
Robot’s Velocity and Tilt Estimation
Through Computationally Efficient Fusion

of Proprioceptive Sensors Readouts
Paweł Wawrzyński, Member, IEEE

Institute of Control and Computation Engineering
Warsaw University of Technology

00-665 Warsaw, Poland,
p.wawrzynski@elka.pw.edu.pl

Abstract— In this paper a method is introduced that combines
Inertial Measurement Unit (IMU) readouts with low accuracy
and temporarily unavailable velocity measurements (e.g., based
on kinematics or GPS) to produce high accuracy estimates of
velocity and orientation with respect to gravity. The method is
computationally cheap enough to be readily implementable in
sensors. The main area of application of the introduced method
is mobile robotics.

Keywords—velocity estimation, Kalman filter, mobile robotics.

I. INTRODUCTION

Knowledge of velocity of a robot or its specific part is
usually crucial for their efficient control. Orientation of the
robot with respect to gravity vector is important especially in
legged robots, where it enables balancing of their body.

Velocity estimation is possible with a system based on
vision [1] or Global Positioning System (GPS) [2], [3], [4].
However, in many applications where autonomy of the robot
is required, exteroceptive sensors are unwanted. It is known
that velocity and orientation may be estimated by proper
integration of Inertial Measurement Unit (IMU) readouts.
However, IMU can not be used alone, as it is prone to the
so-called ’drift’ effect which makes the estimates practically
useless [5].

In [6] we proposed a method that combines IMU readouts
with velocity measurements that come from robot kinematics
to produce velocity and orientation estimates of a legged
robot. The estimates are generally of high accuracy even
if measurements are of low accuracy and are temporarily
unavailable. In this paper we present a version of this method
that is so computationally inexpensive that it may be in
principle implemented on electronics within a sensor (e.g.,
IMU).

The structure of this paper is as follows: Sec. II presents the
formal problem definition, and the notation used throughout
the paper. In Sec. III basic tools for the velocity estimation are
presented along with Extended Kalman Filter sensor fusion.
Sec. IV introduces the contribution of this paper, which is
a computationally inexpensive filter for velocity estimation.

Experimental data analysis and discussions are given in Sec. V.
Finally, in Sec. VI a brief summary of the results is given.

II. PROBLEM FORMULATION

A point in the robot body is given with Inertial Measurement
Unit (IMU) attached to it. IMU measures acceleration and
angular velocity. An auxiliary sensor measures velocity of
IMU in a drift-less manner. This auxiliary measurement may
result from leg’s kinematics, angular velocity of wheels, or
GPS. It may be temporarily unavailable because of no leg
touching the ground, inaccessibility of GPS satellites, and so
on.

At each moment we wish accurate measurement of velocity
and tilt of IMU in the frame in which this sensor takes
measurements. This frame, hereafter called IMU frame is
immobile with respect to the ground and at each moment it
is parallel to IMU. Tilt is expressed as gravity vector in IMU
frame. It is understood that having velocity and tilt in IMU
frame, we are able to express velocity and orientation of IMU
in any coordinate system. We are not able to express global
yaw, but without external reference point we are not able to
estimate it with high accuracy anyway.

We require that velocity and tilt estimates are recursive, and
their update on the basis of coming data are based on limited
computational effort. In essence, we require that the whole
computational burden may be handled by a microprocessor
within IMU.

Notation

Whenever it matters, we assume right-hand coordinate sys-
tem and right-wise rotations for positive angle. We also apply
the following notation conventions.

a ∈ R3 is an acceleration vector measured by IMU, i.e.,
a sum of linear acceleration and acceleration due to
gravity, in IMU frame.

ω ∈ R3 is the angular velocity of IMU in IMU frame.
g ∈ R3 is the gravity vector in IMU frame.
v ∈ R3 is the velocity vector of IMU in IMU frame.
δ is the constant time elapsing between consecutive

IMU measurements.

738978-1-4799-8701-6/15/$31.00 ©2015 IEEE.

r(x,β) ∈ R3 is a vector that is a result of simultaneous
rotations of vector x about each axis of the frame by
the angles contained in vector β ∈ R3×1. Gyroscope
measurements will be handled with this kind of
rotation in Sec. III.

x̂ is an estimate of the true value x.
xS is a measurement of the true value x whereas S

denotes the source of this measurement, e.g., aA is
the accelerometer readout, and ωG is the gyroscope
readout.

x̃ = x̂− x (= xS − x) is an error of the estimate x̂ (or
measurement xS).

