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Abstract

Despite growing interest in multimedia data
management, audio retrieval has received little attention.
In part, this can be attributed to existing unstructured
audio representations that do not easily lend themselves to
content based retrieval and especially browsing. This
paper aims to address this oversight. It begins by
reviewing existing techniques and the specific problems
posed by unstructured representations. Some
characteristics of audio perception that may be exploited
in the solution to these problems are then presented. A new
structured representation is then detailed that is designed
to support content based retrieval and browsing. Finally,
the suitability of this representation for its intended
purpose is discussed.

1. Introduction

The sudden explosion of the Internet, in combination
with the ready availability of technology to capture and
store multimedia data, has resulted in large, and ever
increasing stores of multimedia data. Despite a
corresponding increased level of interest in multimedia
data management, audio data has received very little
attention. This is due, not to a lack of importance, but
rather to specific difficulties posed by the medium. In
particular, existing unstructured audio representations
complicate the tasks required in audio data management.
In particular, extracting perceptually salient index
attributes and allowing non sequential access pose a
challenge for conventional representations.

There are many applications that would benefit from
content based audio retrieval and browsing methods. The
most obvious is the extension of retrieval possibilities from
the World Wide Web. Without support for random access
and content based retrieval of audio, this will never be a
true hypermedia system as intended. Among the many
other applications that would benefit from audio retrieval

techniques are content based video retrieval[1] and the
management of voice mail messages.

Even a very coarse level of classification based on the
type of audio (speech, music or other) can often be useful,
especially during browsing. For example, locating a
desired section in a concert recording is greatly simplified
if it is first segmented into pieces by the location of non-
music sections (applause, silence or speech). However,
traditional audio coding techniques result in
representations that make extracting even this low level
information difficult. This is because traditional
representations are unstructured, aiming only to reproduce
the signal (or a perceptual equivalent) while providing for
compact storage. In contrast, content based retrieval and
especially browsing benefit from structured
representations.

This paper presents a perceptually congruent structured
audio representation designed specifically to support
content based retrieval and browsing. The next section will
review some of the general issues pertinent to audio
retrieval as well as examining existing work in the area and
the benefits of a structured representation. Relevant
psychoacoustic principles will then be outlined. This is
followed by a description of a new structured audio
representation. Finally, methods of content based retrieval,
based on this representation, will be outlined.

2. Audio retrieval

Two basic access methods are required in an audio
retrieval system: content-based retrieval (searching) and
browsing. Searching is used to recover an audio segment
as the result of a specific query while browsing allows the
user to navigate through the data in an orderly fashion or to
find a desired passage based on loosely defined criteria.

2.1 Content based retrieval

Content based retrieval is useful when the user has a
definite idea of what they wish to recover. Searches may be



based on broad queries to find data of a single ‘type’ (eg,
‘retrieve all occurrences of speech’) or on specific queries
based on the semantic content of an audio record (eg, ‘find
the song that contains the melody...’).

There are a number of methods by which queries can be
posed. The lowest level involves specifying the numerical
values of the index keys directly. This is obviously of little
practical use. Text based queries, while suffering some
problems mentioned later, may be useful when specifying
broad search categories. The most natural, and useful, form
of query from an audio database is by example (eg, the
desired melody is hummed into a suitable interface to form
the query).

To support content based retrieval, two things are
required: segmentation and component labelling (or
indexing). Segmentation involves dividing the data into
cognitively significant sections. Using existing,
unstructured representations, this can be a tedious or
computationally intensive task in itself. The selection of
index keys is the most significant issue in content based
retrieval since the index keys directly influence the nature
and scope of queries supported. Possibilities range from
manual annotation to automatically generated statistical
feature vectors.

Manual annotation suffers many drawbacks. The most
obvious being that it is extremely tedious and not practical
for a large database. Another drawback is the severe
limitation on the scope of possible queries. These limits
are imposed by the selection of index attributes which is
itself limited by the fact that some features of audio are
difficult, or impossible, to identify using simple textual
descriptions (eg, timbre).

Recent audio retrieval systems use automatically
generated feature vectors as index keys[2]. These vectors
describe attributes such as the brightness, bandwidth and
harmonicity of the signal and are generated by performing
statistical analyses of the audio signal. An advantage of
this technique is, being automatic, it is of greater practical
value. Also, the non verbal description is more generic and
thus more flexible. However, the scope of retrieval is still
restricted by the feature analytic nature of the attributes:
that is, they posses little cognitive significance. For
example, bandwidth would have little semantic value to an
untrained user.

