ(x, t)| = 0 (1)

together with a suitable initial condition φ(x, 0) = φ0(x).
Here, φ0 is a level-set function that describes the initial
geometry Ω0. Often, φ0 is chosen as the signed distance
function of Ω0. We will assume in the following that both φ0

and F are Lipschitz continuous. For φ0, this can be ensured by
choosing it indeed as a signed distance function. Furthermore,
we will also assume that F has compact support, since this is
no practical restriction.

This equation can already be found as (2.13) in [4]. It is
of Hamilton-Jacobi type, and the proper concept of solutions
for (1) is that of viscosity solutions. See, for instance, [7] and
[8]. For the sake of completeness, we will quickly recall the
definition:

Definition 1. Let D = Rn × (0,∞) be the open space-time
cylinder, φ : D → R and (x, t) ∈ D. Then J1+φ(x, t) is the
set of all (p, a) ∈ Rn × R such that

φ(y, s) ≤ φ(x, t)+a(s− t)+p · (y−x)+o (|s− t|+ |y − x|)

as (y, s) → (x, t) in D. Similarly, (p, a) ∈ J1−φ(x, t) if and
only if

φ(y, s) ≥ φ(x, t)+a(s− t)+p · (y−x)+o (|s− t|+ |y − x|)

for (y, s) → (x, t). J1±φ(x, t) are called the first-order
parabolic semijets of φ at (x, t). Note that J1−φ(x, t) is often
also called subdifferential of φ at (x, t).

Definition 2. Let F and φ0 be given. We say that φ : Rn ×
[0,∞)→ R is a viscosity subsolution of (1) for the given data
if φ is upper semi-continuous, φ(·, 0) ≤ φ0 on Rn and

a+ F (x) |p| ≤ 0

for each x ∈ Rn, t > 0 and (a, p) ∈ J1+φ(x, t). Similarly,
φ is a viscosity supersolution if φ is lower semi-continuous,
φ(·, 0) ≥ φ0 and a+F (x) |p| ≥ 0 for all (a, p) ∈ J1−φ(x, t).
φ solves (1) in the viscosity sense if φ is both a viscosity

sub- and supersolution. Note that this implies in particular that
φ is continuous and that φ(x, 0) = φ0(x) for all x ∈ Rn.

It is well-known that (1) has a unique solution φ : Rn ×
[0,∞) → R in this sense for any given (continuous) F and
φ0. Furthermore, the so-called comparison principle holds:
If φ1 and φ2 are a viscosity sub- and supersolution to (1),
respectively, with φ1(·, 0) ≤ φ2(·, 0) on Rn, then φ1 ≤ φ2 on
Rn × [0,∞). For the proofs, see, for instance, [7] or [5].

II. THE HOPF-LAX FORMULA

In this section, we will state and motivate our main result.
The technical details of the proofs will not be given here, they
will be published in a forthcoming paper. We will assume
F ≥ 0, since by using appropriate symmetry properties of
the solution φ of (1), one can reduce the general case to the
case of non-negative speeds. Furthermore, it can be shown
that φ(x, t) = φ0(x) for all t ≥ 0 whenever F (x) = 0. Thus,
the main focus of our investigation will be the set Ω+ =
F−1 ((0,∞)). This set is open and bounded, since we assumed
that F is Lipschitz continuous and compactly supported.

A. Shortest Paths

Instead of the time-dependent Cauchy problem (1), we start
by considering the stationary Eikonal equation

F (x) |∇dy(x)| = 1, dy(y) = 0 (2)

for some fixed source point y ∈ Ω+. We consider this
equation on the connected component C of Ω+ containing
y. The solution to (2) is understood again in the viscosity
sense similar to Definition 2 above. Intuitively, dy(x) gives
the “distance” (induced by the speed field F) between two
points x and y. This connection can also be formalised by
considering paths between y and other points x ∈ C:

Definition 3. Let x, x′ ∈ C. A path connecting x and x′ is a
function ξ ∈ W 1,∞([0, 1], C) with ξ(0) = x and ξ(1) = x′.
Xad (x, x′) is the set of all such paths. For ξ ∈ Xad (x, x′), the
F -induced length of ξ is defined as

l(ξ) =

∫ 1

0

|ξ′(t)|
F (ξ(t))

dt. (3)

Note that by the Sobolev embedding theorem (see, for
instance, Theorem 6 on page 270 of [9]), each such path
ξ ∈ Xad (x, x′) is continuous. Furthermore, F ◦ ξ attains
a strictly positive minimum on [0, 1], such that (3) is well-
defined with 0 ≤ l(ξ) <∞.

