
Technical Report

Department of Computer Science
University of Minnesota
4-192 EECS Building
200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 97-008

Creating a Virtual Network
Laboratory

by: Yen-Jen Lee, Wei-hsiu Ma,
David H.C. Du, and James A.

Schnepf

Creating a Virtual Network Laboratory

Yen-Jen Lee, Wei-hs iu Ma, and David H .C. Du1

Distributed Multimedia Research Center & Department of Computer Science
University of Minnesota

Minneapolis, Minnesota 55455
{ylee,wma,du }@cs.umn.edu

James A. Schnepf
Department of Computer Science

College of St. Benedict/St. John's University
Collegeville, Minnesota 56321

jschnepf@cs.csbsju.edu

Abstract

Net.working technologies have entered an unprecedented era after the explosive growtr of the Internet
and the roll-out of high speed networks. This paper addresses the concept of using exis1 ing multimedia
and computer networking technologies to create a remotely accessible, virtual network laboratory that
can expand student access and eliminate many of the time, geographical, and cost constraints that
currently exist . The authors propose a framework for constructing lab modules for a virtual network
laboratory. A prototype has been developed for a series of Java-based modules that allow students
to access and interact with the virtual laboratory databases and physical networking devices in a
user-friendly manner. It provides a demonstration of networking concepts by usinf; the developed
materials in new courses at each of the participating universities.

Keywords: Collaboratory, Virtual Laboratory, Internet, WWW, Java, Network Analyzer, Ethernet,
ATM, HIPPI, Fibre Channel

1This work is partially supported by the University of Minnesota-IBM Shared Research Project and NSF Grant CDA-
9502979.

1

1 Introduction

As modern society moves into the information age, electronic communication has taken on increased
importance in many facets of life. The number of people and machines connected to the global Internet
continues to grow exponentially. The government has made the building of the National Information
Infrastructure (NII) one of its top priorities as we move into the 21st century. The technology underlying
network communications is changing rapidly. After twenty years of relatively stable communications
technology, there has been a jump in new protocols and technologies to support data rates in the gigabit
per second range over wide geographical areas .

There is increasing recognition of the need to train a more technically qualified workforce with an
understanding of the concepts of computer networking and how to effectively apply concepts learned
in the classroom to real world problems. In addition, many professionals currently in the networking
field are overwhelmed by the changes, and also need further education and training to maintain their
mastery of this area.

Science and engineering department have long recognized the need for laboratory experience for their
students; it is through these experiences that students deepen their understanding of the conceptual
material presented in the classroom. In contrast, networking courses are traditionally conceptual in
nature with little opportunity for students to apply what they have learned in order to strengthen their
knowledge. This situation does not provide for an adequate understanding of the concepts and the
practical applications of those concepts.

To address these urgent needs, and to overcome the shortcomings of current approaches, we are de
veloping a virtual network laboratory environment. The kernel will consist of a collection of multimedia
learning modules which can be executed on most workstations and PCs. The modules are designed to
allow students carry out hands-on networking labs in a virtual environment. Th.s virtual laboratory
will be easily accessible over the Internet.

Individually, several universities such as the University of Minnesota have made efforts to provide
laboratory education regarding networking. Three years ago, the University of Mi rmesota (joined with
North Hennepin Community College) established a Bachelors of Information Networking (BIN) based
on extensive discussions with industry on what they perceived as needs for future graduates. The
program provides students with a fundamental understanding of networking concepts and of distributive
programming. This foundation is built on by providing more course work on the implementation and
management of these networks and courses that provide exposure and understanding of cutting edge
technologies currently being researched that will become the network technologies of the future.

To support these courses, a "bands-on" network lab was established at North Hennepin Community
College with some industrial donations and more than a $100,000 budget. However, because of the
interconnectivity and interactions, this lab can only support a limited number of students and it is
difficult for students outside of the BIN program to access the equipment.

The rapid changes in information technologies challenge educational institutions to change the way
in which they carry out their educational responsibilities and the number of stu<1ents they can reach.
The issues involved can be summarized as follows:

• Programs need to bridge the theory and practice of networking technology .~nd provide students

2

"hands-on" experience with computer network environments.

