
Appeared in: Proceedings International Workshop on Multimedia Software Development MMSD-96, Berlin, April 1996

Abstract

In this paper, we compare the BERKOM globally ac-
cessible services project (GLASS) with the well-known
World-Wide Web with respect to the ease of development,
realization, and distribution of multimedia presentations.
This comparison is based on the experiences we gained
when implementing a gateway between GLASS and the
World-Wide Web. Since both systems are shown to have
obvious weaknesses, we are concluding this paper with a
presentation of a better way to multimedia document en-
gineering and distribution. This concept is based on a
well-accepted approach to function-shipping in the Inter-
net: the Java language, permitting for example a smooth
integration of GLASS´ MHEG objects and WWW HTML
pages within one common environment.

Keywords

World-Wide Web, HTML, Distributed Multimedia Ap-
plications, MHEG, Java

1. Introduction

As more and more users are connected to computer
networks, the availability of systems for the presentation
of multimedia applications rapidly increases. The range
of multimedia documents exchanged over networks cov-
ers simple text documents, audio or video sequences and
more advanced applications like multimedia kiosks, inter-
active TV or video on demand. Therefore, frameworks for
storage, distribution and presentation of all kinds of inter-
related multimedia information become a necessity. In or-
der to exchange and present multimedia information in
resp. on different networks and platforms, standardized
interchange formats must be used. Standardization is con-
sidered a key factor for commercial success of multime-
dia applications.

In contrast to formats for single content types like im-
ages (e.g. CompuServe’s Graphics Interchange Format
GIF), video (e.g. the Motion Picture Experts Group’s
MPEG standard format), or audio (e.g. MPEG audio,
MPA), exchange formats for multimediaapplications or

scenarios, which include description of behavior, are still
under development. Nevertheless, there are two already
relatively advanced exchange formats and supporting
frameworks for multimedia applications which have to be
discussed in this context. The first is the de-facto standard
of multimedia-presentation on the Internet, the World-
Wide Web [3], which supports the Hypertext Markup Lan-
guage HTML [5] document exchange format. The second
framework, the so-called GLASS (GLobally Accessible
ServiceS) system [13], is a prototypical implementation
realizing the forthcoming commercially interesting
MHEG (Multimedia Hypermedia Experts Group) ISO
standard [14].

Against this background, the need for a clear and struc-
tured comparison of the two systems, World-Wide Web
and GLASS, in general, and their document exchange in-
frastructures in particular, becomes evident. This compar-
ison is based on the practical experience we gained when
implementing the so-calledGlassWWWay [2]. The Glass-
WWWay is a gateway giving users of World-Wide Web
clients access to MHEG presentations. It consists of
WWW servers handling requests for MHEG objects.
These objects are transformed into HTML pages on the
fly, i.e., the very moment a user requests them via a stan-
dard WWW browser. While implementing the necessary
transformation procedures, many differences between the
World-Wide Web and GLASS were surfaced.

The remainder of this paper is structured as follows. In
the next section, we will describe a small sample scenario,
which will be used throughout this paper when pointing
out to weaknesses and strengths of both HTML and
MHEG. After that, we are giving a basic introduction to
the World-Wide Web and GLASS, including their respec-
tive interchange formats and communication protocols.
We continue with a summary of our comparison between
the two systems in section 4. As this reveals many prob-
lems with both systems, favoring one over the other does
not seem to be sensible. Therefore, in section 5, we present
a resolution, which -based on SunSoft´s Java program-
ming language- integrates both systems and abolishes
most of the disadvantages pointed out. The conclusion
sums up the main differences between WWW and GLASS
and gives an outlook on future projects.

Reviewing two Multimedia Presentation (quasi-) Standards

Peter Rösch
Fraunhofer Institute for

Experimental Software Engineering (IESE)
Sauerwiesen-Straße 6,

D-67661 Kaiserslautern, Germany
roesch@informatik.uni-kl.de

Michael Baentsch
Department of Computer Science

University of Kaiserslautern,
P.O. Box 3049,

D-67653 Kaiserslautern, Germany
baentsch@informatik.uni-kl.de

Appeared in: Proceedings International Workshop on Multimedia Software Development MMSD-96, Berlin, April 1996

2. Sample Scenario

Our sample scenario consists of a small tourist informa-
tion system. It is intended as an introduction for visitors of
the city of Berlin, in which ICSE’95 is held. The informa-
tion is presented using text, images and audio. In this re-
spect, it can be part of either a typical commercial
multimedia kiosk-like presentation as found for example at
airports or within a globally accessible tourist-information
system. In the first case, the typical execution environment
will be a dedicated, stand-alone system, equipped for ex-
ample with display and touch-screen. The latter might be
accessible via TV or PC, offering a wide range of interac-
tion with the presentation: From (mouse-)cursor-based se-
lection of scenarios to cross-reference searches within on-
line databases many sensible uses of the multimedia data
become possible.

The start page shows a picture of Berlin and two buttons
(„Slide Show“ and „Information“) placed inside the picture
(see figure 1). The buttons are transparent and change their
state to non-transparent, if the mouse-cursor is moved in-
side the buttons in order to give visible user feedback. Af-
ter activating the „Information“-button, a text block
replaces the image. The text wraps up important informa-
tions about Berlin. Activating the „Slide Show“-button on
either page will start the so-called slide show, which pre-
sents different pictures of interesting places within Berlin
with appropriate textual and spoken explanations to each
picture. Each picture remains on the screen for a certain pe-
riod of time before it is automatically replaced by the next
one. The slide show and the audio stop and the system
again displays the start page, if either all slides have been
displayed or the user clicks on any slide.

