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Abstract—Multi-modal Probabilistic Active Sensing (MMPAS)
uses sensor fusion and probabilistic models to control the
perception process of robotic sensing platforms. MMPAS is
successfully employed in environmental exploration, collaborative
mobile robotics, and target tracking, being fostered by the
high performance guarantees on autonomous perception. In this
context, we propose a bi-Radio-Visual PAS scheme (Ra2ViPAS)
to solve the transmitter discovery problem. Specifically, we firstly
exploit the correlation between radio and visual measurements to
learn a target detection model in a self-supervised manner. Then,
the model is combined with antenna radiation anisotropies into a
Bayesian Optimization framework that controls the platform. We
show that the proposed algorithm attains an accuracy of 92%,
overcoming two other probabilistic active sensing baselines.

I. INTRODUCTION

Active sensing (AS) [1] consists in the control of a dynam-
ical system with actuation and sensing capabilities (e.g., eye-
in-hand manipulators [1]), with the purpose of automating the
perception process and maximizing its efficiency. By lever-
aging the intimate interplay among estimation, perception,
and control, AS stands at the nexus between automation and
robotics research, fostered by the higher performance guar-
antees provided by actuated sensing platforms w.r.t passive
counterparts [2]. Indeed, by enabling autonomous perception
in robotics systems, AS is successfully employed in environ-
mental exploration [3] collaborative mobile robotics [4] target
tracking [5], and source seeking [6].

Along this line, probabilistic AS (PAS) [7] exploits in-
coming data to generate a belief map. This encodes the
knowledge gathered during the sensing mission (e.g., target
potential locations in tracking tasks [1]), and is used to
guide the platform towards the next actions. More importantly,
probabilistic approaches account for realistic perception un-
certainties [8]; hence, they are suitable to manage real-world
(noisy) scenarios, unmodeled dynamics, sensing nuisance.
Furthermore, probabilistic decision making has high adaptivity
properties [3], and it is useful when poor a-priori knowledge
is available [9].

Novel technologies and the evolution in embedded systems
have enabled the integration of different sensing modalities
in autonomous robotic platforms, paving the way towards
multi-modal PAS (i.e., MMPAS) [5]. The coupling of different
information sources opens up new perspectives in scene per-
ception: multi-sensor platforms enable parallelisation and spe-

cialisation [10], while sensors heterogeneity induces inherent
robustness and complementarity (i.e., different properties of
the environment can be perceived) [5]. Notably, the aggregated
data allow inferences that are not possible with single-sensor
measurements.

In this context, Radio-Visual PAS (RaViPAS) approaches
have been recently designed to mitigate the inadequacies of
camera and radio-only strategies [5], especially in localization
tasks [11]. Indeed, the information richness of visual sensors
may be impaired by occlusions and Field of View (FoV)
directionality [11]. Radio frequency (RF) signals, instead, have
wider ranges [12] and enable energy efficient localization from
the extraction of the Received Signal Strength Indicator (RSSI)
of standard packet traffic [12]. Furthermore, RF communica-
tion has low hardware requirements and comes as parasitic
in many real-life scenarios, since most portable devices are
WiFi or Bluetooth enabled. Nonetheless, environmental inter-
ference often limits the RF-based localization accuracy [12].
RaViPAS aims to combine the complementary benefits of RF
signals with visual cues. The literature addressing radio-visual
sensor fusion is still sparse and the RaViPAS framework is
an open research field with methodological challenges and
application opportunities: for example, energy-aware strategies
are required to alternate the accurate but energy-harvesting
camera measurements, with the rough but lighter radio obser-
vations [11], [13]. Furthermore, traditional RF-based solutions
involve tiring human-labeled calibration processes [12]. In this
regard, the integration of accurate camera measurements in
self-supervised calibration methods have been proven to be
beneficial [11], [13].
Contribution - In this work, we propose a RaViPAS scheme
to solve the transmitter discovery problem hereafter described
(Fig. 1), which, despite its apparent simplicity, remains a
canonical problem in many application domains. A static
radio-visual sensing platform is surrounded by targets whose
number and location is initially unknown. Only one of them
establishes communication with the platform through a radio
transmitter (Tx) and the aim is to identify which target is
the Tx. We design a Bayesian Optimization (BO) controller,
leveraging the non-isotropic antenna radiation pattern at the
receiver side. The exploration-exploitation trade off capabil-
ities of BO are crucial for robust and efficient target local-
ization [8]. In addition, RSSI-based localization techniques
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hinging on BO [14], do not require any observation model.
Hence, the tiring human-labeled calibration processes involved
in traditional RF-based solutions can be avoided. To increase
the robustness of the localization process, we include a target
visual detectability model into the BO framework. To this aim,
we devise a self-supervised training procedure, exploiting the
correlation between radio-visual inputs. In this way, we au-
tomatize the dataset acquisition process and minimize human
intervention. In accordance with PAS paradigm, the platform
is guided by a probabilistic reward function, which is refined
as new observations are collected. Numerical results show that
the proposed algorithm overcomes a RF-only PAS scheme.