• These programs need to reach more students with a cost effective deliver~, that can leverage
expensive equipment. Physical laboratory space and communications equipment are expensive to
maintain and operate. This limits the number of students that can be provided with· a hands-on
experience.

• Networking and communications technologies are changing rapidly. To prevent student knowledge
from being obsolete as soon as they walk out the door, these programs must include access to
state-of-the-art communications equipment and technologies. Access to hardware and software of
emerging technologies must be made "available" to students before they reach the marketplace.

• These programs must break the geographical and time constraints of traditional educational pro
grams. Ideally, students should be allowed to access course materials and cor.:imunications equip
ment at different times and from different places.

Other areas of science and engineering deciplines are also undertaking this route to address electronic
educational components, grant scale collaborative work and sharing of unique scientific instrumentation.
The Mocha model [l] provides algorithm animation using WWW and Java [2] to assist the algorithm
designers and students to understand algorithms by visually following their step-by-step execution and
demonstration. Mocha is very close to our goal in promoting the use of distributed interactive platform
neutral multimedia applications over the Web for education. Collaboratory [3] coins the term by a
prototype implementation that provides a loosely integrated set of Internet capabilities that appear as
extensions to the Web to start or join multitool collaborative sessions. Madefast [4j is an early example
of collaborative work by defense contractors using WWW. They have been developing Internet-based
tools, services, protocols, and design methodologies that will allow cont ractors to compose teams of
specialists from different locations and organizations as project needs arise, and to achive results.

The paper is organized as follows. Section 2 describes the framework to construct virtual network
laboratory functional modules. In section 3 and 4, we discuss the system design of a functional prototype
with two components: a protocol analyzer and a performance analyzer, respectively. They fit in the
NetSniff and NetLoad modules described later. Section 5 outlines the implementation and operation
of the lab module prototypes. We conclude the paper and describe programs which put this work into
practice in section 6.

2 Framework

To support the development of the virtual lab environment, we proposed a three-stage appraoch
to the design and implementation. In each of these stages, we will develop a collection of multimedia
learning modules using Java [2], an object-oriented programming language. We will center (but not
limit) these modules on the series of instructional lab exercises we have developed for the B.I.N, program.
These labs exercises include:

• Apple Computers with Appletalk

• Networking UNIX Workstations with TCP /IP over Ethernet

3

• Configuring DNS on Unix Workstations

• Networking WindowsNT and Novell PC's over Ethernet

• Interconnecting Heterogeneous Networks

• Configuring and Using Dedicated Routers

• Trouble Shooting Network Problems

• Network Management

• Measuring Network Performance

• Setting Up a Firewall

A key element in the lab agenda is that, almost every lab exercise uses a network analyzer to
tap in the network to watch protocol activities and performance. In addition, a few labs offer first
hand installation and configuration experiences to students who have never had a :hance to work with
dedicated internetworking products, e.g. Lab 6 to configure and use a router. These capabilities need
to be supported in our virtual laboratory as well.

2.1 Approach

The stages of development are as follows:

1. Establish an environment where students can remotely access equipment in the lab and carry
out experimrnt.s without having to physically be located in the lab. This will potentially include
limited access to high speed networking devices that students would rarely have an opportunity
to access otherwise. For instance, Figure 1 depicts a partial view of the network infrastructure
support in the Department of Computer Science at University of Minnesota (the computing nodes
are also interconnected by Ethernet not shown). This also includes a coll~~borative effort with
industrial partners to allow students access to the state-of-the-art equipment that educational
institutions cannot afford but are available at the industrial sites. This access will occur over the
ubiquitous Internet.

2. Develop a set of virtual laboratory experiments that can be performed at sitEs independent of the
network hardware location. These will be developed and carried out by:

• Physical performing, in the lab, variations of an experiment and capturing the resulting
output.

• Developing interactive multimedia modules that allows the student to establish varying levels
of network and device connectivity, and configure network software similarly to what would
be done in the physical laboratory.