2.2 Browsing

Browsing is required when a user can’t specify a query
exactly, or to review search results where several
possibilities have been retrieved. The first instance
requires that broad queries (‘find all sections containing
speech/modulation/transitions’) be supported while the
second requires non-sequential access and a logical,

hierarchical structure. This structure may be inherent in the
data itself, as a result of some grammatical property, or
may be the result of a classification based on attributes of
the data. The former can be applied to musical and speech
data whilst the latter is applicable to instances of discrete
sounds, such as general environmental sounds.

Music has a structure that may be viewed in a number
of ways[3][4]. The basic hierarchy divides pieces into
phrases that in turn are composed of notes. Speech may be
organised according to speaker transitions[5][2] then into
individual phrases or words by silence detection. Discrete
environmental sounds have no grammar upon which a
structure can be based. In this case, a hierarchical structure
may be developed by performing a categorisation on
qualities such as loudness, pitch or harmonicity of the
signals[2].

In the few existing systems where browsing is
supported, the structure is generally temporal rather than
content based. Time-line representations[5] or time
compressed play-back[6] provide only a very low level of
browsing support. In such systems, the user still needs to
be reasonably familiar with the content of each section for
there to be any benefit. True content based browsing will
often be of much greater value.

To support content based browsing, not only does the
data require a structure, but also perceptually significant
attributes need to be readily accessible at a fairly high level
of temporal resolution. For example, a user may wish to
recover all sections of a recording that contain a particular
rhythm pattern. Existing generic audio retrieval systems
that perform segmentation of the data based only on the
type of sound do not have the necessary resolution to
support such browsing. This shortcoming can be attributed
to the reliance on unstructured audio representations and
segmentation and classification based on attributes that
have limited cognitive significance.

2.3 Existing work

The existing work in audio retrieval tends to divide the
domain into two distinct sections: speech and non-speech,
with the non-speech category further subdivided into music
and general environmental sounds. Of the existing systems,
most focus on only a single category. Speech data has
received by far the most attention and very little existing
work encompasses all categories. As a result, many
methods exist to segregate speech from other forms of
audio[7][8] These may be useful to provide a coarse index
by type but do not fulfil the requirement of content based
retrieval.

For speech, transcriptions derived using automatic
speech recognition would seem to be an ideal method of
generating an index. However, this is not yet possible in



unconstrained environments[9]. Thus manual intervention
is often required to create an accurate index. Also, speech
signals contain much semantic content that would be lost
in a simple transcription (eg prosodics).

Indexing musical data requires some means of accessing
melodic information. MELDEX, a score based retrieval
system, takes queries by example, transcribes them into
musical notation and uses this description to search
through a database of musical scores[10]. Ghias et al[11]
propose a system for melody retrieval that relies on
converting queries into strings of relative pitch transitions.
Searches are performed in an index containing similar
strings as keys. This index is generated directly from MIDI
files, which contain score information. Both systems are
akin to searching a speech database using textual
transcriptions and thus suffer similar drawbacks, including
the loss of semantically significant information. Also, these
methods are highly constrained.

Systems for the retrieval of general environmental
sounds involve the calculation of feature vectors for use as
index keys at query time[2][12]. In [12], speech
recognition techniques are used to create an index. The
biggest disadvantage of this method is that such an index
could not support queries of the nature “find recordings
that sound like…” This problem is solved by calculating
statistical feature vectors based on generic acoustical
properties of the audio signal[2]. However, these vectors
only describe discrete sounds in a holistic sense so
extracting higher level information, such as pitch contours,
requires further processing. Thus, while some content
based browsing is supported, it is of a very low level. For
example, it may be possible to gain ready access to all
musical sections in the collection but it would be difficult
to find changes of key within a piece.

All these systems can only handle a single type of audio
at a time. A mixed collection of general sounds must first
be segmented before creating the index, usually in a
completely separate process. This results in the
introduction of processing overheads. Additionally, these
systems rely on separate index or metafiles, thus,
increasing storage requirements for data that is already by
nature voluminous. Finally, very little, if any, support for
browsing exists within these systems.