II. PROBLEM STATEMENT

Fig. 1 shows the main elements of the problem scenario,
namely the targets and the sensing platform1.

Sensing platform: The sensing platform is a static ori-
entable smart camera [5], endowed with a real-time target
detector [15] and two radio receivers [16].

The camera: Let F0 be the global reference frame, whose
origin is centered in the platform position and whose axis Z0

is orthogonal to the groundplane Π ⊂ R2 where the platform
and the targets lie. We identify the platform state with its
only degree of freedom, that is the camera pan angle (i.e., the
orientation around Z0)

st ∈ [−π, π], t = LTc, L ∈ N, (1)

where Tc is the camera frame rate. The camera pan angle
defines the Field of View (FoV), Φ(st) ⊂ Π, which is regu-
lated through the control input ut according to a deterministic
Markovian transition model

st+Tc
= st + ut, ut ∈ [−π, π]. (2)

The state transitions occur at multiple of T > Tc, namely

ut = 0, t 6= HT, H ∈ N. (3)

The receivers: The platform is endowed with two radio
channels. The former, referred to as Rx(iso), uses an omni-
directional antenna, while the latter, Rx(dir), has a directional
antenna [17]. The dominating lobe of Rx(dir) is supposed to
be aligned with the camera optical axis, but the knowledge on
the overall radiation pattern of is inaccurate. We set

T = TRF = νTc, ν ∈ N, (4)

where TRF is the sampling interval of both receivers. With the
first equality (T = TRF), a control input is computed as a new
RSSI sample is collected. The second equality (TRF = νTc) is
justified by the fact that radio reception has typically longer
sample rates than cameras’ acquisition [18].

1Bold letters indicate (column) vectors if lowercase, matrices otherwise.
A Gaussian distribution over the random variable x with expectation µ
and variance σ2 is denoted as N (x|µ, σ2). A Bernoulli distribution with
parameter p is denoted as B(p). The shorthand notation zt0:t1 indicates a
sequence {zk}t1k=t0

.

Fig. 1: Problem scenario. Five targets (black markers) surround the sensing
platform; this communicates with one of the targets (Tx) through radio signals.
The platform, at orientation st, detects a target (blue box). The Tx target can
be detected when st = γi∗ .

Targets: The platform is surrounded by N targets, which
can be thought as people or marked objects, in civil or
industrial settings. The targets are in Line-Of-Sight (LOS)
w.r.t. the platform. The position of the i-th target w.r.t. F0

is denoted as pi ∈ Π. Accordingly, the distance of the i-
th target to the platform is the Euclidean norm of pi (i.e.,
di = ‖pi‖2). The number and the locations of the targets are
unknown to the platform, but all N targets can be recognized
through the camera object detector; moreover, one of the N
targets establishes communication with the platform through
an omnidirectional radio Tx. We denote with i∗ ∈ {1,. . . ,N}
the index of such target.