• Allowing students to connect to a multimedia server to perform the experiments using a
rich set of parameters ·based upon the actual performance of experiments performed in the
laboratory.

4

3. Based upon the framework that has been developed for part two, develop a. set of experiments
based on new and developing technologies.

H,~h Perf onnonce Fib~ Channel
Arbiltolcd Loop (FC-AL)

Serial StorJg< An:hitcc1u1« (SSA)

ATM Switch

IBM RS/6000 Clu,1crs

Figure 1: A partial view of the network infrastructure support in the Department of Computer Science
at University of Minnesota, Minneapolis campus.

Students will perfom the experiments via a collection of multimedia learning modules. These modules
will be developed in a platform-neutral approach in a networked environment. The seamless integra
tion of WWW and Java enables a platform-neutral implementation of the system modules. Remote
invocation of the laboratory modules is transparent to end users.

The following modules are planned for development:

• a Net.Sniffer module that supports a variety of networking standards (including: Shared Ethernet,
Switched Ethernet [5], Token Ring, FDDI, ATM [6], HIPPI [7], and Fibre C.:iannel [8, 9]),

• a NetConfig module that allows a network design to be configured and tested in the virtual lab,
and

• a NetLoad module that allows captured network traffic patterns to be run 0 .:1 the system designs
created by NetConfig.

Existing network monitoring and management tools are typically software driven, with interactions
and results made possible through a traditional computer keyboard and monitor interface. With virtual
laboratories, we can provide " unlimited" access to "simulated" equipment that ·s directly under the
control of the students using widely available personal computer technology. T he student might not
even be aware that real hardware is not being used.

5

It is intended that this access will provide students with the full range of interactions that would
be available in the laboratory in real-time with an interface that is similar in functionality to the real
interfaces in the lab. It is our hope that by making this flexible environment widely accessible, we can
attract students who are traditionally left out of many science and mathematics pi ojects.

Emphasis on access in the third stage will be to provide students with experienceH using experimental
technologies where access to hardware is not yet feasible. Over the past five years there have been many
exciting developments in high speed networks including the development of ATM, HIPP! and Fibre·
Channel. While these new technologies are likely to come into widespread use in the next few years,
computer science students have little, if any, exposure to them. Even those who :iave some exposure
to the concepts, do not have the opportunity to apply those concepts. It is difficult for academic
institutions to invest in equipment of new and unproven technologies and incorpo;:ate them into their
curriculum.

2.2 Module Design using Java

The module design consists of three correlated components: client runtime, server runt ime, and
physical networking device. The key design principles are ease-of-use and a platfor::n-neutral approach.
As shown in Figure 2 using Java for the design framework, client runt ime consists of: a graphical
user / command front-end interface to assimilate the look-and-feel of a physical device, a back-end access
object to simulate t he state and command control of the physical device, and a communication entity
for the back-end to retrieve pre-orchestrated simulation sequence or communicate with a physical device
through a proxy service.

The server runtime provides services to multiple clients concurrently. It uses a pseudo device object
to respond to clients' back-end access requests for simulated sequences; or, it may access a physical
device if the network access mechanism is available through a proxy agent. The sener's communication
ent ity has dual purposes as it communicates with client and physical devices if applicable.

Front-End.

Client/Applet

Java Runtime

Front-End

Back-End

Communication

Server

OS Runtime

Java Runtime

Pseudo
Device

Proxy
Agent

Communication

Device

Control Funcu :]

Communicatio,~

Figure 2: Framework for Virtual Network Lab Module.

6

The front-end includes a platform-neutral user interface and device-independeat primitives which
provide general control of executable content in Web page format or as a stand-alone application front
end interface.

Back-End.

The back-end access object coexists with the front-end interface on the client platform to simulate
device-dependent portion of the lab, including state transition and operation of the device and protocol
decomposition. Generally, a state machine can be formulated for a given physical network device based
on its response to user command control. A simulation engine implements the state machine. In response
to the user input, the simulation engine generates requests to the server and feeds back responses to
the front-end.