Definition 4. For x ∈ Rn, we set d (x, x) = 0. For x′ 6= x, if
there exist paths in Xad (x, x′), define

d (x, x′) = inf
ξ∈Xad(x,x′)

l(ξ)

as the shortest distance. Otherwise, set d (x, x′) =∞.

Note that this notion is already used in [10], although
there it is assumed that F is uniformly bounded away from
zero. Given Definition 3 and Definition 4, the following basic
properties of this distance can be shown easily:

Lemma 1. d (·, ·) induces a metric on Rn and when restricted
to a connected component of Ω+, d (·, ·) is continuous in both
arguments.

We can now state the first main result, which connects
this distance of shortest paths to the viscosity solution of the
stationary Eikonal equation (2):

Theorem 1. Let C ⊂ Ω+ be a connected component and
y ∈ C be fixed. Then dy(·) = d (·, y) is a viscosity solution
of (2) in C \ {y}.

Proof: For a given cut-off threshold F > 0, we define an
auxiliary speed F̃ (x) = max(F , F (x)) and the corresponding
distance dF induced by F̃ . For these distances, the result
is well-known (Theorem 5.1 on page 117 of [10]). Thus it
remains to verify that the claim stays true even if we remove
the cut-off.

Let x ∈ C be fixed. The crucial point is to notice that there
exists a threshold F > 0 such that only paths ξ ∈ Xad (x, y)
with F (ξ(t)) ≥ F for all t ∈ [0, 1] are interesting for the
infimum in Definition 4. This is the case due to Lipschitz
continuity of F . Thus, d (x, y) = dF (x, y) can be achieved
in a neighbourhood of x. Since being a viscosity solution is a
local property, this yields with some further considerations that
the result of [10] can indeed be applied to show that d (·, y)
solves (2).

B. The Hopf-Lax Formula

Theorem 2. Let F ≥ 0 and d (·, ·) be the distance introduced
in Definition 4. Then the viscosity solution to (1) is given by
the Hopf-Lax formula

φ(x, t) = inf {φ0(y) | y ∈ Rn, d (x, y) ≤ t}

for all t ≥ 0 and x ∈ Rn.
Proof: For the case of F uniformly positive, this follows

from Theorem 3.1 on page 140 of [11]. It can be generalised
to the case F ≥ 0 using the same arguments as in the proof
of Theorem 1.

Using this result, one can also deduce a corresponding for-
mula for the geometries Ωt themselves represented by φ(·, t).
Let Ω0 be an initial domain. Since F ≥ 0 by assumption, the
initial geometry moves only outward and thus Ωt grows in
time.

Definition 5. Let d (·, ·) be the distance of Definition 4 as
before. Then, for x ∈ Rn, we define

d0(x) = inf
y∈Ω0

d (x, y) .

For each x ∈ Rn, d0(x) ∈ [0,∞] is the F -induced distance
to the initial set. One can show that d0 is locally Lipschitz
continuous and solves the Eikonal equation

F (x) |∇d0(x)| = 1 (4)

for almost-all x ∈ Ω+ \Ω0. In other words, d0(x) is the time
until the evolving geometry hits x. This intuitive understanding
can easily be formalised to yield:

Theorem 3. Let F ≥ 0 and Ωt be the time evolution of some
initial geometry Ω0 according to the level-set method and (1).
Then

Ωt = d0
−1 ((−∞, t)) = {x ∈ Rn | d0(x) < t}

holds for all t > 0.