3. Frameworks and formats for interchange
of multimedia applications

Many systems for multimedia applications exist for dif-
ferent domains. In our paper, we focus on systems, that:
• support applications like multimedia kiosks, on-line in-

formation systems, tele-shopping, etc.;

• feature a distributed approach, taking into account that
information can be located on any server, distributed via
any number of hosts, and displayed on any site within
the underlying network;

• provide a well-defined and platform independent docu-
ment exchange format;

• are in widespread use (quasi-standard) or are being stan-
dardized and available on all major platforms;

• exchange information aboutbehavior of applications.
We have excluded many on-line systems that use a sim-

ple event-based mechanism to interact with users, because
our notion of behavior demands for a higher level of ab-
straction to document creation and exchange. This is be-
cause we think that the provision of higher-level services is
essential for the realization of complex multimedia scenar-
ios just as it is for the implementation of complex applica-
tions. Therefore, we decided to select two of the most
interesting systems matching the requirements for future
multimedia systems as set forth above: The World-Wide
Web and GLASS. We introduce both in the next subsec-
tions using the sample scenario of section2.

3.1. World-Wide Web

The World-Wide Web is currently the multimedia pre-
sentation and dissemination framework used by most peo-
ple. This success of the Web has various reasons like its use
of the commonly available and accessible Internet infra-
structure via the TCP/IP protocol stack [20], upon which
the WWW´s Hypertext Transfer Protocol (HTTP [4]) is
based. The free availability of clients (browsers) and serv-
ers (so-calledhttpd́ s) alike also gave the Web its initial
boost. The most important reason for the success of the
Web however, is arguably its simple-to-author Hypertext
Markup Language (HTML [5]). It permits anybody able to
use a simple text editor to provide appealing content for the
world, thus attracting even more people to the Web (who
in turn create even more content).

As the Web is being used more and more intensively for
complex and communicationally expensive multimedia
documents by an ever increasing number of people, most

St2St2 Slide Show Back

Tourist Information

.....................

.....................

Figure 1. Logical structure of sample scenario

Sh1

C A B

St2
St2Sh1

St2Info

St2St1

Slide Show Information

St2St2

Sh1St2Sh2

Appeared in: Proceedings International Workshop on Multimedia Software Development MMSD-96, Berlin, April 1996

shortcomings of the design of itsHypertext Transfer Pro-
tocol (HTTP) become evident. The basic reason for this is
the typical communications interaction pattern used by
WWW browsers: The initiation of many short, possibly
long-distance TCP/IP connections overload the network
bottlenecks (e.g. the internetwork-backbone routers) and
the data servers alike. The detection of this behavior led to
the design of the next-generation HTTP protocol,HTTPng
[19], which has been formally designed using ASN.1.
However, it will again be specialized towards transmission
of HTML documents and will thus be not generic enough
to take topics like quality of service into account, although
this ought to be of special importance in most multimedia
presentations.

TheHypertext Markup Language (HTML)has been de-
rived from the Standardized General Markup Language
(SGML [21]) for mainly non-interactive presentation of
primarily hypertext with embedded pictures like diagrams
for the explanation of technical content. This relatively
simple hypermedia approach was not meant to be used to
realize today’s highly interactive multimedia presentations
for which our small scenario is a simple example. We will
present the many shortcomings of HTML in this context
while explaining how we realized the given scenario with
the techniques developed during the implementation of the
aforementioned GlassWWWay. A very basic understand-
ing of the features of HTML is necessary to completely fol-
low the ensuing discussions of an implementation of our
sample scenario within the Web. Since such explanations
have become abundant in the meantime and since this
would clearly be beyond the scope of this paper, we only
refer the interested reader to for example [1].

In order to realize the chosen scenario, we first show
how to divide the problem into manageable parts. The first
step in this development process for the page-oriented
HTML language is to identify the different documents that
have to be created. In this case we see 2+N pages with N
equaling the number of slides in the slideshow to be appro-
priate. The first document consists of a GIF image showing
the start picture of the scenario (A), the second contains hy-
pertext with the information about Berlin (B), and finally,
one page for each single picture of the slideshow.

In order to obtain the desired look and feel, we had to
use several non-standard approaches on each page to make
it work as desired. Page A for example consists really of
three pictures merged with a tool into one. The three pic-
tures are the original background and the two buttons. For
purposes of this sample scenario, the creation of this com-
bined picture has been done manually, but it could also
take place on-line, e.g., as the page is being prepared for
transmission. This is exactly the strategy chosen for the re-
alization of the GlassWWWay, but its drawback is obvious
as many people use this gateway: The solution does not
scale: As many clients access a server providing such a
computationally expensive operation, the host of such a
server quickly bogs down under the load. As opposed to

the complex structure for page A outlined above, the page
associated with state B simply consists of the information
hypertext coded in HTML, since this is the most natural
way to present it given the medium WWW browser. We
only added code for two simple hyperlinked GIFs display-
ing the two buttons associated with the next state (slide-
show or start page) since we did not had to render the text
into a picture given the hypertext-presentation capabilities
of Web-Browsers. Finally, the pages making up the slide-
show are realized as HTML documents consisting basical-
ly of two objects. The first is the image to be displayed and
the second is a hyperlink to the audio file associated with
the picture. This detour, where the user has to explicitly re-
quest the playing of the audio file is necessary since the
currently available and standard Web mechanisms do not
permit the transmission and presentation of different types
of multimedia objects at the same time. Another topic is
that the ability to play back audio is usually not build into
WWW browsers, probably because too many different au-
dio formats are in use. The only viable way here is to use
client-external programs spawned in response to incoming
data of a certain MIME [7] type (e.g. MPEG-audio) com-
pletely bypassing the browser.