Pseudo Device.

Pseudo devices on the server provides the client with simulated sequences and engineering data
through databases of experimental traces or synthetic results. A device can be identified by its manu
facturer and function. It is the client's responsibility to keep track of the state changes. Pseudo devices
simply supply the client's simulation engine with the requested dataset for specific device ID.

Proxy Agent.

Proxy agents bridge the gap between the client and the physical networking device. It provides the
client an abstraction to access proprietary management facilities pertaining to the physical networking
device. It also has the capability to reorganize the response from physical networking device into
presentable information for the client.

Communication Entity.

Communication entities provide remote data access abstraction for the simulation engine to access
the backing store (for instance, trace data or proxy service). They also provide server access to physical
device using device-specific management protocol.

Physical Networking Device.

Physical networking devices are the target of the concern in the lab experiment. A device generally
has integrated control and functional blocks. However, a device may or may not have network capability
to respond to queries directly from client back-end access methods. The server runtime provides a proxy
agent to address the reachability issue and also monitors the access to the device.

The coherent design of client runtime and server runtime for lab modules promotes common rc~nsable
objects and standard implementation paradigm without adhering to a specific hardware platform. De
velopment work can be done on a variety of platforms, and tests can be conducted over the Internet
and Web following this design methodology. Users of the developed modules will perceive a working
environment as it is physically present.

7

3 Protocol Analyzer

A protocol analyzer such as Sniffer [10] (which is, in general, a network analyzer with built-in expert
system) or Packetman [11] is an indispensable tool to capture and diagnose the bits and bytes going
across the network. The analyzer serves several purposes which are directly applicable to a production
network for network application developers and operators. First, communication protocol headers arc
decomposed into individual fields with high-level annotations. Users can conduct a careful inspection
and verification of the protocol to understand the meanings of headers and ider.tify implementation
flaws. Second, the analyzer catches the timing of protocol interaction. A replay on the captured data
based on the timing information truthfully reveals the sequence of protocol opel'ations. Finally, the
analyzer can display captured data in different formats and provide mappings among them. Captured
data can be stored for later use.

The Java module to simulate the protocol analyzer uses captured data from a network analyzer.
The module tailors down the functionality of a protocol analyzer for lab use. The d,?Sign of a few critical
components is as follows.

3.1 Front-End: Protocol Data Display

The front-end interface displays captured data in three views: frame summary, frame detail, and
hexadecimal data. These three views mimic the data display in a Sniffer protocol analyzing device. The
user controls the focal point by placing the mouse focus to the subwindow of a gi·1en view rather than
keyboard tabbing done with a Sniffer. The movement can be linear by skimming through the entries in
a subwindow, or non-linear by selecting the desired entry. Linear movement resembles sliding a viewing
window across a dataset. Non-linear movement causes jumping from one segment. to another segment
of the dataset.

3.2 Back-End

The back-end simulation engine implements a state machine as shown in Fii;ure 3 (the events t.o
trigger state transition are not explicitly shown). After initialization (power cycle), the state changes to
operation selection. The user has to capture data going across network first (data collection), and then
view the data in the data display.

Under data display, there are three internal states depicted in Figure 4. Each entry in the frame
summary subwindow collectively describes the meaning of a frame transferred over the network medium,
including timing, source/destination addresses, etc. When frame summary is the <.ctive state, the other
two subwindows, which provide details for a frame in distinct formats, are in lock-step synchronization
frame-by-frame with the frame summary. The frame detail and hex data views have additional lod<-step
synchronization requirement field by field. This provides a mapping between annotated field data and
associated binary information transmitted in the network.

8

Power

Cyde

·-----~

Figure 3: Finite state machine for protocol analyzer.