2.4 Benefits of a structured representation

Many of the problems suffered by existing audio
retrieval systems can be attributed to the reliance on
unstructured audio representations. Existing audio
representations give very little indication of the actual
content of the data encoded. With such representations,
processing and storage overheads are an inevitable
consequence of the desire to provide support for retrieval

and browsing. Also, the underlying structure of the data is
not directly apparent in these unstructured representations,
which is counter to the requirements for browsing.

A number of key attributes appear to be extracted from
an audio signal during the process of human audio
perception. Basing a representation on these attributes is
an obvious means of aiding content based retrieval since a
mid-level index is effectively ‘built in’ to the
representation. As these attributes are perceptually based,
they will most likely support higher level queries. For
example, minimal processing is required to determine the
type of a sound (eg speech) given access to such attributes.
Although each sound type might eventually be treated
differently, segmentation does not introduce significant
processing overheads

In order to support browsing, identifying a structure in
the data is vital. Having isolated the key cognitive features
of an audio signal, psychoacoustic principles can be
applied to identify any inherent structure in the data. An
additional benefit is that since this structure is perceptually
congruent, it is better able to support semantically useful
content based browsing.

3. Perceptual considerations

The representation presented in this paper exploits
aspects of human audio perception to achieve three aims.
The first, common in audio coding[13], is to reduce
redundancy. Less common applications of psychoacoustics
are to provide the data with structure and to isolate key
cognitive features.

3.1 Peripheral processing

Audio signals undergo a frequency transformation
effected by the basilar membrane in the inner ear. The
result is a representation of the input audio in a three-
dimensional (time, frequency, intensity) space known as a
time-frequency distribution (TFD).

This process displays several interesting phenomena
relevant to the representation presented in this paper. The
first is that the TFD consists of axes that are non-uniformly
sampled. Frequency resolution is coarse and temporal
resolution is fine at high frequencies while temporal
resolution is coarse and frequency resolution is fine at low
frequencies. Also, the amplitude axis displays a frequency
dependent non-linearity.

Another interesting phenomenon is masking. If two
signals in close frequency proximity are presented
simultaneously, the less intense sound may be rendered
inaudible. The two signals may be tones or noise. Masking
can also occur when two signals are presented in close
temporal proximity.



3.2 Mental Representation of Audio

The signal reaching the ear is a mix of signals from
many different sources. However, humans are able to
distinguish individual sounds. The process responsible is
stream segregation. Stream segregation involves
decomposing the signal into its constituent parts (partials)
then grouping them into streams: one for each sound.

At a basic level, one can model audio representation in
the human mind as a series of peak amplitude tracks in a
time-frequency-intensity space[14]. Three audio classes
exist: frequency sweeps, tone bursts and noise bursts. The
representation of these classes is shown in Figure 1.

Noise bursts

Tone bursts

Frequency

Time

Frequency sweeps

Figure 1:  Mental representation of audio

There appears to be a set of general principles that are
applied in achieving the task of stream segregation. These
principles include[15]:

• Similarity: tones similar in frequency tend to be fused.

• Continuation: partials representing smooth transitions
tend to fusion. Rapid transitions tend separation.

• Common fate: partials with similar onset times and/or
correlated modulation tend to be fused.

• Disjoint allocation: in general, each partial can belong
to only one stream.

4. Structured audio

4.1 Overview

The representation developed is essentially a parametric
description of the three sound classes identified in section
4.2. Incoming audio data is analysed to produce a TFD.
The peaks in amplitude of this distribution are found and
tracked through time and frequency. Each resultant track is
then classified according to type (tone, noise or sweep) and
parametrically recorded. Finally, the tracks are grouped
according to psychoacoustic principles and encoded in
these groups. The process is illustrated in Figure 2.
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Figure 2:  Coding algorithm

4.2 TFD generation

Sinusoidal transform coding[16] represents audio
signals as a sum of sine waves with time varying amplitude
and frequency as follows:

( ) ( ) ( )s n a n ji i= exp φ (1)

where s(n) is the sampled audio signal and ai and φi are the
time varying amplitude and phase respectively of the ith
sine wave. Thus, the signal is described as a series of
amplitude trajectories through time-frequency space. This
technique would seem ideal for the purpose, however, it is
not completely suitable and has been adapted in two ways.

