Genetic Block Matching Algorithm for Video Coding

Chun-Hung Lin
Commun. and Multimedia Lab.
Dept. of Comp. Sci. & Info. Eng.
National Talwan University
Taipei, Taiwan, R. O. C.
d2506010Qcsie.ntu.edu.tw

Abstract

Genetic algorithms (GAs) recently have been suc-
cessfully applied to perform block-based motion estima-
tion. It is shown that the performance of the GA-based
motion estimation algorithms nearly approaches that
of the full search algorithm (FSA). However, the com-
putational complexity of the existing GA-based algo-
rithms 1s too high to be used in practice. In this pa-
per, a lightweight genetic search algorithm (LGSA) is
proposed. It can be seen from the simulation results
that the performance of the proposed LGSA is not only
as good as that of the FSA, but the computational com-
plexity is also much lower than that of the FSA and the
other eristing genetic motion estimation algorithms.

1. Introduction

The block matching algorithms (BMAs) have been
shown to be very efficient for the reduction of video
bit rates [1]. It is therefore widely used in various
kinds of video applications. In most of the video cod-
ing standards (such as H.261, MPEG-1, and MPEG-
2), the block-based motion estimation technique plays
a key role. Because of its importance, many works
have been devoted to the development of fast search-
ing algorithms. The FSA can find the optimal solutions
(i.e., the motion vectors with the minimum matching
errors) by exhaustively searching all possible blocks,
but the tremendous computations make it difficult to
be applied for real-time video compression, particularly
for the software-based implementation. To meet the
need of decreasing the computational complexity of the
block matching process, different kinds of fast searching
algorithms have been introduced [1]- [7]. Most of these
fast algorithms have the restriction or the assumption
that there should be only one minimum in the search

0-8186-7436-9/96 $5.00 © 1996 IEEE
Proceedings of MULTIMEDIA '96

544

Ja-Ling Wu
Commun. and Multimedia Lab.
Dept. of Comp. Sci. & Info. Eng.
National Taiwan University
Taipei. Taiwan, R. O. C.

wjl@cmlab.csie.ntu.edu.tw

space. Nevertheless, in practical applications, there are
always many local minima in the search space, so it is
very often for these algorithms to miss the optimal so-
lution but to get the suboptimal one.

In the previous works [8, 9]. GAs have been used to
perform the block matching jobs. The results showed
that GAs can solve the local minima sticking problem
efficiently, hence they possess similar performance as
that of the FSA. However, the necessary block match-
ing number, which dominates the computational com-
plexity of the motion estimation algorithms, is more
than one-quarter of that of the FSA. Because the over-
head for performing genetic operations is large, the
computational complexity of these algorithms is almost
similar to that of the FSA.

In this paper, a lightweight genetic block matching
algorithm is proposed. The average block matching
number of the proposed algorithm is very close to that
of the three-step search algorithm (TSS), and its per-
formance is very similar to that of the FSA. The con-
trol overheads are also improved while comparing to
the previous works.

2. Block

The Lightweight Genetic

Matching Algorithm

Let S be a solution space and all the elements in S
have their associated fitness values. The straight way
to find the element with the maximum fitness value is
to search among all the elements and to compare their
fitness values. However, the computational complexity
will be very high if the space size is large. In order
to reduce the computational complexity, an efficient
search algorithm should be applied.

If GAs are applied to search for the global maximum
in S, a population P is maintained which consists of
N elements, where N is the population size. Each el-

ement in P 1s called a chromosome which is composed
of a list of genes. The population P will evolve into
another population P’ by performing some genetic op-
erations. The chromosomes with higher fitness values
will have more probability to be kept in the popula-
tion of the next generation, and to propagate their
offspring. On the other hand, the weak chromosomes
whose fitness values are small, will be replaced by an-
other stronger chromosomes. Therefore, the quality of
the chromosomes in the population will get better and
better. After a suitable number of generations, the ma-
ture population is expected to contain the element with
the global maximum value.

In this application, the solution space S is a set of
motion vectors. The ith chromosome C; in the popu-
lation is defined as,

aio]
bio 17

J=1
0<i<N—1, (1)

where the genes ¢; »,b;, € {0,1},and 0 <n < k- L.
[m; n;]* represents one possible motion vector, and k is
the codeword size of each motion offset whose value de-
pendents on the search range. If the maximum motion
offset is w, the value of & will be [log, ¥]. The values
of the genes are derived from the represented motion
vector of the chromosome, that is,

my
7

a1
b

g k—1
bik—1

C; = [

ain = %lni mod 2, (2)
n;
bin = 5n mod 2, (3)

where mod is the module operation.

Fig. 1 depicts the block diagram of the genetic evo-
lution in the LGSA. An initial population is formed
before the evolution. The initial chromosomes can be
randomly selected from the search space, or be selected
from the fixed locations of the search space.

