
Implementation and analysis of Ryze Tello drone

vision-based positioning using AprilTags

Kacper Hulek

Warsaw University of

Technology

Św. A. Boboli 8, Warsaw,

Poland

Mariusz Pawlicki

Warsaw University of

Technology

Św. A. Boboli 8, Warsaw,

Poland

Adrian Ostrowski

Warsaw University of

Technology

Św. A. Boboli 8, Warsaw,

Poland

Jakub Możaryn

Warsaw University of

Technology

Św. A. Boboli 8, Warsaw,

Poland

Abstract— The paper describes of the Ryze Tello drone to

move autonomously using a basic vision system. The drone's

position is determined by identifying AprilTags' position

relative to the drone's built-in camera. The accuracy of the

drone's position readings and distance calculations was tested

under controlled conditions, and errors were analysed. The

study showed a decrease in absolute error with decreasing

drone distance from the marker, a little change in the relative

error for large distances, and a sharp decrease in the relative

error for small distances. The method is satisfactory for

determining the drone's position relative to a marker.

Keywords— Drone Tello, Computer Vision, MATLAB,

Positioning System

I. INTRODUCTION

Drones are becoming increasingly popular in various fields,
such as photography, surveying, transportation, and military
systems. The precise positioning of drones is essential for
their safe and accurate movement. The GPS is one of the
primary positioning systems used for drone flight and is
widely used in the field. However, GPS accuracy is
significantly reduced in closed spaces.

Our project aimed to develop a solution that only requires
a simple vision system to achieve accurate positioning in
closed spaces. Our solution eliminates the need for additional
hardware and involves providing good lighting and using
standardized AprilTags to mark the places where the drone
needs to move. We used the "tag36h11" family tag to ensure
real-time performance while minimizing false-positive
detections.

In the following sections, we discussed the technologies
we used and the preparation of the drone workspace required
for the program to function correctly. We also presented the
operating procedure of our application, including a
discussion of the graphical user interface available to the
user. Finally, we included an error analysis of the drone's
accuracy in determining its position relative to the marker.

II. IMPLEMENTATION DETAILS

A. Required hardware

The Tello drone is a small quadcopter with a vision

positioning system and an onboard camera. It can hover in

place using a vision positioning system and an advanced

flight controller. It has advanced features such as Bounce

mode, 8D Flip and EZ Shots. The drone takes 5 MPx photos

and streams live video in 720 p resolution. Maximum flight

length reaches up to 100 meters.

The Ryze Tello drone has a dedicated Support Package

for Ryze Tello Drone [2] library in the MATLAB

environment allowing for easy control, image capture and

video upload (Table 1, Fig. 1). In addition, the library also

has functions to collect data about its location, speed, and

battery status. The capabilities of the library, and the

functions we used, are described in more detail in the next

section.

TABLE 1. RYZE TELLO DRONE PARAMETERS

Flight

time

Maximum flight

speed

Battery

capacity

Weight Camera resolution

13

min

8 m/s 1100 mAh 80 g 960 / 720 px

Fig. 1. Construction of the Ryze Tello drone. [1]

B. Required software

The first part of the project involved developing a
functionality to detect AprilTags and determine their
location. To accomplish this, we used the ReadAprilTag
library [3], part of the Computer Vision Toolbox [4] in the
MATLAB environment. Initially, we needed to establish the
camera parameters to determine the actual displacement of
the tags relative to the captured image.

To obtain high-quality images, we chose to use the
snapshot() function from the Support Package for Ryze

Tello Drone library, which enables the capture of a single

image from the drone's camera. Although streaming video
using the preview() function is possible, the video quality in
streaming mode is noticeably worse. It might need to be
improved to determine the location of markers accurately. A
Wi-Fi module is required to connect to the drone and run the
program remotely.

III. RYZE TELLO DRONE POSITIONING PROCEDURE

A. Determining the camera parameters of the Ryze Tello

drone

To read the position of AprilTag tags correctly, it is
necessary to define the actual size of the tag and then specify
the camera parameters. In our tests, tags with a side size of
184 mm were used, but the created program allows to work
with tags of any size. In this case, the user must specify a
custom size in the application window.

To enable the tag detection algorithm to work, the camera
parameters required are the resolution of the camera image
(ImageSize[x, y]), specified in two-axis parameters in

pixels, the center point of the sensor
(PrincipalPoint[x, y]), also given in two-axis

parameters in pixels, and the axial focal length
(FocalLength[x, y]), also specified in two-axis

parameters in pixels.