Conventionally, the parameters are estimated using a
short time Fourier transform (STFT) and the TFD is
sampled uniformly in time and frequency. This leads both
to redundancy and poor noise performance. To eliminate
redundancy and to avoid undesirable blocking effects, a
modified discrete cosine transform (MDCT) is used
instead of the customary STFT. Further, the TFD is
perceptually tuned, mimicking the time-frequency
resolution of the ear. The tiling in the time-frequency plane
is shown in Figure 3.

Time
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Figure 3:  Time-frequency resolution of the TFD

The TFD is generated using the filtering operation
described in Figure 4.
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Figure 4:  DCT-based TFD generation

The result of the operation shown in Figure 4 is five sets
of MDCT coefficients. The details of the time-frequency
resolution of each band are given in Table 1. Note that the
temporal resolution is half the window length since the
MDCT is implemented with 50% overlap.

Band
Number

Maximum
Frequency

(kHz)

Frequency
Resolution

(Hz)

Temporal
Resolution

(ms)

1 16 31.25 16

2 8 15.63 32

3 4 7.81 64

4 2 3.91 128

5 1 1.95 256

Table 1:  Frequency band data

To facilitate the down sampling operation, which
removes redundant data in the low frequency bands, the
input signal is recursively filtered. A FIR filter is used
which has the impulse response described by (2). To
reduce pass band ripple, a hamming window is applied to
the filter coefficients. The frequency response of the filter
is shown in Figure 5.

( )h n

n
N

n
N

N

c

c

=
−

−











−
−





= =

sin

,

.

ω

π

ω
π

1

2

1

2

2
81where  and 

(2)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-100

-80

-60

-40

-20

0

Normalised Frequency (f/fs)

M
ag

ni
tu

de
 (

dB
)

Figure 5:  Filter frequency response

Let xm(n) be a window of the signal at time m. The
MDCT coefficients are given by[17]:
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N/2 unique coefficients for a length N window, 50%
overlapped windows can be used without increasing the
data rate. The use of this overlap is desirable because it
helps to eliminate blocking effects.

4.1 Masking thresholds

Having generated a variable resolution TFD, acoustic
masking and quiet thresholds are applied to eliminate
perceptually redundant data. This helps compact the final
representation as well as simplifying the following stages
of processing.

The first step in calculating acoustic masking thresholds
is to transform the MDCT spectrum from the physical
domain, f, into the critical band (Bark) domain, z. This is
achieved using the expression[18]:
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The critical band spectrum is then convolved with the
basilar membrane spreading function to generate the
masking thresholds. The basilar membrane spreading
function is illustrated in Figure 6 and can be obtained
using[19]:
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Figure 6:  Basilar membrane spreading function

In addition to acoustic masking thresholds, quiet
thresholds are also applied. These thresholds mask out any
components that are too low in intensity to be audible.
Thresholds are those provided in the MPEG1 audio
standard [20]. Linear interpolation is used to derive
intermediate values not reported in the standard. The
resultant masking curve is shown in Figure 7.
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Figure 7:  Absolute threshold of hearing

Having obtained the thresholds, their application is
relatively straightforward. Firstly, the acoustic masking
thresholds are transformed back into the physical
frequency domain. These thresholds are then compared
with the quiet thresholds. Whenever the masking threshold

falls below the quiet threshold, it is replaced with the quiet
threshold. The signal spectrum is then compared with the
threshold. All coefficients that fall below the threshold are
set to zero.

4.2 Peak picking and tracking

The next stage of processing involves peak picking and
tracking. Peaks are found by searching for all points in the
TFD that satisfy the condition:
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where ( )X ft i
 is the amplitude at the ith frequency, f i

, in the

current time frame, t. Expression (6) is used instead of a
more straight forward test for the maximum of absolute
values since problems were encountered with coefficients
of similar magnitudes but opposite signs. Reconstruction
quality suffers when the ‘negative peaks’ are ignored. This
is a characteristic of the MDCT, which is a result of its
basis functions.
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X(f)

f

masked coefficients

Figure 8:  Peak picking

The result of the peak picking stage is a list of peak
amplitudes and frequencies for each time frame. Tracking
is performed according to the algorithm in [16] which
involves matching peaks from adjacent time frames that
are closest in frequency, within set limits. The process can
be summarised as follows:

��� Assume that a set of tracks is currently in existence
(initially, the first frame of peaks are taken as the
existing tracks). Denote their frequencies as ωmk, where
k is the track number and m is the frame number.