Perception modeling: Both platform receivers extract from
received data packets the Received Signal Strength Indicator
(RSSI), r ∈ R. The RSSI is a measure of the received radio
signal power [12] and it is theoretically related to the Tx-Rx
distance di∗ [12], namely

r(iso) = g(di∗) (5)

where r(iso) denotes the RSSI collected at Rx(iso). To account
for the non-isotropic pattern of the Rx(dir), the relation (5)
should be modified as

r
(dir)
t = g(di∗)%(st, γi∗), %(st, γi∗) ∈ [0, 1], (6)

where γi∗ is the angular position of Tx w.r.t F0, that is

γi∗ = arctan

(
pi∗,Y0

pi∗,X0

)
(7)

with pi∗,X0 and pi∗,Y0 X0 and Y0 coordinates of pi∗ , respec-
tively. The function %(·) is an attenuation factor that accounts
for radiation pattern anisotropies through the misalignment
of Tx and Rx(dir). Indeed, the attenuation is minimal (i.e.,
%(st, γi∗) ≈ 1) if st ≈ γi∗ , that is, if Tx is along the axis of
the dominating lobe. The attenuation increases together with
the Tx-Rx(dir) misalignment [17].

Motivated by the energy efficiency and the low-cost hard-
ware requirements, RSSI-based localization systems have been
widely studied in literature [5], [11]. Despite this, RSSI
localization suffers from several drawbacks. At first, the
functions g(·) and %(·) are usually unknown and need to be
estimated through extensive and time-consuming calibration
procedures [12]. In this work, we propose a self-supervised
methodology that requires minimal human intervention and
does not need to estimate neither g(·), nor %(·) (see Sec. III).
A further limitation of RF-only localization systems resides
on the high sensitivity to environmental interference (e.g.,
cluttering and multi-path distortions) [12]. Hence, the target



position is hidden in extremely noisy receiver measurements,
according to the following RSSI observation model

zRF,t = r(pi∗) + vRF,t, t = MTRF, M ∈ N
vRF,t ∼ N

(
v|0, σ2

RF

) (8)

where zRF,t is denoted either as z
(iso)
RF,t or z(dir)RF,t , if r(pi∗)

follows (5) or (6). A final issue of RSSI-based localization
regards those techniques relying on omnidirectional receivers
only [19]. As (5) highlights, the RSSI values are characterized
by inherent ambiguities on the target position (i.e., they do not
identify uniquely the position of the radio source). When the
receiver is static, these ambiguities induce severe convergence
issues in the estimation process [5]. For this reason, most
literature solutions mitigate the ambiguity effects through mul-
tiple receivers [20], multi-modal (e.g., radio-visual) perception
systems [5], or active sensing schemes [19].

As for the camera sensing capability, the visual detection
process of target i is modeled as a Bernoulli random variable
Dt ∈ {0, 1}, with success probability [5]

p(Dt = 1|pi, st) =

{
pD(di), if pi ∈ Φ(st)

0, otherwise.
(9)

As (9) highlights, the detection success probability is a func-
tion of both the camera orientation and the target-platform
distance. In particular, visual depth effects [1] are accounted
through pD(di), which is the Probability of Detection (POD)
when the target is in FoV. In this work, we suppose that the
same POD function can be applied to all targets, which is a
reasonable assumption in most practical scenarios. If i = i∗,
the dependence on di in (9) can be equivalently substituted by
rt, on the basis of (5).