For the Ryze Tello drone, the ImageSize value

documented equals 960 by 720 pixels. Assuming ideal
sensor performance, we can assume that the
PrincipalPoint parameter specifies the point exactly in

the center of the image. Therefore, we can take half of the
ImageSize parameter's value as its value.

 Regarding the FocalLength parameter, the

readAprilTag [5] library documentation states that it is the
product of the value of the primary focal length of the
camera and the quotient of the resolution of the maximum
working area of the sensor and the physical size of this area
in a given axis (Fig. 2). We can determine this value using
the following formula

(1)

Where fx,y is the desired axial focal length, f is the normal
focal length value of 4mm for this camera, rx,y is the
resolution along a given axis in pixels, and sx,y is the sensor
dimension along a given axis in mm.

Fig. 2. Designation of the quantities needed to calculate the focal values.

Images from the drone's camera are captured using the
snapshot() function, and then to get rid of image

distortion, including mainly the fisheye effect causing
angular warping at the edges of the image, the
undistortimage() function, a part of the Computer

Vision Toolbox library, is called (Fig. 3).

Fig. 3. Example comparisons of the photo before distortion correction

(left), and after (right).

B. Preparation of the flight environment

It is crucial to ensure proper flight conditions to fly a Ryze
Tello drone based on positioning relative to AprilTag tags.
The drone comes equipped with a position stabilization
system with a vision system consisting of cameras built into
the device aimed at the ground. This system is designed to
keep the drone in a fixed position relative to the ground (Fig.
4).

 To ensure that the system works properly, it is essential
to ensure that the ground pattern is not uniform and is as
contrasting as possible. A soft substrate can also minimize
the airflow created by the drone's rotors, which can cause
unwanted movement of the device. Additionally, the flight
environment should be well-illuminated to enable the correct
identification of the markers. These measures are crucial to
ensure the proper functioning of the drone's vision system
and accurate positioning relative to the AprilTag markers.

Fig. 4. Ryze Tello drone in correctly prepared flight environment.

C. The process of identifying the location of AprilTags

To implement AprilTag detection, the readAprilTag()

function from the readAprilTag library [3] is used. This
function returns a pose object containing the detected tags'
position in the dimensionless units used in the library. An
empty pose object is returned if no marker is detected in the
image.

 The Translation() method is used on this pose

object to obtain the actual offset of the markers relative to the
camera in meters. This method returns vectors that represent
the position of the markers relative to the point [0, 0, 0]

that defines the camera. These vectors contain [x, y, z]

coordinates corresponding to rightward, downward, and
forward displacement. Using this method, the precise
location of the markers relative to the camera can be
determined and used for accurate drone positioning.

D. The process for autonomous movement of the Ryze Tello

drone

To enable control and measurement of the Ryze Tello drone,
we utilized the Support Package for the Ryze Tello Drone
library. This library provided the means to control the drone's
movement and obtain real-time altitude and battery status
parameters through a graphical interface. To establish a
connection between the drone and the program, we used the
ryze() function after connecting the drone to the computer

via wifi. We also created a camera object using the
camera() function to facilitate image capture.

 We employed the move() and turn() functions for

drone movement. In the move() function, the [x, y, z]

coordinates correspond to forward, right, and downward
movement. However, this coordinate system differs from the
one returned by the readAprilTag() function (Fig. 5).

To ensure proper drone control, we transformed the
readAprilTag() function vector as follows

(2)

Where x,y,z are the values sent to the drone's move()
function, and x',y',z' are the values received from the
readAprilTag() function.

Fig. 5. Comparison of coordinate systems from the perspective of the

drone's move() function (left) and from the perspective of the

readAprilTag() function after returning the tag move vector (right).

The turn() function performs rotation by a given

angular value expressed in radians clockwise. When writing
the algorithm, attention was paid to ensuring that the value of
the calculated needed rotation angle followed the convention
described for this function. This angle was obtained by
dropping the normal vectors of the camera and the marker
into the horizontal plane by replacing the "z" coordinates
with "0" values and then calculating the angle between the
two vectors using the following formula

(3)

Where θ is the angle between the vectors in radians, a and b
are the normal vectors of the camera and a marker

Knowing that after making the drone rotate by this angle
in the opposite direction to the one obtained, it would be
perpendicular to the marker, it was now still necessary to
transform the movement vector to the marker by the rotation
angle made. To do this, the coordinate system of the
movement vector was converted to the polar system, and
then the rotation angle was subtracted. The result of this
operation was then converted back into a Cartesian vector,
which became the new movement vector.