��� For each track, search the next frame of peaks, ω(m+1)j,
(j is the peak number) for all peaks whose frequency
falls within ∆ of ωmk of the last frequency in the track.
Mark these as suspect peaks.



��� For each suspect peak, check to see if there is a better
match in frame m. If a better match cannot be found for
one or more suspects, the closest in frequency to ωmk is
appended to track k. Otherwise, track k is said to ‘die’.

��� Any remaining unmatched peaks in frame m+1 are
added to the list of tracks.

∆

m m + 1

ωmk

Track ‘dies’

New track

ω(m+1)j

Figure 9:  Peak tracking

This algorithm has been modified to overcome specific
some problems encountered. Firstly, the varying resolution
of the TFD means that adjacent frames at low frequencies
are much further apart in time than those at higher
frequencies. This means that two frames that are adjacent
at low frequencies will not be adjacent in higher bands.
This is resolved by fixing the time index, m, relative to the
shortest analysis window (m = 1 corresponds to t =
16msec) and recording the current time index each time a
peak is assigned to a track.

Secondly, ambiguous cases often arise where two peaks
are equally likely candidate matches for a single track.
This is particularly relevant to the case of frequency
sweeps in close frequency proximity. To resolve such
cases, amplitude matching is performed in addition to
frequency matching. In particular, this has helped to
remove some of the horizontal bias that the algorithm
appears to display. As another solution to this problem,
Hough transforms, is being considered as an alternative to
this algorithm.

4.3 Track description

The peak picking and tracking stage results in a set of
tracks which describe the audio. The following information
is available for each track:

• start time;
• finish time;
• frame numbers;
• amplitude contour; and
• frequency contour.

The unit of time corresponds to the shortest analysis
frame length. The list of frame numbers is required since
the variable resolution means that amplitude and frequency
values may not be available at all times along a track, this
is of particular relevance to frequency sweeps.

The encoding of this representation is yet to be
implemented. However, at this stage, two possibilities are
being considered for the amplitude and frequency
contours: 3 dimensional chain codes and polynomial
description. These need to be evaluated in terms of coding
gain, complexity and the ease with which contour
information can be extracted.

4.4 Track classification and segregation

Once the tracks have been generated, each track is
classified according to type: noise burst, tone burst or
frequency sweep. Very short tracks are classified as noise
bursts. Examining the frequency contour of the track
makes the decision as to whether a long track belongs to
the class of tone burst or sweep.

Having classified the tracks, psychoacoustic principles
can be applied to segregate them into streams. At this
stage, the aim of segregation is simply to remove
correlation in the data so only a very basic set of principles
is applied. All tracks with similar onset times are
considered as possible members of a single group. If there
is a further relationship between these tracks, a group is
formed. This relationship may be harmonicity, or
correlated frequency or amplitude modulation. These
principles are illustrated in Figure 10. Finally, the tracks
are encoded in groups.
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Figure 10:  Psychoacoustic grouping rules

5. Suitability for retrieval

Determining the nature of a given segment of audio data
follows directly from this representation. Audio data can
be classified into one of four categories: speech, music,
silence and noise. Each of these categories exhibits unique
characteristics in the time-frequency domain that are
directly visible in the track representation.

Identifying silence is a trivial matter as it is
characterised simply by the absence of any tracks. Music
consists of long harmonically related tracks with few
periods of silence. Speech is identified by the presence of
relatively short noise bursts, tone bursts and frequency
sweeps interspersed with frequent short periods of silence.
Another characteristic of speech that is directly visible in
this representation is its almost unique formant 
structure[7]. Noise consists entirely of noise bursts.

Once this coarse level of classification has been
performed, an individual segment of audio can be further
analysed based on its type. Given that the tracks are
parametrically represented, analysis basically involves
comparing the parameter values of individual tracks. The
types of higher level information that can be inferred from
the tracks depend on the type of sound.

For music data, the melody line can be determined by
following the pitch along tracks. Similarly, rhythm can be
extracted by analysing the amplitude contour. The
representation should also permit query by example.
Queries input via an appropriate audio interface can be
analysed into the track representation and then the melody
or rhythm information extracted and used as a basis for
comparison.