Problem statement: The Tx discovery problem aims at
identifying the Tx among the N targets. The LOS condition
implies

@(i, j) s.t. γi = γj , (10)

that is, each target is uniquely identified by its angular position
w.r.t. the platform. Hence, the Tx discovery problem boils
down to an association task on top of a uni-dimensional
localization problem within a noisy scenario. The quantity to
be estimated is the Tx angular position γi∗ , assuming that the
dynamics of the targets is slow w.r.t. the localization process.
Formally, at time t, the result of the association task is

ît = arg min
i∈{1,...,N}

|γ̂t − γi|, (11)

where γ̂t is the estimate of γi∗ (i.e., the localization outcome).

III. METHODOLOGY

Indeed, the Tx discovery problem is ill-posed if tackled with
passive strategies, due to the inherent RSSI ambiguities and
the uncertainties on the receivers radiation pattern, and thus
motivated, we propose an active sensing scheme.

Theoretically, the anisotropy of Rx(dir), coupled with the
platform movements, provide sufficient information to reduce
the RSSI ambiguities and solve the localization problem.
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Fig. 2: Ra2ViPAS scheme for the Tx discovery problem.

Nonetheless, in practical scenarios the noise in RSSI data
affect the stability and reliability of RF-only strategies. More-
over, the lack of knowledge on the antenna radiation pattern
often demands extensive calibration procedures. Therefore,
we increase the localization robustness by combining radio
and visual cues. Furthermore, we formulate the problem in
a Bayesian probabilistic framework, which accounts for per-
ception uncertainties and increases the adaptivity properties.
Overall, we obtain the bi-Radio-Visual Probabilistic Active
Sensing (Ra2ViPAS) scheme depicted in Fig. 2 and detailed
in the following. The Ra2ViPAS is based on two steps:

1) first, we apply Gaussian Process Regression (GPR) to
learn the function pD(r) in a self-supervised fashion
(Sec. III-A);

2) then, we cast the localization task to a black-box opti-
mization problem for which Bayesian Optimization (BO)
is employed (Sec. III-B).

A. POD learning through GPR

GPR: A Gaussian Process (GP) is a collection of random
variables, any finite number of which have a joint Gaussian
distribution [21]. Given the input vector x ∈ Rp, a GP is fully
specified by its mean function m(x) and covariance function
k(x,x′), namely

f(x) ∼ GP (m(x), k(x,x′)) , (12)

where f : Rp → R is referred to as latent function. Mean and
covariance (or kernel) functions incorporate prior knowledge
(e.g., periodicity, smoothness) about the latent function. The
mean function is typically constant (usually zero), while the
most commonly-used kernel functions are constant, linear,
square exponential or Matern, as well as compositions of
multiple kernels [21]. The hyperparameters in the mean and
covariance functions are computed by fitting the train dataset
D of cardinality ntrain

D = {(xj , yj)}ntrain

j=1 = (X,y)

X =
[
x1 . . . xntrain

]> ∈ Rntrain×p

y =
[
y1 . . . yntrain

]> ∈ Rntrain .

(13)



Fig. 3: Comparison between the latent function pD(r) (blue line) and
the GP model p̂D(r) (green), learnt on the very noisy synthetic data
{z(iso)RF,i , p̃D,i}ntrain

i=1 (black markers).

Each training label yj is a noisy measurement of the latent
function f(x), namely

yj = f(xj) + εj , εj ∼ N (ε|0, σ2). (14)

To account for the i.i.d. Gaussian noise in the training labels,
the GP in (12) becomes [21],

f(x) ∼ GP
(
m(x), k(x,x′) + σ2I

)
. (15)

This GP is used as prior for non-parametric Bayesian infer-
ence of the latent function. Consider the test inputs X∗ =[
x1,∗ . . . xntest,∗

]> ∈ Rntest×p. From the definition of a
GP, any finite number of samples drawn from the GP are
jointly Gaussian. Thus, according to [21],[

y
y∗

]
=N

([
µ
µ∗

]
,

[
K(X,X) + σ2I K(X,X∗)

K(X∗,X) K(X∗,X∗)

])
(16)

where: y∗ =
[
f(x1,∗) . . . f(xntest,∗)

]> ∈Rntest ; the j-th
row of µ and µ∗ is m(xj) and m(xj,∗), respectively; the
(i, k)-th entry of K(X,X) and K(X,X∗) is k(xj ,xk) and
k(xj ,xk,∗), respectively.