It is important to realise that the representation found in
Theorem 3 can be used for numerical purposes: The quantity
d0 of Definition 5 can be calculated efficiently using the
Fast Marching Method [12]. Even if F ≥ 0 does not hold
throughout the domain, one can split the domain into a
part with F ≥ 0 and one with F ≤ 0 and apply Fast
Marching separately to each part. When this is done, one can
“concatenate” the parts and use Theorem 3 to construct a level-
set function for the propagating geometry at arbitrary times
t ≥ 0. This “composite Fast Marching Method” can thus be
used to evolve a geometry in time for arbitrary speed fields
and does not require the front to move monotonically outward.
Furthermore, if, for instance, a line search is done, one can
even use the same d0 to test multiple “step lengths” (evolution
times t in this case). This reduces computation times even
further.

C. Shape Derivatives

In addition to its usability from a numerical point of view,
Theorem 3 also allows to draw theoretical consequences. One
of particular interest is the shape derivative of a domain
functional, which we want to sketch here quickly. For this,
let f ∈ L1

loc(Rn). We consider

J(t) =

∫
Ωt

f dx.

Theorem 4. Let Γ0 be a null set and F ≥ 0. Then,

J(t) = J(0) +

∫ t

0

∫
d0−1({s})

Ff dσ ds

holds for t ≥ 0. As an immediate consequence, J is differen-
tiable for almost-all t ≥ 0 with

J ′(t) =

∫
d0−1({t})

Ff dσ.

Proof: The derivative result follows immediately by the
Lebesgue differentiation theorem once the representation of J

itself is shown. For t = 0, the claim is clear. Assume t > 0
from now on. Take note that

J(t) = J(0) +

∫
Ωt\Ω0

f dx

since Ω0 ⊂ Ω0 ⊂ Ω0 ∪ Γ0 and all these sets differ by at most
Γ0 which has measure zero. Furthermore, Theorem 3 allows
us to write

Ωt \ Ω0 = Ω+ ∩ d0
−1 ((0, t)) .

Recall also (4), which applies to this set.
Next, let χ be the characteristic function of d0

−1 ((0, t))
and define g = χFf . Then g ∈ L1(Rn) since F has compact
support. The result now follows from the co-area formula
(Theorem 2 on page 117 of [13]), since∫

Ω+∩d0−1((0,t))

f dx =

∫
Rn

|∇d0| g dx

=

∫
R

∫
d0−1({s})

χFf dσ ds =

∫ t

0

∫
d0−1({s})

Ff dσ ds.

To get around the fact that d0 is only locally Lipschitz
continuous, one can introduce compact cut-offs and use the
dominated convergence theorem.

Again, using appropriate symmetry properties, one can
easily generalise these results for Lipschitz continuous F
without the restriction F ≥ 0.

III. PDE-CONSTRAINED SHAPE OPTIMISATION

We want to demonstrate how the level-set framework can
be used for PDE-constrained shape optimisation. For this goal,
we consider a simple elliptic problem with a tracking-type cost
functional. Let D ⊂ R2 be compact, B ⊂ D, f ∈ L2(D) and
ud ∈ L2(B). Consider a sufficiently regular domain Ω with
B ⊂ Ω ⊂ D and let u = u(Ω) satisfy the state equation{

−∆u+ u = f in Ω,
∂u
∂ν = 0 on Γ = ∂Ω.

(5)

We want to minimise

J(Ω) =
1

2
‖u− ud‖2L2(B) +R(Ω)

with respect to the domain Ω. R(Ω) is a regularisation term,
and we will use

R(Ω) = α |∂Ω| = α |Γ|

with α ≥ 0 in the following.
For simplicity, all calculations presented below will be only

formal. We will assume without further notice that u and Ω
have all the necessary regularity properties.

A. Shape Derivatives

We have already seen that a “direction” of change of Ω
can be represented in the level-set approach via a speed field
F ∈ C0,1(D). As before, we denote the time evolution of
some initial domain Ω0 in some direction F according to the
level-set equation (1) by Ωt, where t ≥ 0. The formal shape
derivative of J in direction F is given by

dJ(Ω0;F) = lim
t→0+

J(Ωt)− J(Ω0)

t

=

∫
B

(u− ud) · u′(x;F) dx+ dR(Ω0;F).

Here, u′(·;F) denotes the shape derivative of the state u. We
assume that it exists and is sufficiently regular. The shape
derivative of the regularisation term can be expressed in terms
of the mean curvature κ as

dR(Ω0;F) =

∫
Γ0

ακF dσ.