After the different pages had been designed, they had to
be interconnected to produce the desired presentation, i.e.,
the state-transitions as shown in section 2 had to be real-
ized. We had to use three different techniques to obtain the
desired functionality. For page A, a specialized WWW
server-side executable, a so-calledcgi-bin (i.e., an execut-
able conforming to the Common Gateway Interface [15] on
the server side) had to be installed. After configuring it to
process the information of the mouse cursor position over
the composed GIF on the browser making use of the IS-
MAP-tag of HTML, it determined which page to present
next. The slideshow itself, however forced us to use a rath-
er dirty trick, i.e., a currently still non-portable and client-
specific technique, because the interaction pattern as out-
lined in our scenario was not foreseen by the design of the
Web. We believe our realization to be of use anyway, since
we are able to make the two most widespread browsers,
NCSA Mosaic and Netscape’s Mozilla (in use by about
90% of all people accessing the Web) accept it. We use the
Common Client Interface (CCI [18]), the client side equiv-
alent to the server side CGI, to force the loading of the dif-
ferent pages making up the slideshow by the clients. Thus,
every few seconds, as indicated in the slideshow specifica-
tion, a command is sent from a server-side executable acti-
vated by traversal of the hyperlink associated with
transition (Sh1) or (Sh2) to the clients, thus indicating
which page of the slideshow to load next. Finally, all imag-
es of the slideshow have been marked up with hyperlinks
whose traversal causes the server side executable to stop is-
suing slide-reload requests and return to the initial page as
required by transition (St2).

As it should have become clear during the presentation
of the implementation of this simple scenario, the WWW´s

Appeared in: Proceedings International Workshop on Multimedia Software Development MMSD-96, Berlin, April 1996

HTML Language is clearly not suited for this kind of mul-
timedia information presentation. If the various trick and
tools briefly described above were not available, our im-
plementation of the GlassWWWay would have been im-
possible. This clearly underlines the unsuitedness of the
abstractions available in the current Web infrastructure for
the creation of multimedia presentations.

3.2. GLASS

TheGLASS project [13] aims to realize globally acces-
sible multimedia services in a standardized and in this re-
spect open way. The services addressed by GLASS are
oriented towards commercial utilization. They include
consumer services like tele-shopping, Pay-Per-View, Vid-
eo-On-Demand, on-line-catalogues, and more. The project
has been initiated by the DeTeBerkom and several partners
worked together under its supervision. Partners included
both industry (e.g. Digital, IBM and Grundig MM) and ac-
ademic research institutions (e.g. GMD, University of Ber-
lin and University of Kaiserslautern). The prototypical
system which has been implemented in the GLASS project
has already been presented successfully (e.g. at the ISS’95,
IFA’95 and Telekom’95) and the client systems are sup-
ported on all major platforms (e.g. Intel-PC, Sun-Sparc,
Digital-Alpha and Apple-PowerPC). The components de-
veloped within GLASS include user interface agents, con-
tent and accounting servers, gateways to other services and
authoring tools.

All data exchanged between these components is encod-
ed using theMHEG standard. Within GLASS, a textual
representation of MHEG objects, calledMDL (MHEG De-
scription Language) was developed. An MDL compiler en-
codes MDL files to MHEG objects using ASN.1. The
GLASS project does not only use MHEG, GLASS partners
are also involved in the standardization process. Therefore,
early feedback can be provided to the MHEG group.

The future MHEG standard (see table 1 for a listing of
MHEG subsets) is designed to meet the requirements of
multimedia applications and services, running on heteroge-
neous workstations interchanging information in real-time.
The envisioned applications and services are for example
systems for computer-supported cooperative work, multi-
media messaging, audiovisual telematic support for train-
ing and education, simulation and games, Video-On-
Demand, interactive TV-guides, and others [9].

MHEG is being standardized by the ISO/IEC (JTC1/
SC29 WG12). MHEG subsets 1,2 and 3 have reached the
Draft International Standard (DIS 13522) state. MHEG-5
is yet a Committee Draft and MHEG-4 is likely to disap-
pear from this list soon.

Features of MHEG include specific interaction struc-
tures for real-time interchange of multimedia data, compo-
sition and synchronization of multimedia data in space and
time, linking between elements of composite multimedia
objects and reuse of multimedia data in different contexts.

Applications encoded using this forthcoming standard are
„end-formatted“. This means, that each application can de-
fine its own „look and feel“. The standard itself does not
propose a typical graphical user interface.

The class hierarchy shown in figure 2 is fixed and can-
not be extended by an application. Nevertheless, once an
object has been decoded within an MHEG engine, it can be
reused when creating other objects. Composite and content
objects are referenced when creating the so-calledruntime
objects. The runtime objects remain at the presentation sys-
tem and they are not exchanged. Speaking in the terminol-
ogy of user interface technology [17], exchanged MHEG
objects aremodels and runtime objects areviews.

We have encoded the scenario described in section 2 ap-
plying MHEG-1 based tools of the GLASS project. Au-
thoring has been done using a textual editor and the
GLASS specific MDL language. In the following subsec-
tion, we will present a small extract of our encoding.

The starting page of our scenario (A) expressed in
MHEG-1 consists of several „model“-objects which are
contained in a singlecomposite object. Composite objects
are used for structuring, for associating multimedia and hy-
permedia objects and to define a set of objects that can be
downloaded as a whole instead of as single parts. In the
case of our scenario, we have put all information about the
start page (A) and the information page (B) into one single
composite object. This composite object contains allcon-
tent objects (e.g. references to JPEG files) needed for the
start page and the information page.