“←”: This paper focuses on recursive estimates i.e., the
estimates that are computed on the basis of their
previous values, .e.g,

x̂t = f(x̂t−1) (1)

where t is time. Definitions such as (1) will be
written in the simpler form

x̂← f(x̂). (2)

III. ACCURATE SOLUTION

This section presents the method of estimation of velocity
and tilt introduced in [6]. This method will serve as a basis to
introduce a simplified in the following section.

A. Dynamics of tilt and velocity in IMU frame

Let us consider a mobile IMU, the gravity vector, g, and
velocity of the sensor, v, both in IMU frame. Suppose in a
time period of infinitesimal length δ > 0 angular velocity of
the sensor is constant, and equal to ω. Within the period, the
gravity remains constant, but in IMU frame it is rotating with
angular velocity of −ω. Hence, within the period g changes
to

g← r(g,−ωδ). (3)

Suppose within the period the sensor is moving with constant
linear acceleration and finally it perceives acceleration, a,
which is a sum of the sensor’s linear acceleration, and the
gravity, g, both in IMU frame. The velocity of the sensor in
IMU frame changes due to (i) the rotation of the frame, (ii)
the linear acceleration. Hence, its new value is

v← r(v,−ωδ) +
(
a− r(g,−ωδ)

)
δ, (4)

with g from the beginning of the period.

B. State of inertial sensor

State of the sensor

state =


v
g
ā
ω̄

 , (5)

encompasses the following elements, each of them being a
vector in R3:

v — linear velocity of IMU in relation to the ground,
expressed in IMU frame,

g — vector of acceleration due to gravity, expressed in
IMU frame,

ā — bias in accelerometer measurements,
ω̄ — bias in gyroscope measurements.

IMUs are usually burdened with significant biases which
change over time. However, they can be handled by intro-
ducing them to the filter state [7].

C. Model of dynamics

Defining evolution of the state we consider IMU measure-
ments, ωG and aA, as inputs to the dynamical system. The
measurement ωG is assumed to be a sum of true angular
velocity, ω, the gyroscope bias, ω̄, and zero-mean noise, ω̃.
Similarly, the acceleration measurement aA is assumed to be
a sum of true acceleration, a, accelerometer bias, ā, and zero-
mean noise, ã. Then the equations of dynamics (4) and (3)
take the following form

v← r(v,−(ωG − ω̄ − ω̃)δ)

+
(
aA − ā− ã− r(g,−(ωG − ω̄ − ω̃)δ)

)
δ, (6)

g← r(g,−(ωG − ω̄ − ω̃)δ). (7)

In order to apply Extended Kalman Filter, the above model
needs to be linearised. We notice that β = (ωG − ω̄ − ω̃)δ
is a vector of angles by which IMU rotates within time
δ. These angles must be small (that is, δ must be small
enough), otherwise it can not be assumed that a and ω are
approximately constant within that time. Therefore, the above
model is linearised around β = 0. To this end let us denote

D(x) =
∂r(x,β)

∂β

∣∣∣∣
β=0

=

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 , (8)

and assume
r(x,β) ∼= x+D(x)β. (9)

Application of (9) to eliminate r from (6) and (7) transforms
these equations to the following linear form

v← v −D(v)ωGδ +D(v)ω̄δ +D(v)ω̃δ

+ aAδ − āδ − ãδ − gδ

+D(g)ωGδ2 −D(g)ω̄δ2 −D(g)ω̃δ2,

(10)

g← g −D(g)ωGδ +D(g)ω̄δ +D(g)ω̃δ. (11)

Let each component of ω̃ and ã be stochastically independent
and have standard deviations, respectively

σω > 0, σa > 0. (12)

For gyroscope and accelerometer bias we assume that they
drift in random walk fashion, i.e.,

ā← ā+ ξa (13)
ω̄ ← ω̄ + ξω (14)

739

for ξa and ξω being zero-mean uncorrelated noise vectors with
standard deviations, respectively

σξω
> 0, σξa

> 0. (15)

Then, eqs. (10), (11), (13), and (14) may be written in the
following matrix form

v
g
ā
ω̄

← F


v
g
ā
ω̄

−C


aA/σa

ωG/σω

0
0

+C


ã/σa

ω̃/σω

ξa/σξa

ξω/σξω

 (16)

where

F =


I −Iδ −Iδ D(v)δ −D(g)δ2

0 I 0 D(g)δ
0 0 I 0
0 0 0 I

 , (17)

C =


−Iδσa D(v)δσω −D(g)δ2σω 0 0

0 D(g)δσω 0 0
0 0 Iσξa

0
0 0 0 Iσξω

 .