Each chromosome has an associated fitness value
which is defined as,

fi

where d; is the matching error of the ith chromosome,
and dj, is the kth minimum matching error among all
the N values, d;,0 <i < N—1, and U and § are a unit
step function and a delta function, respectively. The
constant k determines how many chromosomes could
be selected at most as the seeds in the reproduction
stage for producing a rival population. From (4), it
is known that the chromosomes with smaller matching
errors will have larger fitness values. The chromosomes
with larger fitness values in the current population have
larger probability to be selected as seeds of the next

Uj g (de—di)+385 _, ,0Si<N—1, (4)

545

Initial
Population
Fitness
| Evaluation
l Y Motion
; Vector
omon [
Competition

Figure 1. The structural diagram of the genetic
block matching algorithm.

generation. This probabilistic schemes for selecting the
seeds of new generations is known as the probabilistic
reproduction.

The reproduction method used in this work is sim-
ilar to the weighted roulette wheel method [10]. For
each chromosome, an interval »; is calculated as,

o {Z%;ifk T
Lk=o fr k<o fr
where fi is the fitness value of the kth chromosome
in the population, and ‘" and ‘)’ denote closing and
opening boundaries, respectively. When the interval of
each chromosome has been determined, N real num-
bers, «j, are randomly generated, where 0 < a; < 1
and 0 <i < N —1. The value of «; will be bounded by
some r;, that is, a; € r;. The chromosome C is then
selected as a seed to generate the rival population. It is
possible that one chromosome can be selected twice or
more. Because N real random numbers are generated,
N seeds could be selected and placed in the mating
pool.

After the reproduction stage, each seed in the mat-
ing pool will be processed and transferred into a can-
didate chromosome of the new generation. Assume the
current seed to be processed is [m; n;]*, where m;
(@i k-10i k2. -a;0] and n; = [b; x_1b;g—2...b;o]. In
the jth generation, the two genes a; . and b; , are var-
ied, where z = £ — 1 — j. There are eight mutation
operators, {((p,7p)]0 < p < T}, which can be applied
in our implementation, that is,

),ogigAf«L (5)

a;,z = Qi+ va (6)
bg,z = bi.+ Mps (7)

where p is a random integer number whose value is be-
tween 0 and 7. Because the chromosomes are randomly

selected and put on the mating pool, it is not necessary
to generate a random number for determining the p’s
value. We simply set p to be (i mod 8). The mutation
operations are defined as,

G = (UL m(m 1]

0= (VP 1] mod 2]+ [3m]), (8)
np = (=D)"p+1-mim+1)]-

2V FT) mod 2~ [gm]). (9)
m = [Vp+1] (10)

When the mutation operations are performed on
the most significant genes of the chromosomes (e.g.,
ag-1, b1, etc.), the chromosomes which are far from
the original ones in the search space are generated.
Whereas, the nearby chromosomes are generated when
the mutation operations are performed on the least sig-
nificant genes.

There are N chromosomes in the mating pool after
performing the genetic operations. Along with the orig-
inal chromosomes in the current generation, N chromo-
somes are selected from these 2N chromosomes accord-
ing to their fitness values. Each chromosome can only
be selected at most once. The chromosomes with larger
fitness values will be picked up as the members of the
population in the next generation, and go through the
next iterations of the genetic evolution. Although the
sorting operation is needed in this survival competition
stage, the overhead is not high because the population
size is usually not large in this application. This stage
is added to the proposed algorithm to prevent the chro-
mosomes from being destroyed by the new ones with
poorer fitness values, because the new chromosomes
generated from the original ones are not guaranteed to
have larger fitness values in GAs.

The chromosome with the maximum fitness value is
sclected from the current population as the possible so-
Jution. The possible solution might be replaced by the
others from one generation to the other generations.
The iteration will be terminated if the matching error
of the solution is less than a predefined threshold, or
the iteration number is equal to k — the codeword size
of the chromosomes.

3. Experimental Results

The proposed LGSA along with the FSA and the
TSS were implemented’ to compare their performance.
In the simulations, the block size for block matching is

IThe source codes of the LGSA can be found on

“http://www.cmlab.csientu.edu.tw/"d2506010/pub/lgsa/lgsa.html”.

8% 8 pixels, and the maximum motion offset is 16 pixels.
The TSS was directly expanded to four steps to cope
with the search range.

Tables 1 and 2 list the average performance of the
above three search methods both in the cases of the
normal frame rate (30 frame/sec) and the lower frame
rate (10 frame/sec). It can be seen from the table that
the LGSA achieves similar performance to the FSA.
When the frame rate is low, the TSS method is shown
to have poor performance because of the increase of
the local minima in the search space. Nevertheless, the
LGSA still have the similar performance to that of the
FSA.

