
A simple vision-based navigation and control
strategy for autonomous drone racing

Artur Cyba
AGH University of Science

and Technology, Krakow, Poland
E-mail: arturcyba@student.agh.edu.pl

Hubert Szolc
AGH University of Science

and Technology, Krakow, Poland
E-mail: szolc@agh.edu.pl

Tomasz Kryjak, Senior Member IEEE
AGH University of Science

and Technology, Krakow, Poland
E-mail: tomasz.kryjak@agh.edu.pl

Abstract—In this paper, we present a control system that allows
a drone to fly autonomously through a series of gates marked
with ArUco tags. A simple and low-cost DJI Tello EDU quad-
rotor platform was used. Based on the API provided by the
manufacturer, we have created a Python application that enables
the communication with the drone over WiFi, realises drone
positioning based on visual feedback, and generates control.
Two control strategies were proposed, compared, and critically
analysed. In addition, the accuracy of the positioning method
used was measured. The application was evaluated on a laptop
computer (about 40 fps) and a Nvidia Jetson TX2 embedded
GPU platform (about 25 fps). We provide the developed code on
GitHub.

Index Terms—drone racing, AruCo markers, Tello, OpenCV,
autonomous drones

I. INTRODUCTION

During the last few years, we have seen a significant
increase in interest in unmanned aerial vehicles (UAV). This
is especially true for various autonomous operations – e.g.,
delivery of various types of goods, surveillance, inspection of
technological facilities (power lines), intelligent agriculture, or
search for people, as well as military applications. One inter-
esting application is also autonomous drone1 racing. In these,
the vehicle must fly along a track denoted by a set of gates
of specified shape and colour in the shortest possible time.
The popularity of this type of competition is evidenced by
the many challenges held in last years – e.g., AlphaPilot –
Lockheed Martin AI Drone Racing (2019), IROS Autonomous
Drone Racing (2016–2019), and Game of Drones: A NeurIPS
Competition (2019). In the first two cases, the competition
took place in the real world, while in the last one – virtually,
with the use of a simulator. Most of the teams participating in
the aforementioned competitions base their solutions on com-
plex control algorithms. They use not only vision information,
but also fuse data from other sensors, such as the IMU (Inertial
Measurement Unit). It should be noted that although the races
themselves have no practical commercial application and are
rather a scientific and engineering challenge, as well as simply
good fun, the developed vision and trajectory generation and

The work presented in this paper was supported by the AGH University of
Science and Technology project no. 16.16.120.773

1In this paper we deliberately narrow the term “drone” to a multi-rotor (like
quad-copter) UAV

realisation methods can be applied e.g. in the fast search of
closed spaces.

In this project, we propose a simple but still effective
algorithm that performs a flight through a track denoted by
a series of gates. Our intention was to prepare a basis from
which one can easily start research in the area of autonomous
drone racing. For this reason, we decided to use the DJI Tello
EDU drone because it is relatively cheap, affordable, and safe.
It allows both manual and autonomous control from the level
of software running on a ground station, such as a laptop
or an Nvidia Jetson development board. Unfortunately, one
of its major drawbacks is the control of only (vx, vy, vz, ωz)
velocity vector, while custom drones allow to directly control
of (roll, pitch, yaw) angles. The operation and settings of the
internal controller, which enables the drone to achieve the set
velocity vector, are implemented by the manufacturer and not
directly available to the user.

The main contributions of this work are two original drone
control strategies for autonomous drone racing, with particular
emphasis on the AlphaPilot competition. They only use visual
feedback to generate the flight trajectory. The aforementioned
algorithms have been implemented on a general purpose
computer and an embedded GPU platform. The results of
the second experiment showed that the calculations could
be carried out online on the drone, without the need to
communicate with the ground station. All codes developed
by us are available in our GitHub repository2 for use in other
projects, including classes with students. We also provide an
instruction on how to start the system on a PC and Jetson TX2
platform, as well as a video abstract in which we present an
example of a flight through a series of gates.

The reminder of this paper is organised as follows. Section
II provides an overview of previously published work related
to autonomous drone racing. In Section III we describe our
solution, including the two proposed control strategies. We
present the evaluation of the system in Section IV. Section V
summarises our work and describes plans for future project
development.