In the case of speech, change of speaker or gender may
be determined by examining the pitch. Speaker emphasis is
visible in the variation of relative amplitude of the tracks.
Voicing information is directly visible by the nature of the

tracks at an instant of time (noise or tone). The suitability
of this representation for speech recognition is yet to be
investigated. However, the work of [21] suggests that
query by example should be supported since it is proposed
that, although the same utterance spoken at different times
will posses slightly different track structures, there will be
a simple transformation between the two structures which
is constant across tracks.

There are at least two methods by which pitch
information can be extracted from this representation. The
first is spectral compression and the second involves
calculating two pitch measures (known as spectral pitch
and virtual pitch)[22]. Both methods require that the
perceptually significant tonal components of the signal first
be isolated. This is precisely what the frequency tracks of
the representation presented in this paper describe. Thus,
the extraction of pitch information is simplified over
existing representations.

It should be noted that all the indexing attributes
currently used in audio retrieval systems can also be
derived from this representation. Indeed, the extraction of
this information will generally be simplified. Pitch
information is one example discussed earlier. Other
examples include loudness and harmonicity. Loudness is
easily determined from the amplitude contours.
Harmonicity follows directly from the grouping of tracks.
In addition, the variation of these qualities can be
determined over time, instead of being confined to an
average value over the entire audio segment. Thus, the
structured audio presented here is capable of supporting all
existing query methods as well as cognitively significant
structure based queries.

With index attributes directly accessible, the
representation clearly supports content based retrieval.
Support for browsing may be less obvious but is
nonetheless accounted for in a number of ways. Firstly,
random access is furnished by the track structure since
individual semantically congruent passages can be easily
recovered and decoded. In the case of signals with inherent
structure (ie music and speech) the track representation
reveals the perceptually relevant aspects of this structure,
for example phrases are indicated by short periods of
silence which in turn correspond to sections containing no
tracks. Also, broad classification according to type, as
discussed earlier, can also be useful for browsing. These
access methods are basic extensions of time-based
browsing methods. The most significant advantage of
structured audio is its ability to support true content based
browsing.

The information that is readily accessible in the track
description gives powerful support to content based
browsing. This is because it is relatively straightforward to
recover all sections of a recording that contain some



semantically significant attribute. Examples of such
attributes include vibrato, specific chord sequences and
changes of key. This level of information is impossible to
extract from holistic statistical descriptions. In some cases,
such as vibrato or timbre, even complete transcriptions will
fail. Thus by using perceptually congruent structures, an
increased level of support for browsing has been achieved.

6. Conclusions and future work

Having developed the audio representation, there are
two directions for future work. The first is to resolve the
encoding issues and the second is to verify the suitability
of the representation for its intended purpose of audio
retrieval. In addressing the first issue, the desire to provide
a compact representation must be carefully approached so
as not to compromise access to the salient features of the
structure.

The second task will receive the most attention and will
involve the development of methodologies and algorithms,
based on the newly developed structure, to perform
classification, content based retrieval and browsing of
audio. As has been indicated in Section 5, the cognitive
congruence of the attributes promises to simplify many
retrieval tasks as well as introducing many new query
possibilities.

Of all the media types, audio retrieval has received the
least attention. This paper has attempted to address this
oversight by reviewing the relevant issues and proposing a
solution. Specific problems encountered by the few
existing audio retrieval systems have also been reviewed.

Existing unstructured audio representations have been
shown to make content based retrieval difficult and
browsing virtually impossible or of little value. A
structured audio representation, based on psychoacoustic
principles has been suggested as a solution to the problem
and the benefits of such a representation stated. The
relevant perceptual attributes of audio have also been
discussed.

The new structured representation has been described in
detail. This representation is based on psychoacoustic
principles and has been designed to provide direct access
to perceptually salient attributes of audio signals. In
addition, the structure has been greatly influenced by
cognitive principles. Finally, the suitability of this
representation for content based retrieval and browsing has
been discussed.

The key feature of the audio structure presented here is
its cognitive congruence. The information that can be
readily extracted from the track description has true
semantic significance. This is in contrast to the feature sets
of existing systems that rely on statistical attributes that
have only incidental significance.
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