As an example for MDL-code, the description of the
link Create_slides_rt_obj is listed on the top of next
page.

The link class in MHEG is slightly different from what
you would expect if you are familiar with the term link
known from hypertext [10]. Link objects express e.g. inter-

1 MHEG Object Representation (ASN.1)

2 Alternate notation (SGML)

3 MHEG Extensions for Scripting Language Support

4 Registration Procedure for Format Identifiers

5 MHEG Subset for Base Level Implementation

Table 1. MHEG levels

Behavior

Component
Content

Composite

Action
Link
Script

Text

Audio

Video

Image

Descriptor

MH-
Object

Figure 2. MHEG-1 object classes

Appeared in: Proceedings International Workshop on Multimedia Software Development MMSD-96, Berlin, April 1996

active behavior in a multimedia presentation. They consist
of trigger conditions and action objects. The trigger condi-
tion can be described using simple logical operations and
attribute or status requests applied to an object. When the
trigger condition becomes true, the action object is execut-
ed. Therefore, a link object defines an n:m relationship be-
tween objects referenced within the trigger condition and
target objects referenced within the action object. The link
in our example creates new runtime objects for the states
(normal, highlighted and pressed) of the „Slide Show“-but-
ton and sets the position and selection-style of each created
button-image object.

Creating the presentation elements does not mean that
all three images are visible at the same time. The visibility
of image objects is controlled by the actions „run“ and
„stop“. Links are needed for all transitions of each button
element (normal to highlighted, highlighted to normal, and
highlighted to pressed). The link specifying the transition
from highlighted to pressed contains additional actions in
order to enter another state of the scenario (e.g. Info).

Summing up, our starting composite consists of the fol-
lowing elements:
• Model objects: page backgrounds (e.g.

Start_background) and button composites (e.g.
Slides_btn).

• Preparation link: a link, which readies all model objects.
All the content data for the images is then retrieved from
the content server.

• Links for creation of runtime objects (e.g.
Create_slides_rt_obj). These links are triggered
automatically after the model objects have been pre-
pared.

• Transition links for specification of button behavior
(e.g.transition_normal_to_highlighted).

• Transition links to other pages (e.g. Sh1, Sh2).
• Start-up link: performs a „run“-action on background

and button objects of the first page and thus makes them
visible.
The transition to the „Slide Show“ page (Sh1 and Sh2)

is performed by an action-list that stops all currently active
runtime objects and prepares the new composite
Slide_one . Similar to our start page, first the slide-pic-
ture and the audio objects are prepared. When the run-ac-
tion is activated, the image is displayed and an audio-
stream is transmitted from server to client. Additionally, a

so-called timestone is activated. The next slide is presented
if the timestone expires. If the user clicks onto the picture,
a transition to the start page is triggered. The rest of slides
is encoded similar toSlide_one . Only in the case of the
last slide, the timestone triggers a transition to the start
page instead of another slide.

TheGLASS protocols define the procedures for the ex-
change of data between all agents that exist in the system
(see figure 3). In GLASS, agents can be presentation sys-
tems at the client side, content servers, or accounting/secu-
rity agents. Depending on the type of the two
communication instances, the GLASS protocols listed in
table 2 have been defined.

Communication links between clients and servers are

SMCP Session Management Control Protocol

AUTH Authentication Protocol

CRED Credit Control Protocol

SCP Store Control Protocol

POCP Presentation Object Control Protocol

PODP Presentation Object Data Protocol

Table 2. GLASS protocols

Control Data Flow, Small Content Flow

Real-time and Large Content Data Flow

PODP

POCP

SCP, CRED

SMCP, AUTH

Content
Stores &

Presentation
System

Session
Management

Agent

Client side Server side

Gateways

Figure 3. GLASS agents and protocols

link Create_slides_rt_obj {
trigger { is-prepared Slides_btn_rt_obj },
action-list { parallel,

action-list { serial,
action-list { target Sbtn_normal,

action { type new, template Sbtn_normal_rt_obj }
}
action-list { parallel, target Sbtn_normal_rt_obj,

action { type set-attachment-point, position-x 50, position-y 550, position-z 1},
action { type set-selection-style,selection-style button }

} }
-- same for Sbtn_hlight_rt_obj and Sbtn_pressed_rt_obj

} }

Appeared in: Proceedings International Workshop on Multimedia Software Development MMSD-96, Berlin, April 1996

stateful. Thus, presentations can be driven by data streams
instead of down-loaded files. Furthermore, clients and
servers can have multiple open communication links at the
same time. The communication links and the transmission
of content data is controlled by the POCP protocol. The
PODP protocol defines how to transmit the content data
(i.e., a large data flow) itself. PODP is a one-way protocol
from content servers to the client site.

Security and accounting is controlled by a session man-
agement agent. It tells the content store to transmit content
data to the presentation system (using the SCP protocol) af-
ter the appropriate authentication and credit messages have
been received from the client (AUTH and CRED protocol).

4. Comparison

When the need for a decision between an MHEG or
HTML-based system for a multimedia task arises, the re-
spective application and its context must be carefully taken
into account. This comparison should help multimedia de-
signers to get an overview about advantages and disadvan-
tages of the systems under discussion. However, everyone
has to make the choice for oneself, based on the application
to realize, the available resources, and the side consider-
ations to be taken into account. As we have mentioned ear-
lier, the experiences we made when implementing the
GlassWWWay provide a basis for our comparison. Be-
cause this gateway has potentially to translate any MHEG
scenario into an HTML presentation, we have experienced
the limitations and advantages of both frameworks first-
handedly.