II. RELATED WORK

Most of the algorithms proposed in scientific literature to
realise autonomous drone flight through gates can be divided

2https://github.com/vision-agh/drone racing tello/

ar
X

iv
:2

10
4.

09
81

5v
1 

 [
cs

.R
O

] 
 2

0 
A

pr
 2

02
1



(a) (b) (c)

Fig. 1: Gates used in different autonomous drone racing con-
tests: (a) Alpha Pilota, (b) IROS [1] and (c) Game of Dronesb
a

https://www.techbriefs.com/component/content/article/tb/webcasts/podcasts/35575
bhttps://www.microsoft.com/en-us/research/blog/game-of-drones-at-neurips-2019-simulation-based-drone-racing-competition-
built-on-airsim/?OCID=msr blog gameofdrones neurips fb

into two parts. The first one is responsible for gate detection
based on visual information. The purpose of the second is to
properly control the drone. The fusion of data from the camera
and other sensors, such as IMU, is often used for this purpose.

A. Gate detection

As we have pointed out in the introduction, many au-
tonomous drone races have been organised in the last years.
During each of them, different designs of the gates were used.
We present a selection of them in Figure 1. Currently, deep
convolutional neural networks (DCNN) are most commonly
used for their detection. They are often specifically designed
for this particular task.

In paper [2] a modification of the PosNet network that al-
lows the position (x, y, z) of a drone to be determined relative
to the centre of a detected gate was proposed. The authors
tested the solution in simulation and in a real environment,
obtaining a maximum processing rate of 100 FPS on a GPU.
Gates from IROS Autonomous Drone Race were used in this
project.

A similar approach was presented in the paper [3]. The
authors proposed a new network for gate detection, called
ADRNet. It was created by AlexNet modifications, which
included removing some layers that were irrelevant according
to the authors. This allowed them to achieve processing at 30
FPS on a GPU. The authors also used gates from the IROS
Autonomous Drone Race and conducted successful tests in
a real environment.

A neural network for gate detection was also used in the
work [4]. The authors trained MobileNetSSD for this purpose
using augmented data collected in a simulator. Bounding boxes
were then determined for all gates detected with probability
above 90%. From these, one (with the largest area) was
selected as the location of the nearest gate. The algorithm
was successfully tested in the Game of Drones competition at
NeurIPS 2019.

Another example of using an off-the-shelf neural network
architecture for gate detection is the work [5]. In this case, the
authors used a 5-level U-Net that detected the four vertices
of all square frames in the field of view of the camera.

To train the network, 28000 images collected in 5 different
environments were used. Inference took place on an Nvidia
Jetson Xavier using half precision (FP16). The algorithm was
successfully tested in a real environment during the AlphaPilot
2019 competition.

A different approach was presented in the paper [6]. The
authors developed a novel Snake Gate Detection algorithm. It
is based on the colour difference between pairs of compared
points. As a result, its effectiveness depends primarily on
the chosen difference threshold and the gate design. In this
case, the authors used homogeneous orange gates from the
IROS Autonomous Drone Racing. This allowed the algorithm
to make correct detections, which was verified in a real
environment.

B. Vision–based drone control

Many algorithms with different degrees of complexity have
been proposed for controlling a drone while flying through
a series of gates. One of the simpler methods is presented
in the paper [2]. It used as the input the (x, y, z) position
relative to the gate obtained from the vision algorithm and
the spatial orientation obtained from the IMU. Based on this,
the drone positioned itself centrally relative to the gate and
then decreased the distance. In this way, it reached a point
from which the gate did not fit within the field of view of
the camera. The drone then flew in a straight line for a set
distance, determined by the last position measurement. After
this, it searched for the next gate and repeated the same steps.
The authors conducted both simulation and real-world tests,
which confirmed the effectiveness of the proposed method,
with an average positioning error of 20 cm.

A different approach was proposed in the work [4]. In it,
three perpendicular linear speeds of the drone and a yaw
axis rotational speed were controlled. Each of them was
treated separately, using a classical PD controller for the
three mentioned quantities. The exception was the velocity
perpendicular to the gate plane. In this case, a P regulator
was used. It minimised the estimated distance to the gate,
which was determined as a linear combination of the current
position of the drone and the location of the gate obtained
from the vision algorithm. The proposed solution was tested
in a simulator in the Game of Drones competition at NeurIPS
2019, where it obtained a second place in two competitions.

