
Max Margin General Linear Modeling for Neuroimage Analyses

Nagesh Adluru*, Chad M. Ennis, Richard J. Davidson, and Andrew L. Alexander
University of Wisconsin-Madison
Nagesh Adluru: adluru@wisc.edu

Abstract
General linear modeling (GLM) is one of the most commonly used approaches to perform voxel
based analyses (VBA) for hypotheses testing in neuroimaging. In this paper we tie support vector
machine based regression (SVR) and classical significance testing to provide the benefits of max
margin estimation in the GLM setting. Using Welch-Satterthwaite approximations, we compute
degrees of freedom (df) of error (also known as residual df) for ε-SVR. We demonstrate that ε-
SVR can result not only in robustness of estimation but also improved residual df compared to the
very commonly used ordinary least squares (OLS) estimation. This can result in higher sensitivity
to signal in neuroimaging studies and also allow for better control of confounding effects of
nuisance covariates. We demonstrate the application of our approach in white matter analyses
using diffusion tensor imaging (DTI) data from autism and emotion-regulation studies.

1. Voxel Based Analyses
Voxel based analyses (VBA) are typically used to identify imaging phenotypes of a disease
group. Support vector machines have been used in neuroimage analyses mostly in the
context of classification but not in the context of GLM. Below we elucidate top-level
modeling differences between the two exercises. In both cases, we have two types of data
for n different subjects: (1) brain data, (2) behavioral/physiological/diagnostic data.

1.1. Data Modeling
VBA is typically based on generalized linear modeling (GLM). GLM is based on the
assumption that the brain signal can be explained by a linear combination of a set of design
(explanatory) variables. The signal can be either univariate or multivariate (vector-valued)
[18]. The elegance of GLM is in the unification of various statistical inferences, like analysis
of variance (ANOVA) and covariance (ANCOVA), into regression analyses.

Let us assume there are v voxels in the brain, then VBA works on the following modeling at
each voxel:

where Y is the observed signal, X is the design matrix of observed p(≪ n) explanatory
variables and a column of constants. β is a vector indicating the effect of each variable on
the signal and also the intercept.

In contrast the data in classification is modeled as:
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where now, X is a matrix of vectorized brain signal also known as the feature matrix, Y is
the diagnostic information. Each brain is treated as a high-dimensional feature vector.
Hence, the key difference in β is that it is a very high-dimensional object (v ≫ n), in
classification but it is not a high-dimensional object (p ≪ n) in the GLM setting.

1.2. Model Estimation
Below we present the difference between OLS and SVR in the context of GLM estimation.
Ordinary least squares (OLS) is one of the most commonly used approaches in VBA today,
which estimates β by minimizing least squares of the residuals:

(1)

which gives to a closed form solution: β̂ =(XTX)−1XTY.

In ε-SVR, the goal becomes to minimize the following objective function:

(2)

where yi and xis are ith rows in Y and X respectively. In practice, to account for feasibility of
constraints the following relaxed version with slack variables for the constraints is solved
numerically. This also allows for a trade-off between the regularizer on β as well as the
errors in the constraints by controlling C [16].

(3)

The main difference between OLS and SVR is that the former has implicit regularization on
β by using ||Y − Xβ||2, while SVR has |Y − Xβ|ε as the loss function with ||β||2 as the
additional regularization. The ε-insensitivity and the L1-loss give robustness to the
estimation, since it gives more weight to smaller residuals compared to least squares of
OLS, which gives most weight to the largest residuals [8]. This estimation procedure gets
various names: in the primal form (Eq. (3)) the regularization term on β gives its name

“max-margin machine” since in the classification setting  equals the margin of
separation between two classes. The dual form of Eq. (3) gives rise to names like “support
vector” and “kernel” machines. Since our focus is on using linear kernels and measuring
significance of the model (β̂)s rather than just the accuracy of the predicted output values
(Ŷ), we propose to use the name max-margin GLM.

1.3. Main Contributions
In this paper, motivated by its success in machine learning applications, we propose to use
max-margin estimation for GLM. This estimation provides not only robustness to outliers
but also provides improved residual degrees of freedom (rdf) thus enabling higher sensitivity
to signal in neuroimage analyses. It also allows for better accounting of variance of the
nuisance covariates in the regression model. Our key mathematical contribution is in
computing the rdf of ε-SVR using the Welch-Satterthwaite approximation [12]. This
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allowed us to integrate the SVR into GLM for improved statistical inference on models.
Furthermore, since we perform such an integration in widely used software packages, we
can hope for a more direct impact on neuroimaging analyses. We would also like to
highlight the difference between degrees of freedom of the model (dfm) and rdf. Gunter and
Zhu [5] and the references within worked on computing the effective degrees of freedom of
the SVR, but not the rdf. To our best knowledge rdf of SVR has not been computed before
and certainly not in the context of GLM for neuroimage analyses.

