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Abstract

In this paper1, we present a new synchronization strategy
for multimedia applications executed in a distributed envi-
ronment. This strategy makes the timing properties of the
system and the quality of the media presentations predictable
since one is able to determine analytically whether the tim-
ing requirements of each multimediaapplicationwillbe met,
and if not, which timing requirements will fail. The proposed
synchronization protocol provides deterministic guarantees
and service reliability that can’t be compromised by re-
source contention. Thus, the application can maintain the
initial quality of service (QoS) level without encountering
unpredictable delays and blocking due to synchronization.

1. Introduction

There is currently considerable interest in developing
multi-media applications in open distributed systems. This
is motivated by the wide range of potential applications such
as desktop conferencing, distributed multi-media informa-
tion systems and video-on-demand services. However, it is
clear that existing frameworks for open distributed systems
do not support the particular requirements of distributed
multi-media such as real-time constraints, intra/inter-media
synchronizationand real-time communication. There is also
a lack of a suitable theory that makes the timing properties
of a distributed multi-media application predictable.

Because of the layered design of multimedia systems,
the granularity of synchronization is generally coarser at
the application level, becoming more detailed at the lower
levels of the system. For example, a user at the application
level is concerned that a video segment begins and ends at
specific time points whereas the system might be concerned
with frame synchronization, real-time frame delivery and
resource management. Our work is concentrated on system-
level synchronization techniques providing a new resource

1This work has been carried out as part of the ERCIM Fellowship
Programme

management strategy for multimedia applications executed
in a heterogenous, distributed environment.

A significant amount of work has been carried out for
making resource allocations to satisfy specific application-
level requirements and various scheduling schemes are avail-
able to ensure that the allocation decisions can be carried
out. Various system-wide schemes have been studied to ar-
bitrate resource allocation among contending applications.
The Rialto operating system [2] was designed to support
simultaneous execution of independent real-time and non-
real-time applications, meeting the real-time requirements
of all those for which it is possible while providing live-
ness for the non-real-time programs. The RT-Mach micro-
kernel [3] supports a processor reserve abstraction which
permits threads to specify their CPU resource requirements.
If admitted by the kernel, it guarantees that the requested
CPU demand is available to the requestor. Q-RAM [8] and
SMART [7] support applications with time constraints, and
provides dynamic feedback to applications to allow them
to adapt to the current load. The Lancaster QoS Architec-
ture [1] provides extensions to existing micro-kernel envi-
ronments for the support of continuous media. The QoS
Broker model [6] addresses also the requirements for re-
source guarantees, QoS translation and admission control,
so a new system architecture is proposed which provides all
these issues. The Nemesis operating system is described
in [4] as part of the Pegasus Project, whose goal is to sup-
port both traditional and multimedia applications. A large
portion also of real-time scheduling theory deals with the
important problem of the schedulability analysis and the
predictability of a set of real-time applications [9].

We have to notice at this point that most of the above CPU
allocation schemes are based on the restrictive assumption
that the applications are independent of one another and do
not have access to multiple resources simultaneously. In our
approach we focus on “real” environments where a set of
multimedia applications share a number of non-preemptable
resources or access shared data (e.g. storage servers, live
media sources etc.) which are part of a high-speed local
area network (see figure 1). The proposed synchronization
protocol, called the Set Based Synchronization Protocol, is
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Figure 1. The distributed multimedia environ-
ment

based on the on-demand paradigm where resources are as-
signed only when actually required. The penalty paid for
this, found also in all the on-demand approaches, is block-
ing. In predictable multimedia environments, the blocking
has to be deterministic and for this reason our approach im-
poses a specific structure on blocking to bound the blocking
time. The proposed protocol is an extension of our previous
work [5] on distributed real-time systems.

2. Assumptions and Notation

In our model, we assume that the QoS for continuous
media objects is expressed with temporal and spatial reso-
lutions. The temporal resolution can be expressed by the
number of frames per second (fps) or sample rate and the
spatial resolution can by expressed by data size, number of
bits per pixel, compression scheme, etc. It is assumed also
that every application executes periodic reads of a number
of frames from a remote media server into a local buffer
first and then plays them due to the fact that continuous me-
dia require periodic service activities for transmission and
presentation.

In this paper, we view every different multimedia applica-
tion executed in a distributed environment as a periodic task
that can require in each period the use of non-preemptable
resources or access shared data. For example, one multime-
dia session can be modelled as a task which in every 50 ms
needs to deliver 3 video frames from the storage server1

and 6 audio frames from storage server2. Since these stor-
age servers are shared and exclusively used (i.e. guaranteed
exclusive access), there is a possibility for one such task to
block waiting for the use of these servers. The period of
each multimedia task is determined by the desired quality

of service (i.e. the temporal and spatial resolutions of the
continuous media), the number of continuous media used in
the application, the processor speed and the buffer size used
by the node that executes the application. This means that
high quality applications using many continuous media are
represented by our model as tasks having short periods, i.e.
high frequency tasks.