In this comparison, we aim to consider all aspects
deemed to be important for multimedia designers deciding
between MHEG and HTML right now. Therefore, we
judged only capabilities that are already available and that
can be used right now. For example, since no browsers sup-
porting scripting in MHEG and no clients supporting
HTML client-side imagemaps were available at the time of
writing this comparison, these experimental features are
not mentioned in the summary.

The GLASS prototype has been implemented using
TCP/IP as its communication protocol. Nevertheless,
GLASS has been targeted at the realization of services re-
quiring stateful connections (e.g. B-ISDN). This is the rea-
son for some of the disadvantages of MHEG, like system-
inherent bottleneck and scalability problems. Applications
like Video-On-Demand require not only stateful connec-
tions but also a large amount of communication bandwidth
and cannot be driven by simple request-download proto-
cols. Therefore, problems arising because of stateful con-
nections are common to multimedia applications like
Video-On-Demand and not only MHEG-specific.

We have divided the important design aspects into four
areas.Application domains describes the environment each
system is most useful for.Authoring/abstraction discusses
the suitability of the available authoring and display tools.
The Protocols and performance part summarizes aspects
of transmission efficiency, whereas thestandardization
and availability part highlights the availability of software.
The results of this section are summarized in table 2.

4.1. Application domains

The application domains of both systems obviously
overlap. However, sometimes it is tricky and not very
straightforward to apply either framework to a domain it
was not quite designed for. In this subsection, we only state
the typical application domains of GLASS/MHEG and
WWW/HTML.

The most important domain of HTML are hypertext ap-
plications. Because the World-Wide Web provides access
to a distributed hypertext storage system based on HTTP
servers, it is well suited for global text-based information
services. HTML also permits image files and audio or vid-
eo sequences as targets of hypertext links. However, real
hypermedia structures, i.e., the ability to establish links be-
tween all types of documents to one another is not well pro-
vided by the Web. This is why applications like multimedia
kiosks, product demos and animations are not easily sup-
ported by HTML. The level of user interaction and integra-
tion of different media is rather low.

MHEG supports highly interactive multimedia applica-
tions like Video/Audio-On-Demand, Pay-Per-View, multi-
media product demos and tele-shopping much better. The
encoding of documents however, is very complicated,
which becomes especially obvious when trying to realize
simple hypertext information systems with MHEG. How-
ever, it is possible to support such applications given the
right tools.

4.2. Authoring and abstraction

With HTML, both a format for data exchange, as well
as an authoring language are defined. In contrast to HTML,
MHEG defines only the format for data exchange. There-
fore, we are comparing MHEG’s data description language
MDL with HTML, since MDL provides access to all com-
ponents of MHEG in a straightforward and more abstract
way.

The methods used to describe applications in HTML or
MDL are very different. In an MDL document, the end-for-
mat of a presentation is described, including the layout of
the presentation. Using HTML, the author inserts some
markup elements into the text only. Therefore, the authored
document is much closer to the logical hypertext structure,
than it is possible using MDL. In MDL, much more infor-
mation must be included into each multimedia document to
be presented because MHEG does not predefine any kind
of “look-and-feel” of applications. Therefore all basic
components that define an interaction must be included
(e.g. compare the description of a button which was intro-
duced in section 3.2). Of course, authoring tools can hide
these low level details (as it is achieved in MDL by provid-
ing a macro package), but the MHEG objects that are gen-
erated by the authoring process still remain pretty large.

MHEG tries to support reuse by providing model and
runtime objects. But, as you can see by our example in sec-
tion 3.2, this concept fails as soon as the objects to be re-
used get complicated. For example, it is not possible to
overload the normal, highlighted and pressed images in a
runtime object because these images are attributes of the

Appeared in: Proceedings International Workshop on Multimedia Software Development MMSD-96, Berlin, April 1996

model class, not of the runtime object. This also explains
why MHEG-based documents that are comparable in func-
tionality with HTML pages are usually more inefficient in
terms of communication bandwidth and secondary storage
used.

On the other hand, an author has the opportunity to
specify any kind of behavior or look-and-feel when using
MDL. Although some important elements of object-orient-
ed languages are missing, MDL is more an object-oriented
programming language, than a document description lan-
guage like HTML. Therefore, MDL provides capabilities
for describing highly interactive multimedia applications,
as opposed to HTML. But, in order to support a higher lev-
el of abstraction in the MHEG based authoring process,
other tools like e.g. WYSIWYG editors are needed. The
concept of author-defined look and feel is not natural to
HTML since it has been explicitly designed around the
principle of freedom to render documents as each client
chooses. A first step into the direction of author-induced
layout however, has been made with the introduction of
style sheets into the HTML 3.0 standards draft and first
browser implementations.

A major drawback to using MHEG is its current lack of
production-level tools, as are available for HTML. This is
basically because of the huge support for HTML and the
relatively low profile the still evolving MHEG standard
has.

4.3. Protocols and performance

One of the striking differences between GLASS and the
Web is the topic of state. While the GLASS user interface
agent (UIA) and the session manager explicitly contain
state-machines and are thus stateful on client- and server-
side alike, the Web favors the principle of statelessness for
its servers. The World-Wide Web and its protocols have
been developed around a download-display-download cy-
cle as common in the fault-tolerating (and error-prone) In-
ternet environment. GLASS protocols are advanced in the
sense that clients are enabled to handle multiple continuous
media streams at the same time, incurring state at both
sides of the communications link. This however underlines
the lack of scalability of the systems even further: As more
and more clients use them, they more (GLASS) or less
(WWW) quickly cease to deliver reasonable performance
for the end-user.