Classical proportional controllers were also used in the
work [7]. In this case, they were arranged in a cascade
scheme. The outer controller was responsible for minimising
the position error, while the inner controller was responsible
for minimising the velocity error. The obtained control was
fed to the Paparazzi autopilot. This off-the-shelf module was
responsible for controlling the speed of the drone’s rotors,
again through the built-in cascade of P regulators. The au-
thors also proposed a novel VML (Visual Model-predictive
Localisation) algorithm. It enables a more accurate (than the
classical Kalman filter) estimation of the drone’s state by
fusing video information with AHRS (Attitude and Heading
Reference System) data. The entire system has been tested in



a real-world environment using a light-weight Trashcan racing
drone, successfully flying through the gate track at an average
speed of 2 m/s (maximum 2.6 m/s).

A different control algorithm was proposed in the work of
[5]. It used the Pontryagin’s maximum principle for sampling-
based receding horizon path planning. On this basis, a cas-
cade of controllers was defined: outer for position control
and inner for attitude control. Their operation was based on
VIO (Visual-Inertial Odometry). The authors also applied an
EKF (Extended Kalman Filter), which corrected the IMU
measurements using the position of all gates detected in the
image. The proposed algorithm was used in the AlphaPilot
2019 competition, where it obtained the second place. In doing
so, it provided a flight efficiency of 100% at 5 m/s and 60%
at 8 m/s.

A slightly different approach was proposed in the work [3].
It used the LOS (Line-Of-Sight) guidance algorithm, originally
developed for fixed-wing UAVs, to control the quadrotor. It
was modified by decoupling the lateral and yaw axes and
then verified in a real environment. The authors achieved
a successful flight through a track of 9 randomly placed gates.

A completely different approach was used in the work [8].
The authors proposed to combine the task of gate detection
and drone control in the form of a single convolutional
DeepPilot network. It was developed based on PosNet and
consists of three parallel branches. Each branch is responsible
for determining specific control commands, respectively: 2D
orientation (roll and pitch angles), yaw rotation speed, and
vertical linear speed. Simulation data with reference control
commands collected during manual flights were used to train
the network. The proposed algorithm was tested only in
a simulation environment on tracks consisting of a different
number of gates placed in different configurations. Successful
trajectory execution at an average processing frequency of 25
fps was obtained.

It is worth noting that autonomous drone racing is a rel-
atively new topic present in scientific works. Indeed, all
presented papers were published between 2018–2020. Most
algorithms use neural networks for gate detection (regardless
of their design) and data fusion from multiple sensors to
control the drone. They are thus computationally demanding
and need a considerable amount of training data.

III. THE PROPOSED SYSTEM

In this section, the used platform, the vision-based drone
position estimation method, and the two proposed control
strategies are presented.

A. Drone specification

In this project, we have used the DJI Tello EDU drone. It
is a light-weight (92g with protective casing) and small (170
× 170 × 100 mm) quadcopter, which is presented in Figure
2a.

The drone is equipped with the following sensors: IMU,
barometer, downward vision sensor, ToF (Time of Flight)
distance sensor and a 5 Mpix FPV (First Person View) camera.

(a) (b)

Fig. 2: The DJI Tello drone (a) and one of the gates we
used in our project (size 50 cm × 50 cm) (b).

Fig. 3: Coordinate system of drone and marker/gate.

The communication with the vehicle is via WiFi and UDP
protocol. In this way, by sending special commands (defined
by the manufacturer), we can force specific actions and read
the data collected by the sensors (including video frames). To
enable convenient communication with the drone, receiving
video data and control, a library in the Python programming
language was created, which is based on the requirements
and assumptions defined by the manufacturer in the docu-
mentation (code available on our GitHub). The control of the
vehicle’s movement consists primarily in the presetting of a
3-dimensional vector of linear velocities (vx, vy , vz) and the
rotation speed around the yaw axis (ωz). In addition to this,
it is also possible to execute predefined trajectories, such as
flight along an arc or along a straight line for a given distance.