Making predictions about unobserved values X∗ consists in
drawing samples from the predictive posterior distribution of
y∗, given D and X∗, that is

y∗|D,X∗ ∼ N (y∗|µ∗|D,Σ∗|D)

µ∗|D=µ∗+K(X∗,X)
[
K(X,X)+σ2I

]−1
(y − µ)

Σ∗|D = K(X∗,X∗)

−K(X∗,X)
[
K(X,X) + σ2I

]
K(X,X∗)

(17)

POD learning through GPR: On the basis of (5), we
consider the underlying POD as a function of the RSSI values
and we model it as a GP, namely2

p̂D(r) ∼ GP (0, k(r, r′)) . (18)

The train dataset is

D =
{(
z
(iso)
RF,j , p̃D,j

)}ntrain

j=1
(19)

2The notation p̂D(r) is used to distinguish the GP model with the
underlying POD, pD(r).

where the inputs are RSSI observations from Rx(iso) and the
labels are the empirical POD between two RSSI samples,
according to (4), that is

p̃D,j =
1

ν

ν∑
`=1

Dj,`. (20)

where {Dj,`}ν`=1 are the ν detection outcomes before z(iso)RF,j is
collected. Notably, D is automatically acquired by the platform
(i.e., no human labeling is required3). If TRF is sufficiently
small w.r.t. the target movements, {Dj,`}ν`=1 is a sequence of
i.i.d. random variables with distribution B (pD(rj)), according
to (5) and (9). Then, for a high frame rate camera [18], from
the Central Limit Theorem, p̃D,j converges in distribution to

N
(
p̃D,i

∣∣∣∣pD(rj),
pD(rj)(1− pD(rj))

ν

)
, as ν −→∞. (21)

Thus, the latent function is related to the noisy labels through
the generative model

p̃D,j = pD(rj) + εj

εj ∼ N
(
ε

∣∣∣∣0, pD(rj)(1− pD(rj))

ν

)
,

(22)

and the GPR problem is well-posed4.
Fig. 3 shows an example of POD learning through GPR over

synthetic data (see Sec. IV for the data generation process).
The true POD function is

pD(d) =
[(

1 + e4(d−4.5)
)(

1 + e−(d−2.5)
)]−1

. (23)

The GP model uses a zero mean function and a Matern
covariance [21]. To evaluate the regression performance we
use the coefficient of determination R2 ∈ (−∞, 1]

R2 = 1−
∑ntrain

j=1 (pD(rj)− p̂D,∗(rj))2∑ntrain

j=1

(
pD(rj)− 1

ntrain

∑ntrain

k=1 pD(rk)
)2 (24)

where p̂D,∗(rj) is the POD prediction, according to (17). The
higher R2, the better the fit; in the case of Fig. 3, R2 = 0.94.

B. Ra2ViPAS for Transmitter Discovery

The already introduced Fig. 2 shows the Ra2ViPAS pipeline.
The information gathered by the platform sensing channels is
aggregated and injected into a BO scheme. This exploits a
GPR sub-module to reconstruct a probabilistic approximation
of the localization objective function. This is then used to
generate platform control inputs.

3To this aim, the camera and the receiver must be synchronized.
4As (22) highlights, the generative model of the labels is input-dependent

(i.e., the GP is heteroscedastic [22]). Moreover, the GPR works on noisy
inputs, according to (8). To deal with heteroscedasticity and noisy inputs,
several ad-hoc methods have been proposed in literature [22].