3.3 Communication Entities

The throughput and variation of network communication over the Internet is unpredictable. Smooth
user-perceived operation requires adequate bandwidth and buffer space to retrievf results from server
to client. We used a Sniffer and a stop watch to measure how fast that the Sniff,?r can inactivate an
entry in the frame summary and activate the next one (which will be highlighted) by pressing the arrow
down key to move across a range of entries over 10 seconds. Since detail view and hex view provide
further details for a frame, the information has to be available before it is being displayed as the user
switched to another entry in frame summary. The average moving speed is about 14 frames/sec with
a minimum and maximum of 13.8 frames/sec and 14.2 frames/sec. In addit ion, Sniffer annotates the
captured data frame and generates human readable information which is 2 to 3 times of the amount
of data contained in a frame. For a one shot test where most of the frames are ·~FS traffic, average
frame information size is around 4.4 KB (833752 bytes/188 frames). The result suggests a measure of
speed in human-computer interaction that would ideally be duplicated when using a protocol analyzer
module in a virtual environment. Under most stringent requirement, it takes about 500 Kbps channel
capacity to retrieve captured data over the network.

In addition to the bandwidth requirement, adequate buffer space is necessary to overcome commu
nication latency for on-the-fly viewing if the dataset can't fit in client's buffer spacE. While looking at a
data frame for a given transmission medium such as Ethernet, the next move of a user is either viewing
following frames or viewing previous frames. Jumping to a given frame is similar to re-establishing a
new working set of frames for sequential movement. Figure 5 shows the buffer requirements on the
client and server. The server may be serving multiple clients with different workin.~ sets from the same
dataset.

On the other hand, the overhead imposed by Java running on low-end PCs may adversely affect the
perceived interactivity and performance. Suppose the rate to inspect frame by frame in the front-end
interface of the protocol analyzer is Rf and average amount of data for a framu record is D f, then
the user-perceived display bandwidth is Bf = D f x RJ, If Bf :$ Bn (data retrif!val bandwidth) , the
continuity of display depends on the overhead in performing memory I/0 and display mapping in Java.

If Bf > En, the amount of memory buffer governs the interactivity. Assume the total amount of a

9

0
0

CD

CD
0
0

CD

Tabbing

Line jumping

Field jumping

CD

Figure 4: Finite state machine for data display in protocol analy~,er.

particular data set is Dr, and the buffer size is DB which is populated before accei,t ing user command.
The minimum pre-populated buffer size to maintain user-perceived continuity is der:ved as the following:

<

(T'ime to retrieve the rest of the data < Time for user to reach the end of the data)

Hence,

(1)

Coupled with the discussion on network bandwidth earlier, we can determine the client runtime
buffer size as well as server 's according to the simplified analytical formulation and design criteria.

4 Performance Analyzer

The objective of the performance analyzer is to provide hands-on experience on the performance
evaluation over the networks. Performance is a major issue of networks from Ethernet to high speed
networks, such as ATM. However, the resources and equipment in a network lab a re limited and only a
few students can access the network links and test them at the same time. The performance analyzer
in the virtual lab can help students access a virtual network remotely to analyze :ts performance. The
virtual network can be a real network link or a data set including pre-stored experimental performance

10

DB · Chcnt program/opplct buffer size

Dr Dau , ize

Server

User I User 2

Working Set

Figure 5: Client-server buff er requirements for protocol analyze1.

results of the network. The students can access different networks with various protocols or traffic
patterns in a virtual environment.

Different protocols and networks, have different characteristics. Some benchn:.ark programs, such
as Netperf [12], can be used to measure the network throughput under multiple protocols. Netperf
provides tests for TCP streams, UDP streams, Fore ATM API streams, etc. The features of different
protocols have different effects on the performance of the same network. Some p rotocols are reliable
and others are not. They may use connection-oriented or connectionless service:,. Packet sizes and
protocol overheads are typically different. Hence, the analyzer has to provide the performance outputs
with respect to the characteristics of the protocols and their performance data. The parameters for
protocols can be adjusted such that students can recognize the effects due to the parameter changes.
They can also learn how to tune a network system to get the best throughput.