 In the flight process, a takeoff() function was also

used to realize the ascent of the drone to an initial height of
about 80cm and a land() function to allow the drone to

land safely from whatever height it is at the given moment.
The sequence of operations performed during the simple
algorithm for positioning oneself relative to the marker was,
therefore as follows:

1) Establishing a connection with the drone and creating
a camera object.

2) Specifying the camera parameters and the size of the
marker.

3) Launch the drone using the takeoff() function.

4) Capturing the photo using the snapshot() function.

5) Removing the distortion of the photo using the
undistortimage() function.

6) Performing a tag position calculation using the
readAprilTag() function.

7) Rotating the drone using the turn() function by the

opposite value of the camera and tag normal angles in order
to position the drone perpendicular to the tag

8) Converting the measured displacement vector by the
calculated rotation angle.

9) Executing a move using the move() function by the

transformed move vector with the forward movement
distance value subtracted by the user-specified value of the
final distance of the drone in front of the marker.

10) Performing a landing using the land() function.

In the case of this project, the drone performed actions 4
through 9 in a loop, returning to the starting position in the
horizontal plane after performing a certain action. After
failing to detect a marker or returning to the initial position
after performing a certain action, the drone would perform a
45-degree turn to find the next marker. After performing a
full turn, it would fly up by the height specified by the user
in the program and start the operations again until it
exceeded the maximum height. In our case, the values were
0.5 and 2 meters, respectively.

 The other functions used in the project referred to the
abovementioned analysis of the drone's positioning with the
readHeight() function reading the height from takeoff,

readOrientation()reading the drone's position relative

to the takeoff in the form of Euler angles, readSpeed()

reading the drone's speed, and the BatteryLevel()

method for reading the drone battery status value.

IV. USE OF GRAPHICAL INTERFACE TO CONTROL THE FLIGHT

PROCEDURE

 The graphical user interface was created using the App
Designer tool provided by MATLAB (Fig. 6).

Fig. 6. Graphical interface with the following elements: (1.) a box for

entering the size of the side of the marker, (2.) a box for entering the
maximum flight altitude, (3.) a button to start the execution of the marker

search program and display the camera preview and the flight trajectory,

(4.) a button to stop the program, forcing the drone to land, (5.) a box in
which messages are displayed when certain actions are not performed, (6.)

a battery status indicator expressed in percent, (7.) a drone altitude indicator

expressed in meters.

 With the interface, one can establish designated
parameters, initiate or cease the program, and retrieve crucial
flight analysis information (Fig. 6).

Fig. 6. An example of a drone's flight trajectory and the detected markers.
Distances are given in meters.

V. ERROR ANALYSIS OF THE VISION-BASED POSITIONING

METHOD

A. Method of determining the error

A series of tests were conducted indoors with consistent
lighting to verify the accuracy of the drone's position

readings and distance calculations. External factors that
could affect the algorithm's accuracy were excluded. The
measurements were performed using a Bosch DLE 40 laser
rangefinder with a precision of +/- 0.0015 meters.

The test involved flying the drone in a straight line
towards a marker at a fixed height, taking pictures using the
drone's camera, and then measuring the distance to the
marker's centre from the camera's location using the
rangefinder. We then used a previously written function in
MATLAB to read the marker's position in subsequent
photos, which returned the position as a vector [x, y, z],

where x represents the left/right shift, y represents the
up/down shift, and z represents the forward shift (into the
photo).

The distance to the marker was defined as the length of the
resultant vector [x, y, z]. Using the value measured

with the rangefinder as a reference reading, we calculated the
absolute and relative errors of reading the marker's offset
relative to the camera using the method employed in this
project.

B. Analysis of positioning errors

 After conducting a series of measurements, moving the
drone away from the marker position, we obtained the
following characteristics of the absolute error in the vector
line drawn from the camera position to the centre of the
marker.

Fig. 7. Changes of the absolute error during the drone flight.