See, for instance, section 2.33 of [2] for this well-known result.
The next step is to calculate u′(·;F). For this, we consider

the weak form of the state equation (5),∫
Ω

(〈∇u,∇v〉+ uv) dx =

∫
Ω

fv dx (6)

for all test functions v ∈ H1(Ω). Without loss of generality,
we can also consider v ∈ H1(D) since Ω ⊂ D is always
the case. Taking now the shape derivative of both sides of (6)
using Theorem 4, we get∫

Γ

(〈∇u,∇v〉+ uv)F dσ

+

∫
Ω

(〈∇u′(x;F),∇v〉+ u′(x;F)v) dx =

∫
Γ

fvF dσ

(7)

for all v ∈ H1(D). Thus, given a direction F , one can evaluate
u′(·;F) by solving the variational problem (7).

Having to solve such a problem for each F of interest
separately is, however, rather costly. An alternative is the
adjoint approach. For a general discussion about this classical
technique, see, for instance, chapter 3 of [3]. In our case,
assume we define the adjoint state p ∈ H1(Ω) satisfying∫

Ω

(〈∇p,∇w〉+ pw) dx =

∫
B

(u− ud)w dx (8)

for all w ∈ H1(Ω). With (8) and (7), we can then express the
first term of dJ(Ω;F) as∫

B

(u− ud) · u′(x;F) dx

=

∫
Ω

(〈∇p,∇u′(x;F)〉+ p · u′(x;F)) dx

=

∫
Γ

(fp− 〈∇u,∇p〉 − up)F dσ.

Taking everything together, we have shown that the shape
derivative in some direction F can be expressed as:

dJ(Ω;F) =

∫
Γ

(fp− 〈∇u,∇p〉 − up+ ακ)F dσ (9)

In this formulation, we only have to solve the state and
adjoint equations once for some geometry Ω. Afterwards,
dJ(Ω;F) can be evaluated for arbitrary directions F simply
by integrating over Γ.

B. A Gradient-Descent Method

Building on the results of the previous subsection, we will
now describe a possible gradient-descent method for shape
optimisation of our example problem. Since we already know
how to calculate the shape derivative in some direction F , it
remains to find a way to calculate a good descent direction.
To this end, consider

min
F

dJ(Ω;F), ‖F‖H1(D) = 1. (10)

By using the Lagrangian for this problem, one can show that
the minimising speed field F is, up to normalisation, the
solution of the variational problem

〈F ′, G〉H1(D) =

∫
D

(〈∇F ′,∇G〉+ F ′G) dx =

∫
Γ

aG dσ

for all G ∈ H1(D). Here,

a = fp− 〈∇u,∇p〉 − up+ ακ

denotes the expression appearing in the trace-integral form of
dJ(Ω;F) according to (9). In other words, we look for the
Riesz representative F ′ of the shape derivative dJ(Ω; ·). This
is, per definition, the shape gradient and thus −F ′ is a prime
candidate for a descent direction.

Furthermore, we have

‖F ′‖2H1(D) =

∫
Γ

aF ′ dσ = dJ(Ω;F ′) = λ,

which can be useful to determine how close a given geometry
is already to a stationary point with vanishing derivative.
Finally, the solution F of (10) is then simply F = − 1

λF
′. In

order to ensure that B ⊂ Ω ⊂ D is always the case, one can set
the speed to zero on B∩F−1 ((−∞, 0)) and D∩F−1 ((0,∞))
to prevent shrinking into B or growing outside of D.

One can also easily introduce an additional weighting factor
β > 0 and use

〈F,G〉β =

∫
D

(FG+ β 〈∇F,∇G〉) dx

instead of the ordinary metric in H1(D). Usually, one wants
the speed field to be smoothed in normal direction but allow
for variations along Γ. By choosing β � 1, one can achieve
some smoothing but also allow more variations than for
β = 1. This was beneficial for some of our calculations. See
Subsection IV-B for a demonstration of this effect.