(18)

D. Model of observation

The observation model takes the form

vO = v + ṽO (19)

where ṽO is the error of velocity observation from the exter-
nal measurement system (based on kinematics or GPS). We
assume that components of ṽO are stochastically independent
and have standard deviations equal to

σv > 0. (20)

E. Integration

In the integration phase, Extended Kalman Filter is used to
estimate the state of the inertial sensor. The following notation
is applied in the algorithm below:
v̂, ĝ, ̂̄a, ̂̄ω — state estimate composed of, respectively, the

estimates of velocity, gravity vector, accelerometer
bias, and gyroscope bias,

P ∈ R12×12 — covariance matrix of state estimates,
K ∈ R12×3— Kalman gain.
Initialization:

It is assumed that the robot is initially immobile. The
variables are initialized as:

v̂← 0, (21)

ĝ← aAg0/∥aA∥, (22)̂̄a← aA − ĝ, (23)̂̄ω ← ω̂, (24)

P←


0 0 0 0
0 σ2

AI 0 0
0 0 σ2

AI 0
0 0 0 σ2

ωI

 , (25)

where g0 = 9.81[ms−2] is the Earth gravity ac-
celeration, and σ2

A is the variance of error of bare
accelerometer readout.
(If the assumption about robot’s immobility is not
valid, the above initialization should be replaced with
one based on the state estimation from the kinematic
model.)

Prediction:
Prediction takes place every δ sec. It starts with
taking the measurements of acceleration, aA, and
angular velocity, ωG.
State estimate update:

v̂← r(v̂,−(ωG − ̂̄ω)δ) (26)

+
(
aA − ̂̄a− r(ĝ,−(ωG − ̂̄ω)δ)

)
δ, (27)

ĝ← r(ĝ,−(ωG − ̂̄ω)δ). (28)

State estimate covariance matrix update with F (17)
and C (18):

P← FPFT +CCT . (29)

Correction:
Correction only takes place when it is possible to
take an observation of velocity, vO.
Velocity error:

ṽ = vO − v̂ (30)

Auxiliary matrices:

H = [I 0 0 0] (31)

S = HPHT + Iσ2
v, (32)

where 0 and I are appropriate 3× 3 matrices.
Kalman gain:

K = PHTS−1. (33)

Correction: 
v̂
ĝ̂̄â̄ω
←


v̂
ĝ̂̄â̄ω
+Kṽ. (34)

State estimate covariance matrix update:

P← (I−KH)P. (35)

IV. SIMPLIFIED MODEL

The algorithm presented above combines available mea-
surements to compute accurate estimates of velocity, tilt, and
IMU biases. Its main area of application is legged robotics,
where available computational power is sufficient for on-line
calculation of 12× 12 matrices. However, the same estimates
may be required in small mobile robots, nanorobots, or just
sensors, where computing power may be insufficient. The
number of computations (along with implementation burden)
may be significantly reduced at the cost of limited accuracy
deterioration. The idea may be summarized in two points:

740

• The filter is transformed such that all its calculations are
performed with the use of matrices that are composed of
3× 3 diagonal matrices.

• The calculations may be performed with 3-fold smaller
matrices in which each element represents the diagonal
of the submatrix in the original matrix. E.g., matrix
summation is replaced by scalar summation: let a, b ∈ R,
then (aI) + (bI) = (a+ b)I.

The filter is transformed in two steps:
• In order for the F matrix (17) to be composed of diagonal

ones, some of the state variables of the system are
redefined.

• Another matrix in the original Kalman Filter operations
that is not composed of 3× 3 diagonal ones, is CCT in
(29). It represents a covariance matrix of the noise that is
added to state estimates due to errors in measurements.
It encompasses gyroscope error which rotates ĝ and v̂.
The matrix CCT in (29) is replaced by a matrix that
is composed of two 3 × 3 diagonal matrices. This new
matrix represents a covariance matrix of a noise that
would modify ĝ and v̂ additively and cover influence
of the actual noise in the gyroscope readout.