The assumptions and basic notation that will be used
throughout this paper follows:

1. any continuous media application is represented by a
multimedia task �i allocated on a different node �i
of the distributed system and can require the use of
non-preemptable resources or access shared data Ri.

2. every multimedia task �i is periodic with periodTiand
has deadlineDi at the end of its period (i.e. Di � Ti).

3. multimedia tasks are assigned fixed priorities in-
versely to their periods.

4. every task asks for all of its global resources Ri only
once in its period and subsequently can release these
resources. Two operations are used for this reason:

– allocate(ResourceSet) and
– release(ResourceSet).

When a task �i issues the allocate command asking
for its resources it then blocks (i.e. hangs) until all
these resources have been allocated to �i by the re-
source manager. The duration of this time interval
constitutes the blocking time Bi of the task. The sec-
tion between exiting from the allocate call and the
last release call constitutes the critical section of the
task.

5. every multimedia task �i has known, deterministic
worst-case execution time Ci. This is the total de-
terministic computation requirement of task �i during
each period, and Ci � Ci

cs � Ci
non�cs where:

Ci
cs is the computation requirement of task �i within

its critical section. This is the total time that
�i uses the resources and the network in each
period for data retrieval,

Ci
non�cs is the deterministic computation require-

ment of task �i outside its critical section. This
is the time in each period that �i needs to process
the received data frames.

Due to the fact that every multimedia task is allocated on
a different node of the distributed system, cpu scheduling
is not the main problem, but since tasks are inter-dependent
the main problem is task synchronization and resource al-
location. Hence, blocking due to synchronization has to be
deterministic in order to have nice analysis properties and a
high degree of system predictability.



3. The Set Based Synchronization Protocol

In this section, we present the Set Based Synchroniza-
tion Protocol suitable for synchronizing multimedia tasks
executing on distributed systems. A set of n multimedia
applications can be modelled as a set of n periodic tasks
�1� � � � � �n each one bound to a different node of the dis-
tributed system. Each task is characterized by five compo-
nents (Ci

cs, C
i
non�cs, Ti, Di, Ri), 1 � i � n, according to

the notation and the assumptions introduced in the previous
section.

In the analysis of the Set Based Synchronization Protocol,
each one of the resources can be in one of the three following
different states at a specific point in time during execution:

1. free if there is not any task that either asks for the
use of this resource or uses this resource at this time
in its critical section.

2. in use if there is a task that asked for the use of this
resource for its critical section and this task is now
within its critical section.

3. allocated (to a task �j) if the task �j asked for the
use of this resource, the resource has been allocated
to the task �j but �j hasn’t entered yet into its critical
section.

Suppose that a task �i requires the use of � resources
through a call of the form allocate�Ri�, where Ri �
fr1� � � � � r�g. Then the following cases can occur:

1. All the required resources in Ri are free. Then all
these resources are allocated to the task �i and the
task proceeds immediately to its critical section. The
states of all resources in Ri become in use.

2. If case 1 does not hold then the following actions are
performed. If any of the r1� � � � � r� is free then it
is allocated to �i. If any of the resources in Ri has
been allocated to a lower priority task �j (Ti � Tj)
and �j has not entered its critical section then it is
deallocated from �j and it is allocated to �i. If any of
the resources in Ri is in use then after its release it is
allocated to the highest priority task that is requesting
it. The task �i will proceed to its critical section if and
only if all the resources in Ri have been allocated to
�i.

We have to notice here that a resource is actually locked
by a task only if the resource is in use by this task and not
when the resource is allocated to that task. Note also that
by the definition of the protocol, a task �i can be blocked
by a lower priority task �j , only if �j is executing within
its critical section when �i requested resources and both �i
and �j use common resources in their critical section, i.e.
Ri �Rj �� �.

Theorem 3.1 The Set Based Synchronization Protocol pre-
vents deadlocks.
Proof: By definition, every task �i proceeds to its criti-
cal section if and only if all the resources in Ri have been
allocated to �i. Thus, �i will never ask in its critical section
for the use of any other resource and so a blocking cycle
(deadlock) cannot be formed. �

To perform a schedulability analysis using the proposed
synchronization protocol, we define B�� 1 � � � n, the
longest duration of blocking that can be experienced by ��.
Since each task is bound to a different processor, theorem 3.2
defines a sufficient set of conditions for a set of tasks to meet
their deadlines.