2. Hypotheses Testing
In VBA, generally one wants to test if a linear combination of the β̂s is statistically
significant. That is, at each voxel, the null-hypothesis tested is: H0: β̂ = 0, where  is an m
× p matrix typically called a contrast matrix and the alternative hypothesis is H1:  β̂ ≠ 0.
For example, consider the following GLM:

(4)

where Xi is the ith column of the design matrix. If one wants to test the null-hypotheses, β̂1 =
2β̂2 and β̂3 = β̂4 then:

(5)

This method of using contrast matrices provides a general way of representing null-
hypotheses. In order to reject null hypotheses we need to compute: p(  β̂ ≠ 0|H0) which is
the probability of choosing alternate hypotheses when null-hypotheses are true. In other
words it is the probability of false rejection of null-hypotheses or false discovery of alternate
hypotheses. It is also typically called p-value. If this value is smaller than a certain threshold
α then one can reject the null hypotheses with 1 − α confidence level (e.g. 95% confidence
level at α = 0.05). For a more discussion on controlling overall probability of false rejection
when testing at multiple voxels, please see §4.

2.1. t-test vs. F-test
Without distributional assumptions it is hard to compute tight bounds on the p-values1, but
under typical neuroimaging settings the normality assumption i.e. ε 3 (0, σ2), is satisfied.
Hence one can obtain the p-values by either assuming that the rows of β̂ follow student-t
distributions or that the residual, ||Y − Xβ̂||2, follows χ2 distribution. The former assumption
leads to t-tests and the latter to F-test. Below we discuss why we opt for F-tests over t-tests
for ε-SVRs.

For each independent row, i, of , the t statistic is computed as . For example, in

Eq. (5),  can be computed as:

(6)

1One might be able to compute some loose bounds using inequalities in convergence of random variables, such as Hoeffding’s
inequality [7].
2Camino is an open-source Diffusion-MRI processing.
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where Cij = cov(β̂i, β̂j). The key thing to note is that estimating C is not straightforward when
we replace OLS with ε-SVR.

Since OLS minimizes least squared loss and is an unbiased estimator, the estimation error is
equal to the variance in the estimation and the covariance matrix C = (XTX)−1. But not all
loss functions and estimation procedures admit such clean bias-variance decomposition of
estimation error [4] and computing C in such cases is not clear. The ε-insensitive L1 loss
cannot admit such a clear decomposition, although some interpretations could be made
heuristically [11]. One can bootstrap and estimate variance but, not only is bootstrapping at
each voxel in the brain computationally very expensive in a medical imaging setting, but
also it is not clear how the bias can be estimated.

F-test allows us to infer statistical significances without needing the error decomposition and
are based on residual sum of squares of the fit rather than the precision in the parameter
estimates. Thus, one can perform inferences using a wide variety of estimators and loss
functions. The two χ2 variates that are needed to test the null hypotheses, H0:  β = 0 are
obtained as follows: We solve  β = 0 to represent the dependent coefficients using
independent coefficients. Thus, we can obtain a nested reduced model Y = Zγ. For example,
for contrast in Eq. (5) we get:

(7)

(8)

where γ = [β0 β2 β4] and Z = [1 (2X1 + X2) (X3 + X4)]. Then we obtain the two residual sum
of squares, ||Y − Xβ̂||2 and ||Y − Zγ̂||2 which form the two χ2 variates used in computing the
F-statistic. Note that for this particular contrast , we get a t-statistic for each independent
row, but only one F-statistic. Thus, we lose specificity in terms of the effect of coefficients.
However, in general, by carefully designing , one can achieve the desired specificity of
effects even using F-tests.

2.2. Residual Degrees of Freedom
Both χ2 and student-t distributions are parameterized by a degree-of-freedom. Since in our
case the random variables are the residuals, they are called residual degrees of freedom (rdf).

In the case of a t-test using OLS, the rdf = n − rank(X) which equals n − p, when the
explanatory variables are all linearly independent. H0 is then rejected if ∀i,

, the critical value of t at 1 − α significance level.