In order to replace D(g) and D(v) in F (17) and in C (18)
with diagonal matrices, new state variables are defined, namely

µ = D(v)ω̄ and ρ = D(g)ω̄, (36)

and applied together instead of ω̄. However, once their adjust-
ments have been computed with the use of EKF equations,
ω̄ will be adjusted instead. The new variables drift in time
according to

µ← µ+D(v)ξω, ρ← ρ+D(g)ξω. (37)

The new linearised model follows
v
g
ā
µ
ρ

← F


v
g
ā
µ
ρ

−B

[
aA/σa

ωG/σω

]
+C


ã/σa

ω̃/σω

ξa/σξa

ξω/σξω

 (38)

for

F =


I −Iδ −Iδ Iδ −Iδ2
0 I 0 0 Iδ
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I

 , (39)

B =


−Iδσa D(v)δσω −D(g)δ2σω

0 D(g)δσω

0 0
0 0
0 0

 , (40)

C =


−Iδσa D(v)δσω −D(g)δ2σω 0 0

0 D(g)δσω 0 0
0 0 Iσξa

0
0 0 0 D(v)σξω

0 0 0 D(g)σξω


(41)

It is seen that F (39) is composed of diagonal matrices. While
B (40) does not have such property, it is not a problem because
this matrix does not take part in EKF computations. The matrix
that may replace CCT in the Kalman prediction step (29) takes
the form

Ω =


(e2 + 2∥p∥2)I 0 0 0 0

0 2∥q∥2I 0 0 0
0 0 σ2

ξa
I 0 0

0 0 0 2∥v∥2σ2
ξω

I 0
0 0 0 0 2∥g∥2σ2

ξω
I


(42)

with

e = −σaδ (43)

p = v̂σωδ − ĝσωδ
2 (44)

q = ĝσωδ. (45)

Noise with covariance matrix Ω covers the noise with covari-
ance matrix CCT in the sense that

Ω ≥ CCT . (46)

(The above inequality formally means that Ω−CCT is a non-
negatively defined matrix i.e., ∀z zT (Ω −CCT)z ≥ 0.) The
second of the following lemmas proves (46).

Lemma 1: For each x ∈ R3, it is true that

D(x)D(x)T ≤ ∥x∥2I. (47)
Proof: Let y ∈ R3. Eq. (8) is applied to obtain

yT
(
∥x∥2I −D(x)D(x)T

)
y

= yT

([
∥x∥2 0 0
0 ∥x∥2 0
0 0 ∥x∥2

]
−
[
x2
2 + x2

3 −x1x2 −x1x3

−x1x2 x2
1 + x2

3 −x2x3

−x1x3 −x2x3 x2
1 + x2

2

])
y

= yT

 x2
1 x1x2 x1x3

x1x2 x2
2 x2x3

x1x3 x2x3 x2
3

y

= yT (xxT)y = (yTx)2

≥ 0.

Lemma 2: For C (41) and Ω (42),

Ω ≥ CCT . (48)
Proof: Let us decompose C (41) into

C =

C1 0 0
0 Iσξa

0
0 0 C3


with C1 and C3 such that

C1 =

[
Ie P
0 Q

]
, C3 =

[
D1

D2

]
where P,Q,D1,D2 ∈ R3×3 and e ∈ R. Let
z1, z2, z3, z4, z5 ∈ R3, and z = [zT

1 , z
T
2 , z

T
3 , z

T
4 , z

T
5]

T . We look
for a matrix not smaller than CCT . To this end, we notice that

zTCCTz =
[
zT
1 z

T
2

]
C1C

T

1

[
z1
z2

]
+∥z3∥2σ2

ξa
+
[
zT
4 z

T
5

]
C3C

T

3

[
z4
z5

]
.

(49)

741

Let us analyse the elements of the above sum in order:[
zT
1 z

T
2

]
C1C

T

1

[
z1
z2

]
= [zT

1 z
T

2]

[
Ie2 +PPT PQT

QPT QQT

][
z1
z2

]
= zT

1 (e
2I+PPT)z1 + zT

1PQTz2 + zT

2QPTz1 + zT

2QQTz2

≤ zT

1 (e
2I+PPT)z1 + zT

1PQTz2 + zT

2QPTz1 + zT

2QQTz2

+ ∥Pz1 −Qz2∥2

= zT

1 (e
2I+PPT)z1 + (zT

1PPTz1+zT

2QQTz2) + zT

2QQTz2

=
[
zT
1 z

T
2

] [e2I+ 2PPT 0
0 2QQT

] [
z1
z2

]
=

[
zT
1 z

T
2

]
Ω1

[
z1
z2

]
.