IV. NUMERICAL RESULTS

In this section, we want to present the results of our methods
applied to two test cases for our shape optimisation problem.
They were constructed by defining a forcing function f as well
as a “precise” initial shape. For the first example, the exact
solution ud of (5) is known analytically, and for the second

example, the state equation was solved numerically using an
independent FEM solver (FEniCS [14]). Within the described
gradient-descent method, we used a custom solver based on
linear finite elements on a triangular mesh. We employed a
line search according to the Armijo rule, although a minimum
step length hmin was enforced in order to prevent the algorithm
from getting “stuck” too early.

We used D = [-1.5, 1.5]2 ⊂ R2 as hold-all domain for the
level-set functions, which was discretised with 500 grid points
in each space dimension. For the level-set time evolution,
we used the described Fast Marching procedure based on
Theorem 3. Everything is implemented in C++ and GNU
Octave [15]. The calculations were performed on a system
with an amd64 quad-core processor. We used the multiple
cores to run simulations for different regularisation parameters
α in parallel and to try multiple step lengths for the line search
simultaneously in the two examples, respectively, to make use
of the available multi-threading capabilities.

Making use of parallel line search in this way, a typical
descent step takes around 10 s for this already relatively fine
spatial discretisation. (A particular timing for 2,000 descent
steps is 20,203 s.) Most of this time is spent in the FEM
solver, our level-set routines use only a minor fraction of the
total processing time (for a particular profiling example, it was
measured as 4.3% of the total time). This confirms that the
Fast Marching Method is really suited to efficiently propagate
geometries in time using the level-set method.

A. The Effect of Different Regularisation Parameters

For the choice of

ud(x, y) = (x2 + y2)− 1

3
(x2 + y2)3

and Ωex = B1 (0, 0) as the unit circle, a forcing function f
can be trivially computed from (5) such that ud is a solution.
On Ωex, it satisfies also the boundary conditions. We applied
10% of Gaussian noise to ud and tried to recover Ωex using
the shape optimisation procedure for different regularisation
parameters α. Additional choices were β = 1, hmin = 10−6

and B =
{

(x, y) ∈ R2 | |x| < 1
2 and |y| < 1

2

}
. The result

after 1,000 descent steps is shown in Figure 1. Figure 1a
shows the difference between the calculated result and Ωex
as (normalised) L1-difference of the corresponding signed
distance functions. Figure 1b shows how the numerical results
(in colour) look like in comparison to the initial domain (black
square) and Ωex (black circle) for different values of α. For
this example, the regularisation ensures that the optimal shape
is unique and can be found relatively well when the right
choice of α is made. We have to admit, though, that this works
particularly well here since regularisation via the boundary
length favours the shape Ωex we look for. One can easily see
the typical behaviour of regularisation: With α = 0, the shape
is not unique and the desired one is not found (although the
cost is still minimised). With too large values of α, the problem
is distorted. This leads to a circle that is too small.

0 0.5 1 1.5 2 2.5 3
1e-2

1e-1

1e+0

alpha

D
if
fe

re
n

c
e

 t
o

 E
x
a

c
t

D
o

m
a

in

(a)

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
Initial

alpha = 0.00

alpha = 0.10

alpha = 3.00

Exact

(b)

Fig. 1. Behaviour of the shape optimisation procedure for different regular-
isation parameters α. See Subsection IV-A.

B. Test for the Convergence Properties

As the second example, we used a more complex geometry.
The “exact domain” was chosen as

Ωex = B1 (0, 0) \B 1
3

(0.2,−1/3)

with a forcing function that penalises the “hole” strongly,

f(x, y) = min(0, 10y) + 1000 · χB 1
4

(0.2,−1/3)(x, y).

The observation domain was again rectangular, with

B =

{
(x, y) ∈ R2 | |x| < 1

2
and y ∈ [0.1, 0.5]

}
.