B. Pose estimation

As we mentioned earlier, one of the motivations for our
work is the desire to participate in autonomous drone compe-
titions such as AlphaPilot or held in conjunction with the IROS
conference. At this stage, we have decided to use gates with an
ArUco marker [9] placed in the bottom right corner, similar to
the AlphaPilot competition. We present one of them in Figure
2b. These codes allow a relatively accurate estimation of the
drone’s position relative to the gate. The system therefore has
two coordinate systems – one associated with the drone and
one with the marker/gate. This is presented in Figure 3.

In the first step, to be able to accurately determine the posi-
tion of the drone in space using vision data, camera parameters
such as focal length and optical centre were determined and
then the camera itself calibrated. This allowed to remove radial



and tangential distortions. A calibration pattern in the form of
a chessboard and the API available in the Matlab software
were used. The calibration3 can also be performed using the
OpenCV library [10].

In the second step, we used the ArUco marker detec-
tion algorithm available in the OpenCV library. It consists
of the following operations: adaptive thresholding, contour
extraction (Suzuki & Be method), determination of ver-
tices (Ramer-Douglas-Peucker algorithm), filtering of quad-
rangles and their verification (reading the marker code) –
function cv2.aruco.detectMarkers() In this way we de-
termine the vertices of all ArUco markers visible in the
image. We then determine the position of the drone rela-
tive to them, solving the PnP (Perspective-n-Point) problem
for the available 4 points of each marker. For this, we
also use the functionality of the OpenCV library – function
cv2.aruco.estimatePoseSingleMarkers(). Among the ob-
tained translation vectors, we choose the shortest one (w.r.t.
Euclidean norm). It represents the position of the nearest
marker/gate through which the drone should fly. The eval-
uation, discussed in Section IV, showed that under suitable
lighting conditions the positioning is sufficiently accurate.
Additionally, we created a system that handles a situation when
the nearest marker is not detected properly for a short period
of time. In this case, the last known correct position is used
as input to the control algorithm.

C. Control algorithm

For the autonomous flight through the track marked by
gates, we have proposed two control strategies. Both represent
simple but at the same time efficient algorithms based only on
vision information (without overt fusion with measurements
from IMU or other sensors). The difference between them is
the reference system in which the flight trajectory is generated.
For the first strategy, the drone’s native control coordinates
are used. The second strategy, on the other hand, uses the
coordinate system associated with the gate, relative to which
the drone is positioned according to the algorithm described
in Subsection III-B.

1) First strategy – UAV coordinates: In the first control
strategy, the position and orientation of the vehicle obtained by
the vision algorithm are converted to the drone’s native control
coordinates. In this way, the vehicle receives information about
the location of the gate through which it has to fly. The
generation of the proper trajectory is divided in this case into
five phases – we show a schematic of an example trajectory
in Figure 4. At first, the drone positions itself towards the
marker (phase 1). When the angle between the centres of
the image and the marker is less than α1, the vehicle starts
flying straight ahead (phase 2). We selected the parameter
α1 = tan−1(0.2) experimentally as a compromise between
accuracy and smoothness of the motion. Upon reaching a dis-
tance d2 from the marker, the drone rotates and positions itself

3Tutorial: https://docs.opencv.org/master/dc/dbb/tutorial py calibration.html
(last access 09.04.2021)

Fig. 4: Example trajectory obtained using the first control
strategy. It consists of five phases: (1) rotation towards the
marker, (2) straight flight towards the marker, (3) facing the
plane of the gate, (4) moving towards the centre of the gate,
(5) straight flight – flying through the gate.

facing the gate plane (phase 3). The parameter d2 = 800[mm]
is derived from the camera angle and is intended to ensure that
the ArUco marker is visible throughout the flight. Once the
drone is facing the gate, it moves parallel to it (phase 4) until it
reaches a point close to the plane perpendicular to the gate and
passing through its vertical axis of symmetry. Then it changes
direction again and flies straight ahead (phase 5) until it is on
the other side of the gate. In this case, continuous control of the
vehicle’s position is not possible because the ArUco marker
is no longer within the camera’s field of view. Therefore, this
phase lasts for a predetermined time t5 = 5[s]. The value of
the parameter t5 is derived from the value d2 and the drone’s
set speed. After this time, the drone starts the next iteration
of the algorithm, returning to phase 1.