BO: BO is a procedure designed for derivative-free global
optimization, particularly suited for objective functions that
are expensive to evaluate [23]. Formally, BO aims to solve
the following optimization problem

x∗ = arg max
x∈X

J(x) (25)

where X is a domain space of interest; the objective function
J : X → R is unknown (i.e., black-box optimization),
but can be evaluated at any arbitrary query point x∗ ∈ X .
This evaluation produces a noise-corrupted (stochastic) output
y ∈ R. To solve (25), BO adopts a sequential procedure.
At first, the objective function is approximated by a proba-
bilistic model (e.g., a GP), easier to optimize and referred
as surrogate function. The surrogate model is sequentially
refined via Bayesian posterior updating (e.g., GPR), as new
data are collected. To this aim, given the collected dataset
Dt = {(xj , yj)}tj=1, the next query point is chosen according
to a suitable selection criterion a(x|Dt) (acquisition function)

xt+1 = arg max
x∈X

a(x|Dt). (26)

The acquisition function is designed over the surrogate func-
tion to balance exploration with exploitation, and to quantify
the utility of a query point to produce a more informative
posterior distribution. In this work, we have used the GP Upper
Confidence Bound (UCB), namely

a(x|Dt) = µ∗,Dt
+
√
βσ∗,Dt

(27)

where (17) is applied, σ∗,Dt
is Σ∗,Dt

with ntest = 1, and β
is an exploration-exploitation tuning hyperparameter.

Probabilistic Controller: The Tx location satisfies

γi∗ = arg max
γ∈[−π,π]

JD(γ)JRF(γ)︸ ︷︷ ︸
J(γ)

JD(γ) = −|p(D|pi∗ , γi∗)− p(D|pi∗ , γ)|
JRF(γ) = %(γ, γi∗).

(28)

Specifically: the detectability term, JD(s), favors those values
of γ where the target has the same (measured) POD of the
Tx; on the other side, the RF term, JRF(s), accounts for
the radiation pattern and gives higher rewards when Rx(dir)

is aligned with Tx. The lack of precise knowledge on %(·)
makes (28) a black-box optimization problem; hence, it can
be opportunely solved via BO. At time t, the dataset is

Dt = {(sj , yj)}tj=TRF
(29)

with yj = yD,jyRF,j and
yD,j = −|p̂D,∗(z(iso)RF,j )− p̃D,j |

yRF,j = |z(dir)RF,j |/ζ,
(30)

where ζ is a user-defined scaling hyper-parameter. Note that,
z
(dir)
RF,t /ζ is a (noisy) scaled version of JRF(·), according to

(8) and (6); however, this does not affect the optimization
process, since the scale is g(di∗), which does not depend on
st. Regarding yD,t, it is a noisy version of JD(·), where the
noise comes from both the estimation error in p̂D,∗(z

(iso)
RF,t )

TABLE I: Setup parameters for the MC experiment.

Parameter Value
TRF 0.1 s
ν 10

ntrain 900
ntest 120
Ntests 50
N 20

f(dt, ηt) dt + ηt ηt ∼ N (0, 0.04)
g(di∗ ) κ− 10n log10(dt/δ) κ=−30 dBm, n=2, δ=1m
%(st, γi∗ ) 1− 0.5(st − γi∗ )2
σRF 3 dBm

pD(d)
[(
1 + e4(d−4.5)

) (
1 + e−(d−2.5)

)]−1

and the measurements error in p̃D,t (see Sec. III-A). We use
the dataset (29), to approximate J(γ) via GPR (see Fig. 2).
The GP model that approximates J(γ) is the probabilistic map
from which the next control input is computed

ut =

{
arg maxs∈[−π,π] a(s|Dt)− st, t=HTRF

0, otherwise,
(31)

where condition (3), with T = TRF, is taken into account.
Finally, the estimate of γi∗ at time t is the maximum of the
GP predictive posterior mean (17), namely

γ̂t = arg max
γ∈[−π,π]

µ∗|Dt
(32)

IV. NUMERICAL RESULTS

To evaluate the proposed approach, we consider a Python-
based synthetic environment5. Sec. IV-A describes the main
setup parameters, as well as the synthetic data generation
process. Sec. IV-B defines the metrics used for performance
assessment and the baselines considered for comparison. The
numerical simulation results are discussed in Sec. IV-C.