Nevertheless, an advantage of MHEG is that it allows to
take performance aspects into account. As an example, an
application can prepare all model objects before the pre-
sentation is started. If video objects are part of the applica-
tion, the required bandwidth might be reserved for the time
the presentation lasts via yet-to-be-defined means. Further-
more multiple MHEG objects can be grouped together and
be transmitted as a whole. This transmission unit is not re-
stricted to a single page as in HTML, but it could be for ex-
ample a complete multimedia scenario like a product
demonstration. Since in many computer networks, single
large packages are better for data transmission perfor-
mance than multiple small ones, this feature is in certain
environments advantageous.

4.4. Standardization and availability

As MHEG is a forthcoming international standard, all
properties of the exchange format are fixed and platform
independent. The same is true for HTML, which can be
considered to be the de-facto standard for distributed hy-
pertext information systems. The availability of MHEG
and HTML is quite different. World-Wide Web and
HTML-based tools and services are available world-wide
both from commercial and from non-profit providers. Sup-
ported by the infrastructure of the Internet, the Web is cur-
rently the most well-known, available and used
hypermedia system. Another advantage of this wide distri-
bution is the fact, that many research and commercial
groups are working on extensions to the Web, trying to
overcome the deficiencies of the current WWW while still
being compatible to existing HTML-based applications.

The currently very low availability of MHEG is a poten-
tial risk for investment in this area. The success of MHEG
also heavily depends on the availability of supporting
tools, especially high quality tools for browsing and au-
thoring of applications. Currently, only a few prototypical
and not very sophisticated tools are available.

5. A possible solution

After the above comparison of the two more or less es-
tablished standards under discussion, in this section, we
give a brief overview about a not yet as widely available
technology we believe to be the future of multimedia infor-
mation presentation on the Internet and position its capabil-
ities in the established framework of the previous section.

Java is a flexible, extensible, object oriented program-
ming language developed by SunSoft [12]. It closely re-
sembles in its syntax C++, but it is also deemed to be
secure in the sense that no programs written in Java can
negatively influence any resource like the filesystem on the
machine executing Java programs. This feature makes an
interpreter of Java-object code guarding all resources a ne-
cessity on any host running Java programs, so-calledap-
plets. With these prepositions, it becomes clear that applets
are meant to be used for function-shipping between hosts
with a Java runtime environment.

The ultimate rationale behind this is the aim to reduce
the amount of data transmitted for any given scenario, be-
cause now behavior, i.e., functions, are shipped and no
longer large data chunks like precomputed data sequences.
This is sensible given the huge amount of computing
horsepower available on the client-side hosts, while the
servers at the same time are too often overloaded with too
many client’s requests.

Before explaining how to work with Java, we briefly
highlight the short, but nevertheless remarkable history of
this language. It was first (semi-)officially introduced in
March 1995 with a posting about its availability for testing
to the respective WWW-related newsgroups. From the
very beginning, it contained a large number of useful class-
es, among which a complete WWW browser,HotJava,
demonstrated the usefulness and simplicity of the concept.
This initial distribution therefore contained already classes

Appeared in: Proceedings International Workshop on Multimedia Software Development MMSD-96, Berlin, April 1996

for HTML parsing, all major Internet protocols, like HTTP
or FTP, and a plethora of helpful tool classes, e.g. general-
purpose GUI classes or mathematical functions. Its first
major boost, however, Java got from its presentation at the
third International World-Wide Web Conference in Darm-
stadt, Germany in April 1995. The official presentation of
a stable alpha-release took place at the end of May ‘95 at
SunWorld in San Jose, California. During the summer of
the same year, a Java programming contest helped spur
even more interest in the language and helped create even
more applets than were already available with the official
Sun release. The last and most important event was the in-
troduction of a Java runtime environment into Netscape’s
Navigator, the most widely used WWW browser currently
available. With this, Java applets can all of a sudden be run
on roughly 80% of all hosts connected to the Internet, a ca-
pability it owes to its machine-independent bytecode, that
only has to be interpreted by an appropriate runtime. This
integration of Java with Netscape caused the introduction
of a slightly modified API (application programmer’s in-
terface), the so-calledBeta-API, which can be seen as the
first step into the direction of standardization of Java.

The next interesting question to be answered is, how to
work with Java, how to develop Java applets? One has to
learn a new programming language, but the support is rath-
er good: From day one of public accessibility, the Java de-
velopment environment contained for example a (rather
slow, but correct) working compiler for transforming Java
code into the machine independent bytecode of the Java
runtime. Thus, program development as usual for compiled
languages is possible, while the created bytecode could
still be checked if the need arises. This is why anybody can
develop applets providing some behavior hitherto not
available, compile it into code executable by the low-level
Java interpreter, and place this code on the Web in order to
let anybody access this new functionality. Since a new
markup tag has been introduced into HTML for this pur-
pose, Java programs can be directly blended into the Web,
allowing a dynamic and secure enhancement of browser
behavior ‘on-the-fly’.

The language itself resembles in most structures the ob-
ject-oriented language C++, but without the problematic
features of C++. For example, Java features garbage col-
lection of dynamically allocated data, thus alleviating pro-
grammers of the burden of memory allocation problems. It
also knows the concept of threads as the units of execution,
which extremely simplifies the development of programs
with several threads of control. From the standpoint of pro-
gram development, this is extremely sensible in inherently
concurrent environments, like user interface and/or net-
work protocol programming, see e.g. [8]. The last distin-
guishing feature to be mentioned here is the strict type
concept, which cannot be weakened by casting as possible
in C++. This, together with the trusted runtime, which does
for example array-bounds checking, guarantees the safe-
ness of Java code in the sense that no “foreign”, i.e., down-
loaded, applet can negatively influence any resource on the
client’s host, a guarantee no object code generated by a for-
eign (C++) compiler can give.