In each phase, a proportional (P) controller operating with
visual feedback ensures that the objectives are met. We se-
lected the gain values experimentally. The position of the
drone with respect to the vertical axis is also controlled in
the same manner. Thus, during all phases, the vehicle is kept
at an altitude that guarantees both the flight over the lower
edge of the gate and the visibility of the marker for the visual
feedback.

2) Second strategy – ArUco/gate coordinates: We also
divided the second strategy into certain phases in which the
flight trajectory is generated. Thanks to the use of ArUco
coordinates, in this case their number has been reduced from
5 to 3. The control is still set in the drone system. To
convert the coordinates, we use simple geometric relationships,
unambiguously linking the two systems. We show a schematic
of an example trajectory possible with this control strategy
in Figure 5. Initially, the drone flies towards a point located
at a distance d1 = 900[mm] from the centre of the gate at
a suitable altitude relative to the marker. It also maintains
an orientation pointing the camera towards the centre of the
gate. In this way, phases 1-4 of the first strategy are executed
simultaneously. Obtaining a distance d1 is necessary to ensure
that the ArUco marker remains in the camera’s field of view



Fig. 5: Example trajectory obtained using the second control
strategy. It consists of three phases: (1) flight to a point at a
certain distance from the gate while keeping the marker in the
camera field of view, (2) flight towards the gate, correction of
position and orientation relative to the gate if necessary, (3)
straight flight – fly through the gate.

when the drone starts flying directly through the gate. This
provides the vision feedback that is necessary for the correct
operation of the P controller. When the drone is at a distance
δ2 = 150[mm] from the plane perpendicular to the gate
and passing through its vertical axis of symmetry, it enters
phase 2 and flies directly towards the gate. Thanks to the δ2
parameter, the trajectory is smoothed. The vehicle does not
lose all accumulated kinetic energy, but seamlessly changes the
direction of motion. We selected the value of δ2 heuristically,
based on the parameter d1 and the speed reached by the drone.
Phase 2 is also used to correct the position and orientation of
the vehicle before flying straight through the gate. It occurs
when the marker is not visible in the camera image for
more than ∆t2 = 0.3[s]. The drone then takes a straight-
line trajectory and flies along it for t3 = 2[s]. We selected the
value of t3 similarly to t5 in the first control strategy. During
this time, the drone flies through the gate and then returns to
phase 1 and starts a new iteration of the algorithm.

As in the first strategy, the realisation of the objectives in
each phase is ensured by a proportional controller operating
with visual feedback with gain values selected experimentally.
It is worth noting that phase 1 can theoretically cause the drone
to temporarily move away from the gate. This is necessary due
to the vision feedback, which requires the ArUco marker to
be in the camera field of view all the time (except for the final
fly-through).

IV. EXPERIMENTS & RESULTS

Our tests focused on three areas. The first concerned the
accuracy of determining the position and orientation of the
drone in ArUco coordinates. This is a key element due to
only using vision-based feedback. Then, we compared the
two proposed control strategies. We tested their effectiveness
when flying through gates in different lighting conditions
and measured the time needed to cover the test track. We
conducted these tests using a computer equipped with an Intel
Core i5 processor and an Nvidia GTX 1060 GPU as a ground

TABLE I: Selected position accuracy test results.

Camera pos. [mm] Reference pos. [mm] Absolute error [mm]
x y z x y z x y z

145 -130 1106 150 -130 1110 5 0 4
-377 -126 800 -360 -120 820 17 6 20
-119 -85 1564 -80 -90 1530 39 5 34
-155 -64 825 -160 -60 830 5 4 5

1 -8 800 0 0 800 1 8 0
10 -1 766 0 0 780 10 1 14
30 -14 851 0 0 840 30 14 11
-7 -1 828 0 0 820 7 1 8

Mean absolute error [mm] (for all experiments) 14.91 6.27 10.18

TABLE II: Selected test results for accuracy of orientation
measurements in Euler angles.