Algorithm PSNR(dB)
sales miss claire trevor football tennis
FSA 36.33 38.62 42.66 35.09 26.02 26.94
TSS 35.75 38.01 41.85 34.13 24.12 25.76
LGSA 36.25 38.38 42.61 34.93 25.27 26.40

Table 1. Comparisons of the average performance
in normal frame rate.

Algorithm PSNR(dB)
sales miss claire trevor football tennis
FSA 34.83 37.69 39.07 33.58 23.60 24.44
TSS 33.85 35.57 36.79 31.81 22.02 23.03
LGSA 34.59 37.09 38.69 33.09 22.57 23.63

Table 2. Comparisons of the average performance
in low frame rate.

In the low frame rate case, the subjective quality of
the motion compensated images generated by the TSS
are unacceptable. Whereas, the motion compensated
images generated by the LGSA are still good enough.
When the allowed bit-rate is limited, the decoded im-
ages which are motion estimated by the LGSA will have
acceptable quality.

To compare the computational complexity, Table 3
shows the average numbers of the searching points
needed for each block in different algorithms. From the
table, it is known that the LGSA needs similar search-
ing number as that of the TSS. However, the overheads
of the genetic operations (reproduction, mutation, and
survival competition, etc.) must be taken into account.
Fig. 2(b) shows the ratio diagram of the average exe-
cution time for these algorithms. All the algorithms
are run on a SUN SPARC-10 workstation. It follows
from the figure that the LGSA needs more computa-

Some of the motion compensated Images can also be found
there for comparing the perceptual quality of different search
algorithms.

tions than the TSS does, but still has fairly low com-
putational complexity as compared to the FSA. When
the frame rate is high and the video sequences contain
only slow moving objects, the computational costs of
the genetic method become non-negligible. This is be-
cause the performance of the TSS method is only a
little worse than that of the FSA, i.e., the improve-
ment achieved by the genetic method is very limited.
On the other hand, the computational complexity of
the LGSA becomes reasonable when the frame rate is
low or when the objects in the video sequences move
very fast, because the performance of the TSS is unac-
ceptable in these cases.

FSA
1010.45

TSS
31.74

LGSA
51.51

Algorithm
Average Search Number

Table 3. Average search number for each block.

LGSA
TSS ¢

FSA

LGSA
TSS |

FSA |

Figure 2. Comparisons of the computational com-
plexity ratio, (a) average search number, (b) av-
erage evecution time.

4. Conclusion

In this paper, a new GA-based block matching al-
gorithm is proposed. By applying GAs, the proposed
algorithm overcomes the local minima sticking prob-
lem by including several search points simultaneously
during the searching process. It is shown that the per-
formance is very similar to the FSA. Due to the spe-
cial design of the genetic operations, the computational
complexity is under control (i.e., very close to the TSS)
and is much lower than that of the FSA. In low bit-rate
video coding where the frame rate is not high or in the
applications where the motion of objects is violent, the

547

LGSA can be applied without much degrading of the
image quality.

References

[1] J. R. Jain and A. K. Jain. Displacement measurement
and its application in interframe image coding. /EEFE
Trans. Commun., (1):1799-1808, Dec. 1981.

R. Srinivasan and K. R. Rao. Predictive coding based
on efficient motion estimation. [EEE Trans. Com-
mun., pages 888-895, Aug. 1985.

C. H. Hsich, P. C. Lu, J. S. Shyn and E. H. Lu. Motion
estimation algorithm using interblock correlation. /EE
Electron. Lett., (5):276-277, Mar. 1990.

A. Puri, H. M. Hang and D. L. Schiling. An effi-
cient block-matching algorithm for motion compen-
sated coding. In Proc. IEEE ICASSP 87, pages 25.4.1~-
25.4.4, 1987.

(2]

[5] M. Ghanbari. The cross-search algorithm for motion
estimation. [EEE Trans. Commun., pages 950-953,
July 1990.

T. Koga, K. linuma, A. Hirano, Y. lijima and T. Ishig-
uro. Motion compensated interframe coding for video
conferencing. In Proc. Nat. Telecommun. Conf., pages
5.3.1-5.3.5, New Orleans, LA, Nov. 1981.

H-M. Jong, L-G. Chen and T-D. Chiueh. Accuracy
improvement and cost reduction of 3-step search block
matching algorithm for video coding. [EEE Trans.
Circutts Syst. Video Technol., (1):88-90, Feb. 1994.
Keith Hung-Kei Chow and Ming L. Liou. Genetic mo-
tion search algorithm for video compression. [EEFE
Trans. Circuits Syst. Video Technol.. (6):440-445,
Dec. 1993.

In Kwon Kim and Rae-Hong Park. Block matching al-
gorithm using a genetic algorithm. In in SPIE Sympo-
stum on Visual Communications and Image Process-
ing, pages 1545-1552, Taipei, Taiwan, May 1995.

J. H. Holland. Adaptation in Natural and Artificial
Systems. University Michigan Press, AnnArbor, 1975.