A. Setup parameters

To carry out realistic simulations, most parameters reflect
real device characteristics. Tx and Rx(iso) are supposed to be
equipped with Nordic nRF52832 SoCs [16]; Rx(dir) differs
from Rx(iso) in that the attenuation gain follows the function
in Tab. I [17]. The function g(·) follows the log-distance
Path Loss Model (PLM) with noise level σRF = 3 dBm [12].
The radio sampling time is set to TRF = 0.1 s, and the
value of ν is set to 10, as a reasonable trade-off between
typical real-life values and the ideal condition stated in (21).
The underlying POD function is (23), designed according to
real-life experiments [13]. During the POD learning phase,
the target is supposed to move according to the stochastic
linear model reported in Tab. I. Finally, we test the proposed
approach in a crowded environment with N = 20 targets.

B. Performance assessment

To capture the performance variability, numerical evaluation
is performed through a Monte Carlo (MC) experiment, com-
posed by Ntests = 50 tests of duration TW = ntestTRF each,
where ntest = 120 is the number of RSSI collected. At each
MC test the position of the N targets is randomly chosen.

5https://github.com/luca-varotto/Tx-discovery



Fig. 4: DR of Ra2ViPAS, RaPAS and RaViPAS over a MC experiment.

Performance metric: The performance of the Tx discovery
task is evaluated through the Discovery Rate

DRt =
1

Ntests

Ntests∑
j=1

1ît=i∗ , 1ît=i∗ =

{
1, if ît = i∗

0, otherwise,
(33)

where ît follows (11). From a probabilistic perspective, DRt
is the empirical probability of identifying Tx at time t over
the MC tests.

Baselines: The following original baselines are considered,
all leveraging the main PAS approach proposed here:
• RaPAS: same pipeline of Ra2ViPAS, but only Rx(dir) is

used, namely yt = yRF,t.
• RaViPAS: same pipeline of Ra2ViPAS, but Rx(dir) is not

used, namely yt = yD,t.

C. Discussion

Fig. 4 depicts the discovery rate of Ra2ViPAS, RaViPAS
and RaPAS. The control law (31) induces the same qualitative
behavior in all three algorithms, even though with different
final results.

Initially, the sparse sampling of the search domain [−π, π]
produces wrong localization solutions (32); therefore, DR is
low. At the same time, the sparse domain coverage implies
large uncertainties in the surrogate model; this induces an
explorative platform behavior, according to (27). BO generates
an efficient exploration process that allows the platform to
focus on regions that are more likely to optimize the objective
function; hence, DR increases remarkably in this phase. When
enough information is collected, exploitation overcomes explo-
ration and DR meets a converge. Fig. 4 shows that Ra2ViPAS
has a short exploration phase (≈ 4 s) with the highest (≈ 92%)
and smoothest convergence behavior. This means that the
information fusion process employed in Ra2ViPAS produces
a fast and efficient information gain, which leads to high
estimation accuracy, stability and robustness.

In conclusion, the performance of Ra2ViPAS justifies the
higher hardware requirements w.r.t. RaPAS and RaViPAS.

V. CONCLUSION

This work proposes a probabilistic bi-radio-visual active
sensing framework, applied to the transmitter discovery prob-
lem. We combine target visual detectability and radio signal
strength into a Bayesian Optimization framework, responsible
for the generation of the platform control movements. The
approach can be extended to various application domains

and in the specifically considered scenario the suggested
strategy attains a 92% accuracy level, 30% higher than the
two baselines under comparison. Future work will be devoted
to real-life experiments and to the extension of Ra2ViPAS to
cluttered dynamic contexts.
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