In the case of an F-test, the F-statistic is computed as:

(9)

(10)

(11)
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H0 is then rejected if F0 > Frdf1,rdf2,1−α, the critical value of F at 1 − α significance level.
Note that F0 > 0, always. If OLS is used the degrees of freedom are computed as:

(12)

(13)

But when using ε-SVR the rdfs need to be computed differently. Let Ŷ = HY, where H is
called the “hat matrix”. In the case of linear ε-SVR, H can be obtained as:

(14)

1./Y is just element-wise inversion of Y. Just for contrast, H in the case of OLS would be
obtained as:

Notice the explicit dependence on Y, in case of ε-SVR. Once we have H, the rdf can be
computed using Satterthwaite approximation [12, 6]:

(15)

Thus using Eqs. (15) and (14), we can compute rdf2. Now we need to compute rdf1. Note
that V1 = U1 − U2, where

and rdfU1, rdfU2 can be computed similarly as rdf2. Using Welch-Sattherthwaite equation
[17, 12], which can be used to approximate df of a linear combination of χ2 variates, we can
compute rdf1 as:

(16)

3. Experiments

Diffusion tensor imaging (DTI) data sets from two different neuroimaging studies were used
for our experiments to compare OLS and ε-SVR. DTI is a non-invasive method to
characterize the microstructural properties and macroscopic organization of brain white
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matter (WM) tissues [1]. The diffusion tensor is a positive-definite matrix that is a 2D
manifold in ℝ3. It captures the covariance of water diffusion in the three orthogonal
Cartesian directions. Fractional anisotropy (FA), the most commonly used measure of
diffusion anisotropy, is a normalized standard deviation of the eigenvalues that ranges
between 0 and 1. The higher the value in a voxel, the more organized (in a primary
direction) the WM is in that voxel. Below we present sample characteristics and data
acquistion since the quantitative measures of DTI, such as FA, depend on the scanner and
acquistion parameters.

(1) Autism Study—DTI data from 78 male subjects were used in this study: 42 high
functioning subjects with autism spectrum disorders (ASD) and 36 Controls group-matched
for age, handedness and IQ. DTI data were acquired on a Siemens Trio 3.0 Tesla Scanner
with an 8-channel, receive-only head coil using a single-shot, spin-echo, EPI pulse sequence
and SENSE parallel imaging (undersampling factor of 2). Diffusion-weighted images were
acquired in 12 non-collinear diffusion encoding directions with diffusion weighting factor b
= 1000s/mm2 in addition to a single reference image (b=0).

(2) Emotion-regulation Study—DTI data from 64 18-year-old adolescents were used.
Cortisol (Cort) was obtained from salivary samples, collected over 3 consecutive days, when
they were 4.5 years of age. Cort is an important steroid hormone implicated in the stress
response, serving as an important measure in studies of emotion-regulation and anxiety [13].
The diffusion weighted images were acquired on a GE 3.0 Tesla scanner using 48 non-
collinear diffusion encoding directions with diffusion weighting factor of b = 1000s/mm2 in
addition to 8 b = 0 images. Eddy current related distortion and head motion of each data set
were corrected using FSL software package ([14]) and distortions from field
inhomogeneities were corrected using field maps.

For both the studies, the brain tissue was extracted using the brain extraction tool (BET),
also part of the FSL [14]. The tensor elements were calculated using non-linear estimation
using CAMINO2. It is important to establish spatial correspondence of voxels among all the
subjects before performing VBA. State-of-the-art DTI registration toolkit DTI-TK3 was
used for spatially normalizing the subject data. All voxel based analyses were performed on
spatially normalized 1mm3 isotropic volumes with a final data resolution of 192 × 224 ×
144.

SurfStat-LIBSVM: We implemented the proposed max-margin general linear modeling by
integrating two popular software packages: SurfStat [18] and LIBSVM [3]. This provides an
effective MATLAB interface for neuroimaging studies. SurfStat allows intuitive
programming of design and contrast matrices using higher level representations known as
model formulas [18]. For example, if one wants to study the effect of group and age on
fractional anisotropy (FA) in the brain by covarying for Gender, one could simply design the
GLM as FA = 1 + Age + Group + Gender, where Age, Group and Gender are simply MAT-
LAB arrays wrapped by a function called term.