Theorem 3.2 A set of n periodic tasks, each one bound
to a different processor � can be scheduled using the Set
Based Synchronization Protocol if the following conditions
are satisfied:

�i� 1 � i � n� Ci � Bi � Ti (1)

Proof: The above set of inequalities state that for each task
�i the sum of the blocking time Bi and the total execution
time Ci of the task must be lower than or equal to its period
Ti. If this sum which represents the completion time of
�i was greater than its period and hence greater than its
deadline (since Ti � Di), task �i could not be scheduled.�

Once Bis have been computed for all i, theorem 3.2 can
then be used to determine the schedulability of the set of
tasks.

4. Determination of Task Blocking Time

Here, we shall compute the worst-case blocking time that
a task has to wait for its resource requirements. The funda-
mental objective of the Set Based Synchronization Protocol
is to obtain bounded blocking times for multimedia tasks
requiring the access of shared resources. The bounded wait-
ing times in turn can be used to determine whether a set of
multimedia tasks running on a distributed environment can
meet their deadlines using theorem 3.2.

Assume a set of n periodic tasks with Di � Ti us-
ing the Set Based Synchronization Protocol. We define
as Bi� 1 � i � n, the longest duration of blocking that can
be experienced by �i.

Theorem 4.1 Consider a set of n tasks �1� � � � � �n each one
bound to a different processor�i and the Set Based Synchro-
nization Protocol is used for the allocation of the resources.
Let



Hi � f�j jTi � Tj �Ri�Rj �� �g� - set of tasks having
higher priorities and need common resources with �i

Li � f�j jTi � Tj �Ri�Rj �� �g� - set of tasks having
lower priorities and need common resources with �i

�i � max�fCj
cs j �j � Lig�� - blocking time due

to lower priority tasks in Li

Then, the worst case blocking time Bi of task �i is equal to

Bi �

���
��

�i �
X

��j�Hi

�i
j if

X
��j�Hi

�
i
j � min�fT� j �� � Hig�

� otherwise
(2)

where �ij is the contribution of task �j to the Bi value and,

�i
j �

�
0 if ��l � Hi : Rj �Rl �� � � Tj � Tl
Bj � Cj

cs otherwise
(3)

Proof: The sum in formula 2 above represents the longest
blocking time for a task �i at its worst-case task set phasing.
At this worst-case phasing of the tasks, when �i wants to
enter into its critical section, it finds the lower priority tasks
that use common resources with �i executing within their
critical sections. Then, just before all these lower priority
tasks have finished their critical sections and have released
their resources, all the higher priority tasks that use common
resources with �i come one after the other and ask for their
resources, enter their critical sections and at the end release
their resources.

Thus, Bi has two parts. The first part, namely �i is due
to Li and it is equal to the maximum value of Ccs among
the lower priority tasks in Li. The second part comes from
tasks in Hi. In all cases, the duration of the second part
should be less than the minimum period T� of the tasks in
Hi, otherwise the task �� could block repeatedly the task
�i and in this case Bi can be prohibitively large or even
unbounded (condition of formula 2). This does not mean
that the task set is not schedulable, rather that there is not
a way to determine accurately using the proposed protocol
the worst case blocking time Bi of the task �i.

Note now that the longest blocking time Bi occurs when
the blocking time of ��, �� � Hi does not overlap with those
of other tasks in Hi at the worst-case task set phasing for
�i. Thus, a task �� in Hi contributes to Bi by �B� � C�

cs�
in case this task does not have common resources with any
other task in Hi. Assume now that a task �j in Hi has
common resources with a task �l in Hi and �l has lower
priority than �j. In this case, the contribution of �j to the
blocking time of �i is taken care by its lower priority task
�l. Thus, �j may contribute indirectly to Bi through the
worst case blocking time Bl of �l. Its direct contribution
is zero. As the same argument may equally apply to �l, it
follows that for any task �j in Hi with common resources

with others in Hi contributes only by a factor �Bj � Cj
cs�

in case there is not any task �k with priority lower than
�j sharing common resources with �j. This condition is
expressed by the formula 3. Hence the Theorem follows. �

As far as the case of tasks with equal periods is concerned,
it is not necessary to link the priority of a task directly with
its period. We can assign to each task �i a unique priority
pi such that �i� j pi � pj 	 Ti 
 Tj . Once these blocking
terms Bi� 1 � i � n, have been determined, theorem 3.2
gives a fairly complete solution for multimedia task syn-
chronization and scheduling in the distributed environment.

5. A Schedulability Analysis Example

We illustrate the schedulability analysis based on the pro-
posed synchronization protocol with the following example.