In the last equality, the matrix Ω1 is defined such that Ω1 ≥
C1C

T
1 .[

zT
4 z

T
5

]
C3C

T

3

[
z4
z5

]
= [zT

4 z
T

5]

[
D1D

T
1 D1D

T
2

D2D
T
1 D2D

T
2

][
z4
z5

]
= zT

4D1D
T

1 z4 + zT

4D1D
T

2 z5 + zT

5D2D
T

1 z4 + zT

5D2D
T

2 z5

≤ zT

4D1D
T

1 z4 + zT

4D1D
T

2 z5 + zT

5D2D
T

1 z4 + zT

5D2D
T

2 z5

+ ∥D1z4 −D2z5∥2

= zT

4 2D1D
T

1z4 + zT

5 2D2D
T

2 z5

=
[
zT
4 z

T
5

] [2D1D
T
1 0

0 2D2D
T
2

] [
z4
z5

]
=

[
zT
4 z

T
5

]
Ω3

[
z4
z5

]
.

The last equality defines the Ω3 matrix. Inequality (47) is
applied to submatrices in Ω1 and Ω3. To this end, we notice
that P, Q, D1, and D2 are of the form D(x) (8) with x equal
to, respectively, p (44), q (45), vσξω

, and gσξω
. Therefore,

we obtain

CCT ≤

Ω1 0 0
0 Iσ2

ξa
0

0 0 Ω3

 ≤ Ω

which completes the proof.
The last thing required to present EKF equations for the

redefined model is adjustment of gyroscope bias, ω̄, on the
basis of vectors that are to modify µ and ρ (36). The following
fact is helpful in this regard. Let z ∈ R3 be a direction
in which D(x)y needs to be pushed by adjusting y. The
lemma below states that the adjustment should be equal to
∥x∥−2D(x)Tz.

Lemma 3: Let x,y, z ∈ R3. The function

L(y) = ∥D(x)y − z∥2 (50)

is minimized for y = ∥x∥−2D(x)Tz.
Proof: L is a quadratic function with the gradient equal to

∇L(y) = 2D(x)TD(x)y − 2D(x)Tz. (51)

L attains its minimum for y such that ∇L(y) = 0. Straight-
forward calculus reveals that

D(x)TD(x)D(x)Tz = ∥x∥2D(x)Tz. (52)

Now let us take y = ∥x∥−2D(x)Tz and compute ∇L(y).
Using the above equation we get ∇J(y) = 0.

Replacing CCT in the Kalman prediction with Ω (42),
Kalman Filter equations may be rewritten in the following
new form that involves smaller matrices.

Initialization:
It is assumed that the robot is initially immobile.

v̂← 0, (53)

ĝ← aAg0/∥aA∥, (54)̂̄a← aA − ĝ, (55)̂̄ω ← ω̂, (56)

P←


0 0 0 0 0
0 σ2

A 0 0 0
0 0 σ2

A 0 0
0 0 0 0 0
0 0 0 0 g20σ

2
ω

 . (57)

Prediction:
State estimate update:

v̂← r(v̂,−(ωG − ̂̄ω)δ)

+
(
aA − ̂̄a− r(ĝ,−(ωG − ̂̄ω)δ)

)
δ, (58)

ĝ← r(ĝ,−(ωG − ̂̄ω)δ). (59)

State estimate covariance matrix update:

P← FPFT +Ω (60)

for

F =


1 −δ −δ δ −δ2
0 1 0 0 δ
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , (61)

Ω =


e2 + 2∥p∥2 0 0 0 0

0 2∥q∥2 0 0 0
0 0 σ2

ξa
0 0

0 0 0 2∥v̂∥2σ2
ξω

0

0 0 0 0 2∥ĝ∥2σ2
ξω


(62)

Correction:
Correction only takes place when it is possible to
take an observation of velocity, vO, from the external
measurement system (based on kinematics or GPS).
Velocity error:

ṽ = vO − v̂ (63)

Auxiliary matrices:

H = [1 0 0 0 0] (64)

S = HPHT + σ2
v. (65)

Kalman gain:

K = PHT/S. (66)

742

Correction (the term ϵ is a small constant that pre-
vents division by zero):

v̂← v̂ +K1ṽ (67)
ĝ← ĝ +K2ṽ (68)̂̄a← ̂̄a+K3ṽ (69)̂̄ω ← ̂̄ω + (ϵ+ ∥v̂∥)−2D(v̂)K4ṽ (70)

+ ∥ĝ∥−2D(ĝ)K5ṽ (71)