Camera rot. [deg] Reference rot. [deg] Absolute error [deg]
ϕ ψ θ ϕ ψ θ ϕ ψ θ

-178 -27 89 -180 -25 90 2 2 1
153 0 90 156 0 90 3 0 0
-180 0 92 -180 0 90 0 0 2
177 2 -180 180 0 -180 3 2 0
-148 7 -1 -149 5 0 1 2 1
179 31 -1 180 30 0 1 1 1
171 -1 1 180 0 0 9 1 1
-171 3 -2 -180 0 0 9 3 2
Mean absolute error [deg] (for all experiments) 3.14 1.41 1.18

station. Finally, we checked the performance of our system on
a board with an embedded GPU – Nvidia Jetson TX2.

A. Pose estimation accuracy

Firstly, we verified the accuracy of the translation vector
determination. We did this by placing the gate with the ArUco
marker at random positions relative to the drone. We collected
the reference values manually using a tape measure. We
present the obtained results in Table I.

We verified the accuracy of the determined orientation in
a similar way. Again, we placed the gate at random angles
relative to the drone. We collected the reference values man-
ually using a protractor. The obtained results are presented in
Table II.

The obtained results prove a sufficient accuracy of deter-
mining both position and orientation with the used vision
algorithm. The average translation vector errors are signifi-
cantly smaller than the size of the gate, so they do not have
a major impact on the flight efficiency. The same is true for the
orientation errors. An angle difference of 3 degrees translates
into about 40 mm of displacement at a distance of 800 mm
(value d1 from the first strategy) – far less than the gate size.

B. Control accuracy

We tested the performance of the control algorithms on
a track consisting of three randomly set gates. For each
described strategy, we conducted two series of eight flights:
in daylight and in artificial light. In doing so, we examined
the efficiency of the flight through the gate, also in terms of
the ”cleanliness” of the flight (whether or not the vehicle has
collided with the frame). We present the obtained results in
Table III.



TABLE III: Test results of the effectiveness of both control
strategies when flying through a series of gates.

1st control strategy
Artificial lighting Natural lighting

No. Passes Collisions No. Passes Collisions
1 3/3 1/3 1 3/3 0/3
2 3/3 0/3 2 2/3 0/3
3 3/3 0/3 3 3/3 0/3
4 3/3 0/3 4 3/3 0/3
5 3/3 0/3 5 2/3 0/3
6 3/3 0/3 6 3/3 0/3
7 3/3 0/3 7 3/3 0/3
8 3/3 0/3 8 3/3 1/3

OA 100 % 4 % OA 92 % 4 %
2nd control strategy

1 3/3 0/3 1 3/3 1/3
2 1/3 0/3 2 3/3 0/3
3 3/3 0/3 3 3/3 0/3
4 3/3 1/3 4 3/3 0/3
5 2/3 0/3 5 3/3 0/3
6 1/3 0/3 6 3/3 0/3
7 3/3 1/3 7 3/3 0/3
8 3/3 0/3 8 3/3 0/3

OA 79 % 8 % OA 100 % 4 %

The presented data shows that for the first control strategy,
regardless of the way the room is lit, the flight efficiency is
very high, between 90 and 100%. Additionally, it is very rare
for the drone to collide with the edge of the gate. For this
method, the randomly checked flight time through a series of
three gates was about 26.5 seconds.

The second control strategy is characterised by a significant
drop in effectiveness under artificial lighting (down to 79%).
In daylight, however, the flights are 100% successful. For this
strategy, the randomly checked flight time through a series of
three gates was 14.4 seconds, almost twice shorter than in the
first solution.

As can be seen, the second control strategy allows a signifi-
cant increase in the speed of flight through the gates, but at the
expense of efficiency in less favourable lighting conditions. In
our opinion, these errors are the result of DJI Trello’s internal
stabilisation algorithms. Their accuracy depends on the quality
of images recorded by the downward vision sensor. Based
on them, the current speed of the drone is calculated using
the optical flow algorithm. In the case of the second strategy,
a faster drone flight causes a greater distortion of the images
recorded by the downward vision sensor. As a result, artificial
lighting conditions (in conjunction with the floor texture) are
insufficient for the correct operation of optical flow, which
decreases the accuracy of DJI Trello’s internal stabilisation
algorithms and therefore the effectiveness of realisation of the
set trajectory.