Example 5.1 Consider a distributed environment and four
video presentations each one displayed on a different node
of the system and represented by a task �i� 1 � i � 4. This
environment also supports five storage servers r1� � � � � r5

where a collection of continuous media clips is stored.
We allocate to each task �i the minimum bandwidth

Bandwidthi that can be provided at the worst case task
phasing. We assume also that a circular buffer of size
2�Buffer sizei is reserved in the buffer cache of node
�i. In each period, while the presentation is consum-
ing Buffer sizei bits of data from its buffer, the other
Buffer sizei bits that the presentation will consume in
the next period are retrieved from the storage servers into
the buffer. This ensures that each presentation will have
sufficient data to display the corresponding streams contin-
uously. In addition, we define the display rate for each task
�i (the rate at which data are consumed from the buffer for
presentation purposes), using the equation:

display ratei � spatial resolutioni�
temporal resolutioni�

Then, we require the following equalities to hold:

Ci
cs �Bandwidthi � Buffer sizei (4)

display ratei � Ti � Buffer sizei (5)

Equation 4 is used to evaluate the deterministic compu-
tation requirements within the critical sections of the tasks.
Equation 5 states that with known display rate and buffer
size for each task then the duration of consuming all the
available data from the local buffer can be evaluated. This
time duration represents the period Ti of the task �i. The
value Ci

non cs is the computation requirement of task �i to
process the received data frames of size Buffer sizei.

In our example, the expected quality of every presenta-
tion and the resource requirements R of every presentation



Table 1. Parameters of task set in example
Parameters of Task Set

Task Spat. Res. fps R T Cnon�cs Ccs

�1 160�120�8 22 r3� r1 12 3 2
�2 140�110�8 20 r3� r2 14 3 2
�3 130�110�8 19 r1� r4 25 4 3
�4 120�100�8 15 r3� r5 31 6 3

of each task are listed in Table 1. The computed values
of the periods and computation times within and outside
critical sections for each task are listed in Table 1 in the cor-
responding columns. The worst-case blocking duration of
each task is the sum given in formula 2 and it is determined
as follows:

� Task �1:

– H1 � � – L1 � f�2� �3� �4g
– �1 � max�C2

cs� C
3
cs� C

4
cs� � 3

– B1 � �1 �
P
��i�H1

�1
i � �1 � 3 since H1 � �

� Task �2:

– H2 � f�1g – L2 � f�4g – �2 � C4
cs � 3

– B2 � �2 �
P
��i�H2

�2
i � �2 � �2

1 � �2 �

�B1 � C1
cs� � 3 � �3 � 2� � 8 and the condition

�3�2� � 12 holds (where 12 is the period of �1 � H2).

� Task �3:

– H3 � f�1g – L3 � � – �3 � 0
– B3 � �3 �

P
��i�H3

�3
i � �3 � �3

1 � �3 � �B1 �

C1
cs� � 0 � �3 � 2� � 5.

� Task �4:

– H4 � f�1� �2g – L4 � � – �4 � 0
– B4 � �4 �

P
��i�H4

�4
i � �4 � ��4

1 � �4
2� �

�4 � �0 � �B2 � C2
cs�� � 0 � �0 � �8 � 3�� � 11

since 11 � 12.

We have to notice here that the term�4
1 is zero accord-

ing to formula 3 since there exists a task, �2, where
�2 � H4, R1 �R2 �� � and T1 � T2. This means that
�1 does not contribute directly to the total value of B4

but only indirectly since the blocking time B2 of task
�2 includes the occurence of task �1.

Computing now the criterion given in Theorem 3.2 we
have:

� i=1 C1 � B1 � 5 � 3 � 8 � 12 �T1 � 12�

� i=2 C2 � B2 � 5 � 8 � 13 � 14 �T2 � 14�

� i=3 C3 � B3 � 7 � 5 � 12 � 25 �T3 � 25�

� i=4 C4 � B4 � 9 � 11 � 20 � 31 �T4 � 31�

We therefore determine that the above set of tasks
f�1� �2� �3� �4g is schedulable.

6. Conclusions

In this paper, we have presented a scheduling mecha-
nism with an integrated resource allocation model that is
analyzable and understandable at a high level. Given a set
of multimedia applications we know in advance if they will
meet their deadlines or not. This scheduling strategy has
been designed for multimedia applications that operate in
a distributed computing environment where every multime-
dia task is allocated on a different node and can require the
use of global resources. It is an approach for deterministic
guarantees and provides predictable distributedmultimedia
applications.

It is also important to note that the proposed strategy
can be easily implemented especially on a distributed sys-
tem since only a message passing scheme is required to be
supported by the underlying software.
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