Additionally, different applications and scenarios generate different traffic pat terns. Students can
use the analyzer to monitor the effects on performance when they observe traffic patterns of different
applications. such as file transfer, short message passing, or multimedia data delive·:y. Students can use
this module to analyze t.he performance of specific traffic patterns over different protocols or networks.
For example, the students may find which protocol is better suited to file transfor. If the file size is
variant, different results may occur. The analyzer also provides different probability models, e.g., Poisson
distribution, for the traffic patterns so that the students can further explore theoretical concepts.

The critical components of the performance analyzer are described as follows.

11

4.1 Front-End : Performance Visualization

The performance analyzer provides the user interface to change the paramet1:rs according to the
protocol and network the students want to learn. The interface of the analyzer helps students visualize
the performance outcomes. It is possible to display these outcomes when the performance is evaluated
in real-time. Different protocols may need different layouts to illustrate the behaviors which are th<>
major reasons of the performance differences.

4.2 Back-End

Figure 6 illustrates the state machine of the back-end in the performance a-:ialyzer. The initial
state is protocol selection which waits for the user's selection of a connection-oriented or connectionless
protocols. If the student picks a connection-oriented protocol, the back-end first enters the connection
setup state and asks the server to setup a connection. The state machine then transfers to the per
formance measurement state. During this state, the performance evaluation is exEcuted. The student
can stop the lab temporarily or reset the lab for another test. For connection-orii~nted protocols, the
back-end can keep the connection in the connect ion holding state.

0

0

0

0 Connection-oriented 0 Stop Stream

0 Connectionless 0 Stop Datagram

0 Connection established © Reset

Figure 6: Finite state machine for performance analyzer.

4.3 Communication Entities

The communication entities in the performance analyzer are designed to send and receive infor
mation during the performance measurement. Each runtime program treats its entity as a channel
to communicate with the other runtime. The entities may need to support multiple connections and
handle the requests from different locations.

There are three communication entities on the client, server, and device, respectively. Control and
data message passing occur between them. The client applet connects with the ser·,er and sends control

12

messages to request different operations. The communication entity on the server sends control signals
to and retrieves performance results from the pseudo device or the entity on the real device. The entity
on the server then reports the results to the entity on the client. The messages must be designed to
achieve the needs of these communication entities. We designed an application level protocol for the
entities of the analyzer. Table 1 lists the categories of the messages, but the liEt is not exhaustive
and can be extended. The performance messages includes latency, throughput and packet status. The
control messages control the execution of the measurement. Some parameters can be set according to
the parameter messages.

Category I Item
Performance Latency

Throughput
Packet Status

Control Start
Stop
Reset

Parameter Protocol
Traffic Pattern
Message Size
Loop Number

Table 1: Message Category

There are two models, the push model and the pull model, for the communication between the client
and the server. The push model requires the server to continually send updated rei;ults to the client at
default time intervals. For the pull model, the client sends a request to server and n :trieves information.
Due to the high propagation delay of the Internet, the performance analyzer use~ the push model to
provide best-effort transmission for real-time data without wait ing for the request fl om the client. Even
for the pre-stored performance data, the push model can provide the closest <lat a update as on the
server side. The student can ask for the pull model to adjust the rate of update b.) the client applet.

The performance analyzer allows multiple students to retrieve the performancti data in the virtual
network environment at the same time. The communication entity on the server maintains multiple
connections with the clients. Since each client may have a different requests for measurements, the
server has to maintain a data structure for each client to record its requests and current status. The
items of the structure are listed in Table 2. The status of the client is also maintainE:d on the server such
that the server is awarf' of the current state of the state machine in the client back-end. The connection
setup time is stored to help the server check if this connection is holding for too long. The server may
force a connection time-out and disconnect the communication. The list also includes the requested
protocol, traffic pattern and transmission model.

5 Prototype Implementation

We have developed two functional components according to the framework ,md design described
earlier. One is a simple protocol analyzer to address the NetSniff module. The othn is the performance

13

I Item I Possible Value
Client Status Connection Setup

Communication Holding
Performance Measurement

Connection Setup Time Hour:Minute:Second
Protocol Selection TCP

UDP
ATM

Traffic Pattern Poisson Distribution
Best Effort

Transmission 1Iodel Push Model
Pull Model

Table 2: Data Structure Items for Each Client

analyzer which provides real-time network throughput and latency measurement for the NetLoad mod
ule.