Comparisons between OLS and ε-SVR: To demonstrate the advantage of using max-
margin GLM, we examine the following two different GLMs, one for each study:

1. FA=β0 + β1Age + β2Group + β3Age * Group

2. FA=β0 + β1Cort + β2Gender + β3Cort * Gender

3http://www.nitrc.org/projects/dtitk
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where the corresponding null-hypotheses are β3 = 0 for each of the model. A significant β3
in the first model provides evidence that normal development of WM is different from
development of WM in individuals with ASD. Similar interpretation can be made with
alternate hypothesis from the second model. We estimate the above GLMs voxelwise at
each voxel in the WM mask, which is defined as the set of voxels whose population-specific
mean FA > 0.2. F-statistic maps computed using OLS and SVR for the two GLMs are
shown in Figs. 1 and 2 respectively.

To visualize the scatter plots for the multilinear regressions (p > 1) we first need to ”reduce”
it to simple linear (p = 1) regression by removing the nuisance covariance (effect of
variables not involved in the null-hypotheses) from the Y. For example, if Y = β0 + β1X1 +
β2X2 + ε and we need a plot to show the effect of X2 on Y, we first estimate β0, β1, β2 and

then estimate the simpler model, . We can then show the scatter plot of

Ŷ and X2 along with line of slope s and intercept . The scatter plots at one of the
significant clusters (F > 5) in the cingulum are shown as insets in the Figs. 1 and 2. The

 in the scatter plots show the significance of the interactions in each
group, while the F-stats on the X-labels show the significance of the group-difference in the
respective interactions.

The distributions of the F-stats for the two models are shown in the log-scale in Fig. 3. The
higher the F-stats, the better is the sensitivity of the estimation procedure to the underlying
effect of a set of explanatory variables. ε-SVR has significant improvement both in terms of
having more voxels with higher F-stats and fewer voxels with lower F-stats. One key
difference in comparing OLS and SVR is that for latter, since H depends on Y, each voxel
can have different rdf and hence we can have spatially varying degrees of freedom. In
contrast, it is fixed per model when using OLS. Our computations indicate that the rdfs are
almost constant (with small variance) across the white matter and hence we use the median
of the rdfs in computing the F-stats. Finally, Fig. 4 shows the scatter plots of the quadratic
effects of Age on the average FA in the cingulum cluster (from Fig. 1). Thus, GLM can also
be used to investigate non-linear relationships by including non-linear terms in β. For all our
experiments with SVR, we chose C to be the maximum of Y [9]. ε to be 0.6166 × σY [15].

4. Discussion and Future Directions
In this paper we presented a novel way of performing GLM based hypotheses testing by
using ε-SVR, which we call max margin GLM. We demonstrated its potential advantages on
real data from two different neuroimaging studies. We compared its performance with
commonly used OLS. The improvements due to robustness of the estimation can be seen
both in terms of obtaining higher F-statistics and also in addressing the nuisance covariance.
While the robustness is mainly due to the ε-insensitive loss function, the improved F-stats
are computable because of our approximation of the residual degrees of freedom using
Welch-Satterthwaite approximation [17, 12]. The implementation is made by integrating
popularly used software packages for a more direct impact of the presented work. To our
best knowledge, this is the first attempt to apply a very successful loss function used in the
machine learning community to the GLM framework for statistical significance testing of
neuroimaging data.

We foresee three main lines of future work for the proposed work. (1) In our experiments,
although SVR produced higher F-stats compared to OLS, the stats were not above the

threshold of Bonferoni (BON) correction ( ) for the multiple comparisons
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problem [10]. The multiple-comparisons problem has similarities to generalization and over-
fitting problems faced in machine learning. There exist several approaches beyond näive
Bonferonni correction such as random field theory (RFT) based correction, false discovery
rate (FDR) control [2] and permutations-based correction. Based on upper bounds on some

topological properties obtained using algebraic geometry theory, and treating  as
a statistical field, RFT proposes to correct using the following approximation:

where R is the ”resel” (resolution element) count, EC denotes the Euler characteristic of a
set and  = {x: F0(x) > h} is called the ”excursion set”. Usually, if h is reasonably large
(say > KFrdf1,rdf2,1−α), then αRFT ≪ αBON(= vα) and hence the F tests can be more sensitive
even with a corrected threshold. By actually using spatially varying rdf (instead of just
median), whether SVR can potentially result in more favorable  comparable to OLS, is an
interesting question. (2) Although we compared our method with OLS, the most widely used
estimation in neuroimaging setting, comparison with other robust estimation techniques such
as iterative weighted least squares and other ridge regression methods would throw more
light on the advantages of the SVR in this setting. (3) Extending this work to a multivariate
inference setting (Y ∈ ℝn×K) by combining better loss functions from multi-task learning
and multivariate hypotheses testing is also a very interesting direction of future work.
Finally, relaxing the normality assumptions and estimating distribution-free p-values using
results from convergence of random variables (e.g., [7]) would help significance testing of
not just SVR based estimation but also OLS in the context of GLM.