Besides these advantages of the language itself, further

positive topics are related with the relative youth of Java.
One is for example, that advanced software engineering
practices have been applied right from the start: On the one
hand side, the language itself features a clean, no-nonsense
design, where no backwards-compatibility compromises
had to be made. Secondly, the availability of a complete re-
pository of Java applets for any given purpose [11] makes
the search for and the reuse of any given Java software un-
precedentedly simple.

Another advantage of Java in the context of multimedia
document development and presentation is the raised level
of abstraction: Anybody can make use of existing applets
as easily as writing HTML code has been before. The pow-
er of expressiveness is as high as the abilities of the respec-
tive Java applets permit. As an example for this statement
take the following code excerpt from our Java implemen-
tation of the scenario we used to compare HTML and
MHEG:

<app class=”StoppableAnimator”
img=”Berlin” back=Start.html pause=1000

order=”1:200@audio/pic1.au|2@audio/
pic2.au|3:@audio/pic3.au”

repeat=true height=900 width=550>

It realizes a continuously running (3-)slide show with
integrated audio presentation without the need to use some
non-standard HTML/WWW ‘tricks’ (see section 3.1) or to
author complex interactions (see section 3.2).Stop-
pableAnimator designates the Java class to be down-
loaded into the Java-enabled browser to display the
sequence of images in the subdirectory ‘Berlin ’ of the
same WWW server at which the scenario is located. Of
course it was just plain luck to already find an applet hav-
ing nearly the functionality we needed for our scenario, but
the probability this will happen on any given problem will
rise as more and more people write applets and make the
respective object code (not necessarily the source) accessi-
ble via the WWW.

Since another applet providing the client side imagemap
behavior of state A in the scenario of section 2 was also
readily available, the overall coding effort that went into
the realization of our sample scenario was roughly two or-
ders of magnitude lower than what we had to put into the
respective realizations using (plain) HTML or MHEG.
This is even more surprising as we had to slightly modify
the original appletAnimator to accept another resource,
namely theback attribute indicating which page to load if
a user stops the slide show by pressing any button.

The last point to be made here is that the division of
writing Java-enhanced HTML code on the one side and
new Java applets on the other side is most certainly sensi-
ble from what we experienced when developing any Web-
application, be it WebMake [6], the GlassWWWay, or the
simple multimedia scenario outlined in section 2: Most of
the time, one can get along with high-level and in terms of
ease of understanding, simple, document presentation ab-
stractions. As soon as unforeseen behavior has to be inte-
grated, though, major efforts in terms of using WWW
‘tricks’ or complex MHEG scenario development have to
be undertaken and are as such only seldom reusable at an-
other project. As opposed to that, Java’s framework of gen-

Appeared in: Proceedings International Workshop on Multimedia Software Development MMSD-96, Berlin, April 1996

eral purpose object oriented classes which can be reused in
any context once they have been written clearly has a lead-
ing edge in terms of economics of multimedia document
engineering.

In the last part of this section we summarize the features
of Java and HotJava in the same table format we used for
comparing HTML and MHEG (cf. section 4). Since most
entries are obvious or self-explanatory after the presenta-
tion of Java’s capabilities above, we only concentrate in
this concluding part of the section on Java on a selected
subset of features of the combination Java/HTML.

The first point we would like to stress is the topic of
scalability. Java applets are inherently the carriers of state,
and since they are located on the client side, this approach
scales with the number of clients as long as the clients, that
may thus be the only bottlenecks, are computationally
powerful enough. As opposed to that, any approach storing
state on the server side is doomed as soon as a rising num-
ber of clients accesses the respective documents. Of
course, there exist certain applications (e.g. Video-On-De-
mand) that make a state necessary in any case.

As ease of use is discussed, one has to carefully distin-

guish between users and programmers of Java. While the
first only have to know how to integrate existing applets
into HTML pages (which indeed is trivial), the latter have
to be able to master the new programming language. This
directly leads to a very high level of abstraction for the us-
ers of the combination Java/HTML. Nevertheless, pro-
grammers even get the opportunity to modify the
mechanisms and the look-and-feel of a Java-enabled dis-
play agent like a WWW browser.

The last point to be highlighted here is that of availabil-
ity of Java and more importantly, its runtime environment.
Since the most influential WWW software provider,
Netscape Inc. licensed Java and ported it to all major plat-
forms, the system emerged from its niche of Sun Worksta-
tions running Solaris. The additional acceptance of Java by
both Microsoft and IBM, which both licensed the technol-
ogy as well, shed a promising light on the language, its con-
cept, and overall availability in the future.

After all, the lesson we learned is to use Java as the
foundation for a next-generation gateway between MHEG
and WWW, a work currently under way.

Aspect to be compared MHEG HTML HTML+Java

Hypertext information systems not well suited very well suited very well suited

On-line multimedia kiosk very well suited not well suited very well suited

Interactive multimedia applications very well suited very limited very well suited

Table 3. Overview about the important features of the surveyed systems

6. Conclusion

In this paper we pointed out the areas of application for two (quasi-)standard multimedia document exchange formats, the
Hypertext Markup Language of the World-Wide Web and the Multimedia and Hypermedia Expert’s Group MHEG format.
We implemented a scenario typically found in today’s multimedia presentations with both approaches. Based on this and ear-

Continuous media (e.g. Video-On-Demand) very well suited very limited well suited

Determination of look-and-feel authoring time rendering time any time

Description of behavior yes no yes

Abstraction level low high very high

Ease-of-use complex code simple simple / difficult

Code compactness low high high

Units of transmission scenes pages pages+functions

State / ->
Degree of scalability

client & server side /
Low

client side /
Medium

client side /
High

Bottleneck server & network network network, (client
host)

Standardized international de-facto inter-vendorβ-API

Availability of software few prototypes broadly available many platforms

Accessibility / Market penetration few projects only world-wide rapidly rising

Table 3. Overview about the important features of the surveyed systems

Appeared in: Proceedings International Workshop on Multimedia Software Development MMSD-96, Berlin, April 1996

lier experiences when conducting WWW and MHEG
projects, we extracted the highlights and weak spots of
both frameworks.