5.1 Protocol Analyzer

The Protocol Analyzer implements a protocol data display which is self-executable in a web page
with a Java-enabled browser or appletviewer. The appearance of the browser component is depicted
in Figure 7. There is a stand-alone server application written in Java to feed simulated sequences to
the client. A genuine protocol analyzer listens to network activity, but does not generate any traffic
on that network. If the network monitored is a shared Ethernet segment, it is put in a promiscuous
mode to pick up any, or selected, conversations. For instance, the lab regarding AppleTalk would focus
on AppleTalk frames only. The operation of a protocol analyzer has distinct ph:\.Ses of data capture
and data display. Hence, the network traffic is captured and stored beforehand ra.ther than displayed
on-the-fly. The simulation engine will make a transition from a Jake capture to a real protocol data
display.

In Figure 7, there are three text display subwindows. The upper subwindow displays the frame sum
mary. The particular format we have adopted shows sequence number, time difference between frames.
destination or source address (either resolved by name or in digits) , the application layer protocol, ori
entation (request or response), and application message summary. The middle and lower subwindows
are in sync with upper subwindow and provide the details for the highlighted frame.

The prototype is flexible enough to display different protocol suites as long as they are in a layered
structure. Existing protocol families are. The simulation engine in the applet is ab:e to interpret header
formats if a protocol family is the focus of the lab exercise. This capability provides a mapping between
field information in the detail view and binary information in the hex view when the focus of user
interaction is in the middle subwindow.

14

;=·~=I = = =======Ne=ts=ca==ipe=: =VNi=e=tS,=n=iff====:=:=::==:;;:::::=::::::::;:::::::::;::;;:::==l..:J _J

File Edit View Go Bool<marl<s Options Directory 'Y.ffldow Help I

Location: http:/ /nebula, cs. umn. edu1 7100/virlab/VNetSnif

What's New! What's Cold! Handbook! Net Search! Net ol;ctoryJ software)

VNetSniff

Figure 7: Protocol analyzer screen layout for data display.

15

5.2 Performance Analyzer

The current implementation of the performance analyzer provides enables monitoring of real-time
performance for TCP and UDP protocols. For the TCP protocol, the analyzer measures the round-trip
latency over the target network between two machines and calculates its throughput according to the
TCP message size. The result is reported and visualized on the user site. The analyzer uses the same
mechanism for the UDP protocol. However, in addition to the performance report , the receipt or loss
of each UDP packet is also shown to the students.

Client

Web Browser

UDP Java
Applet

Server

TCP Java
Applet 1-++--------- --+-< .__ ___ __,

Java Server

The Internet Target Network

Figure 8: Performance analyzer architecture.

Echo Server

UDP Echo
Server

TCP Echo
Server

Figure 8 depicts the software architecture of the implementation on the client, server, and the echo
server machines. The client executes the virtual lab Java applet which communicates with the web
server and Java server. The web server provides the web page and applet downh:>ading to the client.
The client applet also exchanges some information with the Java server and updates the current status
of the performance evaluation. The real performance test happens between the server and the echo
server. The two servers are connected by the target network we want to observe. According to the
protocol chosen on the client, the Java server connects with the TCP or UDP echo server.

The analyzer provides the performance data for different message sizes of the TCP protocol. The
outcomes of the network throughput between the Java server and the echo server are transmitted to the
TCP Java applet. The screen layout for TCP is illustrated in Figure 9. Five differimt message sizes are
evaluated. The Java server sends messages of different sizes in round-robin fashior: and gets them back
from the echo server. The Java applet retrieves the results of the round-trip latency and throughput of
each message and updates the statistic bars on the screen. The height of the bars change dynamically
to reflect the current amount of the performance outcomes. The maximal, minimal and average results
are also included. The text area in the bottom shows the received message. The start, stop and reset
buttons control the state of the back-end in the analyzer.