References
1. Basser P, Mattiello J, Bihan D. Estimation of the effective self-diffusion tensor from NMR spin

echo. J Magn Reson. 1994; 103:247–254.

2. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to
multiple testing. J Royal Stat Soc. 1995; 57(1):125–133.

3. Chang, C.; Lin, C. LIBSVM: a lib for SVMs. 2001.

4. Domingos P. A unified bias-variance decomposition and its applications. Proc ICML. 2000:231–
238.

5. Gunter L, Zhu J. Efficient computation and model selection for the support vector regression.
Neural Computation. 2007; 19:1633–1655. [PubMed: 17444762]

6. Hastie, T.; Tibshirani, R. Generalized additive models. CRC Press; 1990.

7. Hoeffding W. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association. 1963; 58(301):13–30.

8. Huber, PJ. Robust Statistics. John Wiley & Sons; NY: 1981.

9. Mattera and Haykin. Advances in Kernel Methods. The MIT Press; 1999.

10. Miller, R. Simultaneous Statistical Inference. Springer Verlag; New York: 1981.

11. Park J, Kim J. Quant. reg. with an ε-insens. loss in a rep. ker. Hilbert space. Stat & Prob Let. 2011;
81(1):62–70.

12. Satterthwaite F. An approximate distribution of estimates of variance components. Biometrics Bul.
1946; 2:110–114.

13. Smider N, Essex M, Kalin N, et al. Salivary cortisol as a predictor of socioemotional adjustment
during kindergarten: a prospective study. Child Dev. 2002; 73:75–92. [PubMed: 14717245]

14. Smith S, et al. Advances in func. & struc. MR img. analysis & implementation as FSL. NIMG.
2004; 23:208–219.

15. Smola A, Murata N, et al. Asymptotically opt. choice of ε-loss for SVMs. ICANN. :105–110.

16. Smola, A.; Schölkopf, B. A Tutorial on SVR. 2003.

Adluru et al. Page 8

Proc Workshop Math Methods Biomed Image Analysis. Author manuscript; available in PMC 2013 October 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



17. Welch B. The generalization of student’s prob. when several diff. population var. are involved.
Biometrika. 1947:28–35. [PubMed: 20287819]

18. Worsley K, et al. Surfstat: A MATLAB toolbox for stat. anal. of univar. & multivar. surf. & vol.
data using lin. mixed effects models & RFT. NIMG. 2009; 47:102–102.

Adluru et al. Page 9

Proc Workshop Math Methods Biomed Image Analysis. Author manuscript; available in PMC 2013 October 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
F-statistic maps using OLS (left) and SVR (right) overlaid on the corresponding mean FA
maps. The GLM (shown on top of the scatter plots) aims at measuring the group difference
between ASD and Controls in terms of interaction between Age and FA. It can be observed
that both OLS and SVR show similar regions of significance but the SVR has higher F-stats.
The scatter plots show the regression between the avg. FA (adjusted for the Age and Group
as nuisance covariates) in the encircled cluster on the cingulum bundle and Age. SVR not
only obtains higher F-stats but also seems to account for the nuisance covariance (especially
in the ASD group) more accurately as can be seen in the scatter plots.
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Figure 2.
Similar to Fig. 1 but the GLM is to measure effect of Cort and Gender interactions on FA.
We can observe that SVR produces higher F-stat maps and in spatially more contiguous
regions (encircled in red) thus enabling biologically more meaningful results. The scatter
plots for both OLS and SVR are also shown for a cluster in the superior-frontal projections
of white matter tracts.
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Figure 3.
Log distributions of the F stats of the WM voxels for the two GLMs shown in Figs. 1,2. We
can observe that SVR produces improved F-stats in a statistically significant way (using
Kolmogorov-Smirnov test). The numerator (rdf1) and denominator (rdf2) degrees of
freedom for both OLS and SVR are shown in the legends.
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Figure 4.
The quadratic effect of Age on the adjusted avg. FA of the cingulum cluster from Fig. 1. We
can observe that after adjusting for the variance of the linear and quadratic terms, the group-
difference in the quadratic effects although significant (p = 0.016), is reduced when using
SVR compared to OLS. This shows that SVR can better account for variance of nuisance
variables.
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