State estimate covariance matrix update:

P← (I−KH)P. (72)

Discussion

As the original algorithm discussed in Sec. III the simplified
version attributes the error ṽ (63) to noise and errors in
the state estimates. The errors in v̂, ĝ, and ̂̄a influence ṽ
additively. The simplified filter just pushes these estimates
proportionally to ṽ; the original filter basically does the same.
However, influence of ̂̄ω inflicted on ṽ is more complex.
Namely, ̂̄ω rotates v̂ and ĝ in filter prediction, (58) and (59).
The simplified filter attributes appropriate part of ṽ to erratic
rotation of v̂ (through µ) and erratic rotation of ĝ (through
ρ). Then, these errors in µ and ρ are translated into the error
in ̂̄ω and corrected.

The dominating operation in the above algorithm is mul-
tiplication in the matrix operation involved in prediction.
This requires 2 × 53 = 250 multiplications while in the
original version of the algorithm presented in Sec. III there
are 2× 123 = 3456 multiplications. The simplified version is
thus about 14 times more economical.

V. EXPERIMENTAL RESULTS

In order to verify the presented method the following
experiment is performed:

• The same Bioloid is taken as was used in [6]. It is a 35
cm tall humanoid robot, additionally equipped with IMU
(ADIS 16365), touch sensors in the feet, and a small PC
in its “backpack” as a controller.

• The robot takes a one minute walk. Its velocity, tilt, and
inertial sensors biases are being estimated with the use
of the original method presented in [6] and the simplified
method presented here.

In order to compare the estimates, the relative measure of
discrepancy is applied

e =

∑T
t=1 ∥x̂1

t − x̂2
t∥2∑T

t=1 ∥0.5(x̂1
t + x̂2

t)∥2

where x̂1
t is an estimate taken at time t with one method, and

x̂2
t is taken with the other one. The results are presented in

Tab. I.
It is seen that the relative discrepancies are very small,

especially those of velocity and tilt, which are actually useful.
The relative discrepancies in biases estimates are noticeably
larger, but still sufficiently small.

TABLE I
DISCREPANCIES BETWEEN THE ESTIMATES

value discrepancy
velocity 5.3 · 10−4

tilt 3.8 · 10−8

acc bias 0.01
gyr bias 0.08

VI. CONCLUSIONS

In this paper a method was proposed for velocity and tilt
estimation based on IMU and a velocity measurement system
whose readouts are possibly erratic and temporarily unavail-
able. The method achieves similar accuracy as the method
introduced in [6] but it is 14 times computationally more
economical, which makes this approach readily implementable
in sensors and low power controllers.

REFERENCES

[1] J. Borenstein, H. R. Everett, L. Feng, and D. K. Wehe, “Mobile robot
positioning: Sensors and techniques.” Journal of Robotic Systems, Special
Issue on Mobile Robots, vol. 14, no. 4, pp. 231–249, 1997.

[2] J. Z. Sasiadek and Q. Wang, “Low cost automation using ins/gps data
fusion for accurate positioning.” Robotica, vol. 21, no. 3, pp. 255–260,
2003.

[3] B. Gassmann, F. Zacharias, J. Zollner, and R. Dillmann, “Localization
of walking robots,” in 2005 IEEE International Conference on Robotics
and Automation (ICRA ’05), 2005, pp. 1471–1476.

[4] J. Cobano, P. Estremera, and J. Gonzalez de Santos, “Location of legged
robots in outdoor environments,” Robotics and Autonomous Systems,
vol. 56, no. 9, pp. 751–761, 2008.

[5] S.-H. Liu, T.-S. Huang, and J.-Y. Yen, “Comparison of sensor fusion
methods for an sma-based hexapod biomimetic robot,” Robotics and
Autonomous Systems, vol. 58, no. 5, pp. 737–744, May 2010.

[6] P. Wawrzyński, J. Możaryn, and K. Klimaszewski, “Robust estimation of
walking robots velocity and tilt using proprioceptive sensors data fusion,”
Robotics and Autonomous Systems, vol. 66, pp. 44–54, 2015.

[7] M. Bloesch, M. Hutter, M. Hoepflinger, S. Leutenegger, C. Gehring, C. D.
Remy, and R. Siegwart, “State estimation for legged robots - consistent
fusion of leg kinematics and IMU,” in Proceedings of Robotics: Science
and Systems, Sydney, Australia, July 2012.

743

	MAIN MENU
	Table of Contents
	Author Index
	Keyword Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Help