C. Implementation on embedded GPU

On both the PC and the Nvidia Jetson TX2, we conducted
performance tests of the designed system. In the case of
the eGPU platform, the function of visualising the drone’s
camera image along with the tagging of detected markers was
disabled.

When the algorithm was run on a computer equipped with
an Intel Core i5 processor and an Nvidia GTX 1060 graphics
card, it achieved an average processing rate of around 40 fps.
For the GPU, it was around 25 fps. Both results are satisfactory
and allow for successful flights.

V. CONCLUSIONS

The developed control system for the DJI Tello EDU
drone proved to be successful. Both presented strategies allow
repetitive flights through a track composed of gates with
ArUco markers, similar to those used in the Alpha Pilot 2019
competition. It is worth noting that they work only with vision
feedback. They do not need data fusion from multiple sensors
(including IMU measurements) to generate a correct flight
trajectory. The application, implemented in Python, was run
on a latptop computer and on a card with an embedded GPU.
In both cases, a processing rate of at least 25 frames per
second was achieved, which is sufficient to realise a smooth
control. The use of an embedded GPU will allow in the future,
for a different custom drone, to realise all processing in the
vehicle’s resources (on-board).

As part of our future research, we also plan to: conduct ex-
tensive tests in simulation (Gazebo with ArduPilot or PX4) and
real-world, use AI-based gate detection (different types, not
necessarily with ArUco markers), use more advanced control
strategies and methods (data fusion, trajectory optimisation,
approaches based on reinforcement learning), consider recon-
figurable devices (FPGA, Zynq SoC) as the main computing
platform.

REFERENCES

[1] S. Li, M. M. Ozo, C. de Wagter, and G. C. de Croon, “Autonomous drone
race: A computationally efficient vision-based navigation and control
strategy,” arXiv, no. September, 2018.

[2] A. Cocoma-ortega, “Towards High-Speed Localisation,” vol. 1, pp. 740–
751, 2019.

[3] S. Jung, S. Hwang, H. Shin, and D. H. Shim, “Perception , Guidance
, and Navigation for Indoor,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 2539–2544, 2018.

[4] D. Kim and H. Ryu, “A Deep-learning-aided Automatic Vision-based
Control Approach for Autonomous Drone Racing in Game of Drones
Competition,” pp. 37–46, 2020.

[5] P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig,
M. Muglikar, and D. Scaramuzza, “AlphaPilot: Autonomous drone
racing,” arXiv, 2020.

[6] S. Li, M. M. Ozo, C. De Wagter, and G. C. de Croon, “Autonomous
drone race: A computationally efficient vision-based navigation and con-
trol strategy,” Robotics and Autonomous Systems, vol. 133, p. 103621,
nov 2020.

[7] S. Li, E. van der Horst, P. Duernay, C. De Wagter, and G. C. de Croon,
“Visual model-predictive localization for computationally efficient au-
tonomous racing of a 72-g drone,” Journal of Field Robotics, vol. 37,
no. 4, pp. 667–692, 2020.

[8] L. O. Rojas-Perez and J. Martinez-Carranza, “Deeppilot: A cnn for
autonomous drone racing,” Sensors (Switzerland), vol. 20, no. 16, pp.
1–21, 2020.

[9] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and M. Marı́n-
Jiménez, “Automatic generation and detection of highly reliable fiducial
markers under occlusion,” Pattern Recognition, vol. 47, no. 6, pp.
2280–2292, 2014. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0031320314000235

[10] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

https://www.sciencedirect.com/science/article/pii/S0031320314000235
https://www.sciencedirect.com/science/article/pii/S0031320314000235

	I Introduction
	II Related work
	II-A Gate detection
	II-B Vision–based drone control

	III The proposed system
	III-A Drone specification
	III-B Pose estimation
	III-C Control algorithm
	III-C1 First strategy – UAV coordinates
	III-C2 Second strategy – ArUco/gate coordinates


	IV Experiments & results
	IV-A Pose estimation accuracy
	IV-B Control accuracy
	IV-C Implementation on embedded GPU

	V Conclusions
	References