We used hmin = 10−3 and applied neither regularisation
(α = 0) nor noise. Thus, the results show the behaviour of
our method purely from an optimisation point of view rather
than for inverse problems. We performed 1,000 descent steps

0 200 400 600 800 1000
1e-8

1e-6

1e-4

1e-2

1e+0

1e+2

1e+4

Steps

Cost

Gradient Norm

(a) β = 0.01

0 200 400 600 800 1000
1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

Steps

Cost

Gradient Norm

(b) β = 1

Fig. 2. Decrease in the cost and gradient norm (‖F‖ in the H1-sense
weighted by the chosen β) for the example problem described in Subsec-
tion IV-B.

for this example. Figure 2 shows how the cost and gradient
norm decrease with the number of descent steps taken for the
case of small and large β. Figure 3 shows how the resulting
geometries look like. While the final geometry does not match
Ωex very much, it can be seen nicely that the cost as well as
the gradient norm are still decreased almost to zero. This is
due to the fact that the inverse problem is ill-conditioned and
a lot of alternative shapes exist that result in almost the same
minimal cost. Finally, one can also see that β � 1 leads to
faster convergence in this example.

ACKNOWLEDGEMENT

The author would like to thank his PhD supervisor Wolfgang
Ring of the University of Graz for fruitful discussions about
these ideas as well as initially posing the research questions
considered here. This work is supported by the Austrian

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Exact

Initial

beta = 0.01

beta = 1.00

Fig. 3. The resulting domains for the example in Subsection IV-B in
comparison to the initial geometry (black) and Ωex (green).

Science Fund (FWF) and the International Research Training
Group IGDK 1754.

REFERENCES

[1] M. C. Delfour and J.-P. Zolésio, Shapes and Geometries, 2nd ed., ser.
Advances in Design and Control. SIAM, 2001.

[2] J. Sokolowski and J.-P. Zolésio, Introduction to Shape Optimization:
Shape Sensitivity Analysis, ser. Springer Series in Computational Math-
ematics. Springer, 1992.

[3] J. Haslinger and R. A. E. Mäkinen, Introduction to Shape Optimization:
Theory, Approximation, and Computation, ser. Advances in Design and
Control. SIAM, 2003.

[4] S. Osher and J. A. Sethian, “Fronts propagating with curvature-
dependent speed: Algorithms based on hamilton-jacobi formulations,”
Journal of Computational Physics, vol. 79, pp. 12–49, 1988.

[5] Y. Giga, Surface Evolution Equations: a level set approach, ser. Mono-
graphs in mathematics. Birkhäuser, 2006.

[6] G. Barles, H. M. Soner, and P. E. Souganidis, “Front propagation and
phase field theory,” SIAM J. Control and Optimization, vol. 31, no. 2,
pp. 439–469, March 1993.

[7] M. G. Crandall, “Viscosity solutions: a primer,” in Viscosity Solutions
and Applications, ser. Lecture Notes in Mathematics. Springer, 1995.

[8] M. G. Crandall, H. Ishii, and P.-L. Lions, “User’s guide to viscosity
solutions of second order partial differential equations,” Bulletin of the
American Mathematical Society, vol. 27, no. 1, pp. 1–67, July 1992.

[9] L. C. Evans, Partial Differential Equations, ser. Graduate Studies in
Mathematics. American Mathematical Society, 1999.

[10] P.-L. Lions, Generalized solutions of Hamilton-Jacobi equations, ser.
Research Notes in Mathematics. Pitman Advanced Publishing Program,
1982.

[11] I. Capuzzo-Dolcetta, “A generalized hopf-lax formula: Analytical and
approximations aspects,” in Geometric Control and Nonsmooth Analysis,
ser. Series on Advances in Mathematics for Applied Sciences, F. Ancona,
Ed. World Scientific, 2008, vol. 76, pp. 136–150.

[12] J. A. Sethian, “A fast marching level set method for monotonically
advancing fronts,” Proceedings of the National Academy of Sciences,
vol. 93, no. 4, pp. 1591–1595, 1996.

[13] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of
Functions, ser. Studies in Advanced Mathematics. CRC Press, 1992.

[14] A. Logg, K.-A. Mardal, G. N. Wells et al., Automated Solution of
Differential Equations by the Finite Element Method. Springer, 2012.

[15] J. W. Eaton, D. Bateman, and S. Hauberg, GNU Octave version 3.0.1
manual: a high-level interactive language for numerical computations.
CreateSpace Independent Publishing Platform, 2009, ISBN 1441413006.
[Online]. Available: https://www.gnu.org/software/octave/doc/interpreter