 The graph above shows a decrease in absolute error
with decreasing drone distance from the marker (Fig. 7).
Ideally, the characteristic would be linear. Still, many points
appear that reject this hypothesis. Nevertheless, the error
trend is downward, which allows the drone's position to
improve as it approaches the marker.

Analysing the graph of relative error (Fig 8.), there is
little change for large distances, that is, in the range of 7 to 3
meters of distance from the marker. The error fluctuates
between 5.5 and 3 per cent. For small distances, i.e., less than
2 meters, a sharp decrease occurs, below 3 per cent error, and
at distances of less than 1 meter, the error comes as low as
0.5 per cent. Over its entire range, the relative error does not
exceed 7%, which is a very satisfactory result.

To analyse the origin of the errors in more depth, we

have marked the points for which increases are visible on the
graphs concerning the previous measurement (marked with
red diamonds). Our considerations are conducted assuming
the drone is getting closer to the markers. We can observe
that the increases appear mainly for measurements taken at a
distance of more than 3 meters. They may be due to the
measurement inaccuracy of the laser meter operator, the
drone’s camera’s low resolution, the drone's camera, or the
angular offset of the drone relative to the marker. For the
relative error, changes at large distances do not matter, while
the closer the marker is to the camera, the greater the impact
of the disturbance of the absolute error; that is, despite small
increases in the absolute error, the relative error visibly
increases.

 Fig. 8. Changes of relative error during the drone flight.

 Fig 9. The effect of the angular offset of the drone.

 The final element of this analysis is to examine the effect
of the angular offset of the drone, relative to the marker, on
distance reading errors (Fig. 9). To do this, a line
representing the change in angular displacement was plotted
on the absolute error graph. The angular values are placed on
the right axis at a scale of 1 : 100. As can be seen from the
graph, the error values cannot be related to the angular
displacement values. The data appear to be independent.

VI. SUMMARY

The goal of positioning the drone relative to the markers has
been achieved. Based on the analysis of the measurement
error of the method used in the project, it can be seen that the
angular displacement of the marker does not affect the
accuracy of determining its position relative to the camera. In
addition, the data presented show that when determining the
position of the marker at distances of less than 3 meters, the
relative error decreases significantly and reaches values of
about 0.5%, which allows for very accurate motion
correction in the final stage of positioning. On the other
hand, at distances of more than 3 meters, the relative error
reading remains constant at between 3 and 7 percent. These
types of readings allow for satisfactory positioning accuracy
of the drone in this type of application.

 The examined method shows promising results in
exemplary testing although further development is necessary
to achieve consistent outcomes. In the case of continuous
marker detection through video transmission, it would be
possible to obtain more accurate positioning results due to
continuous position correction. However, this solution
requires a more accurate video capture quality.

REFERENCES

[1] Ryze Tello Manual v 1.4 2018.09 Ryze Tech 2018

[2] MATLAB Support Package for Ryze Tello Drone R2022b
MathWorks, Inc., Natick, Massachusetts, United States
https://www.mathworks.com/help/supportpkg/ryzeio/

[3] MATLAB readAprilTag R2022b The MathWorks, Inc., Natick,
Massachusetts, United States
https://www.mathworks.com/help/vision/ref/readapriltag/

[4] MATLAB Computer Vision Toolbox R2022b The MathWorks, Inc.,
Natick, Massachusetts, United States
https://www.mathworks.com/products/computer-vision.html

[5] Camera Calibration Using AprilTag Markers R2022b The
MathWorks, Inc., Natick, Massachusetts, United States
https://www.mathworks.com/help/vision/ug/camera-calibration-
using-apriltag-markers.html

[6] Navid Kayhani, Wenda Zhao, Brenda McCabe, Angela P. Schoellig,
Tag-based visual-inertial localization of unmanned aerial vehicles in
indoor construction environments using an on-manifold extended
Kalman filter, Automation in Construction, Volume 135, 2022,
104112, ISSN 0926-5805

[7] Li, Zhou & Chen, Yang & Lu, Hao & Wu, Huaiyu & Cheng, Lei.
(2019). UAV Autonomous Landing Technology Based on AprilTags
Vision Positioning Algorithm. 8148-8153.
10.23919/ChiCC.2019.8865757.

[8] Olson, Edwin. (2011). AprilTag: A robust and flexible visual fiducial
system. Proceedings - IEEE International Conference on Robotics and
Automation. 3400 - 3407. 10.1109/ICRA.2011.5979561.