Figure 10 demonstrates the screen capture for the UDP protocol. Because· UDP is an unreliable
datagram protocol, some packets may be lost during the transmission. The upper part of the UDP Java
applet interface indicates which packets are lost and which packets are transmitt,?d successfully. Each
bar represents a UDP packet. The status(ready, sent or received) is shown by a different color and is
dynamically changed according to it current status. The underlying mechanism ,.nd other layouts are
similar to those for TCP

16

,. , ..

Ale Edit View Go Bookmar1(s Options Directory Wimfow Help

LocaUon: ttp://nebula.cs.urnn.edu:7100/virlab/labl.html

What's New! What's Cool! Handbook! Net Search! Net Directory] Sof~j
II

Figure 9: Performance analyzer screen layout for TCP.

17

Figure 10: Performance analyzer screen layout for UDP.

18

6 Conclusion

The need for a virtual network laboratory bridging from concept to application goes far beyond
the scope of specialized networking programs. It leverages the high cost of establishing, maintaining,
and operating a state-of-art networking lab. With rapidly changing technology, it becomes crucial that
faster research to curriculum is achieved. We are using the research facilities at our institutions and the
facilities of our industrial partners to design and build modules that include new and developing network
technologies. Access to the existing and new networking technologies over the Internet using WWW
and Java provides one of the most cost effective methods to maintain and improve our workforce. This
work presents an educational prototype to analyze computer communication protocols and visualize
network performance. The developed modules will be introduced to the BIN program first in winter
1997 time frame. Future work shall extend the existing base and provide a remote configuration facility
with similar design framework.

ACKNOWLEDGMENT

Kung-Feng Chen helped on the implementation of performance analyzer whiln completing his un
dergraduate study in Computer Science at University of Minnesota. The systems sf.aff, including James
MacDonald, Mike McShane, Andrew Nelson, and Irene Prigge, in our Department provide excellent
support to the BIN lab. The presentation of a few diagrams is not possible without the art work
contribution from Jenwei Hsieh.

References

[1] James E. Baker, Isabel F. Cruz, Giuseppe Liotta, and Roberto Tamassia. A :-.J'ew Model for
Algorithm Animation Over the WWW. ACM Computing Surveys, 27(4):568-,)72, December 1995.

[2] Marc A. Hamilton. Java and the Shift to Net-Centric Computing. IEEE Computer, pages 31- 39,
August 1996.

[3] Richard T. Kouzes, James D. Myers, and William A. Wulf. Collaboratories: Doing Science on the
Internet. IEEE Computer, pages 40- 46, August 1996.

[4] Mark R. Cutkosky, Jay M. Tenenbaum, and Jay Glicksman. Madefast: Collaborative Engineering
over the Internet. Communications of the ACM, 39(9):78- 87, September 1991i.

[5] Mart Molle and Greg Watson. lO0Base-T/IEEE 802.12/Packet Switching. IEEE Communications
Magazine, 34(8):64- 73, August 1996.

[6] Ronald J. Vetter. ATM Concepts, Architectures, and Protocols. Communications of the A CM,
38(2):30-38, February 1995.

[7] Don Tolmie and John Renwick. HIPP!: Smplicity Yields Success. IEEE Network, pages 28-32,
January 1993.

19

[8] Clint Jurgens. Fbre Channel: A Connection to the Future. IEEE Computer, pages 88-90, August
1995.

[9] Martin W. Sachs and Anujan Varma. Fibre Channel and Related Standards. IEEE Communications
Magazine, 34(8):40-50, August 1996.

[10] Network General Corporation. Expert Sniffer Network Analyzer Operations Network General
Corporation, 1992.

[11] Bradley Williamson. Packetman vl.2 User Manual. School of Computing, Curtin University of
Technology, Perth, Western Australia, 1995. Available via ftp://ftp.cs.curtin.edu.au/ pub/netman/.

[12] Hewlett-Packard Company. Netperf: A Network Performance
2.1. Informat ion Networks Division, Hewlett-Packard Company,
http://www.cup.hp.com/netperf /NetperfPage.html.

20

Benchmark, Revision
1996. Available via