The summary drawn is that MHEG is a high risk in
terms of investment in a standard that might be coming too
late. Nevertheless, we are seeing one possible market for
MHEG which is Video-On-Demand and interactive-TV
because here connections are explicitly reserved for each
client (and which are charged). In contrast, HTML estab-
lished itself quite firmly due to its large support base, the
many tools available, and its free accessibility, although it
is not a real standard and was merely meant for hypertext
documents.

We concluded the paper with the presentation of Java,
and how it smoothly blends into the existing infrastructure
of the Web, extending its possibilities and deleting most of
the drawbacks pointed out in our evaluation of HTML
alone. Since MHEG engines can be built using Java tech-
nology in general, and Java classes in particular can be de-
fined for MHEG, the use of Java as a base technology for
multimedia document development, exchange, and presen-
tation on the Internet seems to be the most sensible way to
go in terms of both economic and engineering consider-
ations.

References
[1] Andreesen, M.:A Beginner’s Guide to HTML; URL = http:/

/www.ncsa.uiuc.edu/demoweb/html-primer.html, 1993.

[2] Baentsch, M., Rösch, P.:Weaving interactive media into the
Web: The WWW-GLASS gateway; Proceedings Workshop
on Interactive and Distributed Multi-Media Systems on
Highspeed Networks at the 3rd International World-Wide
Web Conference, Darmstadt, Germany, April 1995, pp. 4-8.

[3] Berners-Lee, T., et.al.: The World-Wide Web; Communica-
tions of the ACM, August 1994, Vol. 37, No. 8, pp. 76-82.

[4] Berners-Lee, T., Fielding, R.T., Nielsen, H.F.: HTTP/1.0 In-
ternet Draft 03, Best Current Practice; Internet draft; URL =
http://www.w3.org/pub/WWW/Protocols/HTTP1.0/draft-
ietf-http-spec.html, 1995.

[5] Berners-Lee, T., Connolly, D.:Hypertext Markup Language
- 2.0, Internet draft; URL = http://www.w3.org/pub/WWW/
MarkUp/html-spec/html-spec_toc.html, September 1995.

[6] Baentsch, M., Molter, G., Sturm, P.:Booster: A WWW-
based prototype of the Global Software Highway; Proceed-
ings 2nd International Workshop on Services in Distributed
and Networked Environments; Whistler, Canada, June 1995,
pp. 156-165.

[7] Borenstein, N., Freed, N.:MIME (Multipurpose Internet
Mail Extensions): Mechanisms for Specifying and Describ-
ing the Format of Internet Message Bodies; Internet RFC
1521, September 1993; URL = http://www.oac.uci.edu/in-
div/ehood/MIME/1521/rfc1521ToC.html.

[8] Buhler, P.: Dissertation at the Computer Science Depart-
ment of the University of Kaiserslautern, Germany, June
1993.

[9] Colaitis, F.:Opening Up Multimedia Object Exchange with
MHEG. IEEE Multimedia, pp. 80-84, Summer 1994.

[10] Conklin, J.:Hypertext: An Introduction and Survey. IEEE

Computer, Sept. 1987.

[11] Gamelan: A repository for Java applets; http://
www.gamelan.com/Gamelan.html

[12] Gosling, J., McGilton, H.:The Java Language Environment:
A White Paper; URL = http://java.sun.com/whitePaper/
javawhitepaper_1.html, 1995.

[13] Hofrichter, K.: Berkom GLASS (GLobally Accessible Ser-
viceS) (project overview); URL = http://www.fokus.gmd.de/
ovma/berglass/entry.html.

[14] ISO/IEC CD 13552:Information Technology - Coding of
Multimedia and Hypermedia Information Part 1 - 5, 1995.

[15] McCool, R.:The Common Gateway Interface; URL = http:/
/hoohoo.ncsa.uiuc.edu/cgi/, 1994.

[16] Meyer-Boudnik, T., Effelsberg, W.MHEG Explained. IEEE
Multimedia, pp. 26-38, Spring 1995.

[17] Myers, B.A.:User Interface Software Tools. ACM Transac-
tions on Computer Human Interaction; Vol. 2, No. 1, March
1995.

[18] National Center for Supercomputing Applications:NCSA
Mosaic Common Client Interface; URL = http://www.nc-
sa.uiuc.edu/SDG/Software/XMosaic/CCI/cci-spec.html,
April 1995.

[19] Spero, S.: Progress on HTTP-NG; URL = http://
www.w3.org/pub/WWW/Protocols/HTTP-NG/http-ng-sta-
tus.html, 1995.

[20] Stevens, W.R.:TCP/IP Illustrated, Vol.1, Addison-Wesley,
Computing Series, 1994.

[21] Cover, R. Duncan, N. Barnard, D.:The Progress of SGML
(Standard Generalized Markup Language): Extracts from a
Comprehensive Bibliography. Literary and Linguistic Com-
puting 6/3, pp. 200-212, 1991.

