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Abstract— By abandoning the assumption of an infinite docu-
ment to watermark ratio, we recompute the achievable rates for
Eggers’s Scalar Costa Scheme (SCS, also known as Scalar Distor-
tion Compensated Dither Modulation) and show, as opposed to
the results reported by Eggers, that the achievable rates ofSCS
are always larger than those of spread spectrum (SS). Moreover,
we show that for small Watermark to Noise Ratios, SCS becomes
equivalent to a two-centroid problem, thus revealing interesting
relations with SS and with Malvar’s Improved Spread Spectrum
(ISS). We also show an interesting behavior for the optimal
distortion compensation parameter. All these results aim at filling
an existing gap in watermarking theory and have important
consequences for the design of efficient decoders for data hiding
problems.

I. I NTRODUCTION

Scalar Costa Scheme (SCS) [1] is a popular method
for information embedding that belongs to the family of
quantization-based methods. Eggers calculated in [1] the
achievable rate of SCS by resorting to the assumption of
uniformity of the host signal inside each quantization bin,
concluding that the achievable rate of SCS is smaller than that
of spread spectrum (SS) methods for high noise levels, besides
being independent on the host statistics and thedocument
to watermark ratio, which is defined asλ = σ2

x/Dw or
DWR = 10 log

10
λ, with σ2

x being the host variance and
Dw the embedding distortion. The uniform assumption is
equivalent to considering that DWR =∞. We will show
that the performance of SCS is actually never worse than
that of SS in terms of achievable rate, and, in fact, it can
benefit from low DWR’s. In general, for data hiding and
watermarking applications, the variance of the host signalis
considered to be much larger than that of the watermark,
giving rise to the assumption of high DWR. However, in
practical image processing applications, the host image can
be modeled as a weighted mixture of zero-mean Gaussian
pdf’s that capture local image statistics [2], with most of them
presenting small variances. Therefore, it is very important
to consider the performance of data-hiding techniques for
relatively low DWR’s.
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For our analysis we will consider the same scenario as
Eggers in [1]: an equiprobable watermark messagem, be-
longing to theM -ary alphabetM = {0, 1, . . . |M| − 1},
is embedded into an independent and identically distributed
(i.i.d.) host signalx yielding a watermarked signaly, which
undergoes an additive channel, modeled by additive white
Gaussian noise (AWGN), resulting in the received signalz.
In SCS, the watermarked signal is obtained by adding to the
host signal a fraction of the quantization error:

y = x + α (Qi(x) − x) , (1)

where Qi(x) is the quantized value ofx using a uniform
scalar quantizer with step∆, depending on the transmitted
symbol mi, and α is the distortion compensation parame-
ter. The embedding process is parameterized byα and the
DWR defined above. Another parameter introduced for the
performance analysis is thewatermark to noise ratio, which
is defined asξ = Dw/Dc or WNR = 10 log

10
ξ, beingDc the

distortion introduced by the channel, which in our case is equal
to the noise variance,σ2

n. Zero-mean signals are considered in
all cases and all embedding rates are expressed in bits.

II. COMPUTING THE TRUE ACHIEVABLE RATES

The achievable rates for SCS are calculated by maximizing
over parameterα the mutual information between the received
signalZ and the transmitted messageM :

R(λ, ξ) = max
α

I(Z; M). (2)

Note that we make the achievable rate dependent on the DWR
and the WNR, not only on the WNR, as Eggers made in [1].
The mutual informationI(Z; M) is given by

I(Z; M) = h(Z) −
∑

i∈M

Pr{M = mi}h(Z|M = mi), (3)

whereh(Z) stands for the differential entropy of the random
variable Z with a density fZ(z). Thus, to calculate the
mutual informations we need to know the pdf ofZ and of
Z conditioned on the transmitted message. The following
paragraphs are aimed at showing how these exact pdf’s can
be obtained.

Scalar quantization with distortion compensation can be
thought of as a random variable transformationY = g(X),
whose pdf can be easily computed by means of the funda-
mental theorem for random variable transformations [3]. Such
a transformation depends on the considered centroid. Letcki



be thek-th centroid in the quantizer associated to the message
mi, the transformation is given by

yki = gki(x) = (x − cki)(1 − α) + cki, (4)

for
cki −

∆

2
≤ x ≤ cki +

∆

2
, (5)

wherecki is the nearest centroid tox (in terms of Euclidean
distance). The only root of (4) is

xki = g−1

ki (yki) =
yki − cki

1 − α
+ cki,

so by the fundamental theorem we have the contribution of
the centroidcki to the pdf of the watermarked signal

fYki
(yki) =

fX(xki)

|g′ki(xki)|
=

fX

(

yki−cki

1−α
+ cki

)

1 − α
. (6)

The pdf of the watermarked signal conditioned on the trans-
mitted messageM = mi is then given by

fYi
(yi) =

∞
∑

k=−∞

fYki
(yki), (7)

so the pdf of the watermarked signal is

fY (y) =
∑

i∈M

Pr{M = mi}fYi
(yi) =

1

M

∑

i∈M

∞
∑

k=−∞

fYki
(yki).

(8)
When the support ofX is infinite, (7) and (8) must be

approximated by truncating the host pdf. Finally, the addition
of Gaussian noise can be accounted for by simple numerical
convolution with an appropriate Gaussian pdf. As in [1], no
closed form exists for the resulting pdf’s, so we must resort
to numerical computation. The embedding distortion is given
by

Dw =
1

M

∑

i∈M

∫

(x − y)2fX(x)dx, (9)

which can be easily calculated (again in a numerical manner)
for an arbitrary host pdf. The quantization step is fixed without
loss of generality at∆ = 1, so the varianceσ2

x of the host
signal is adjusted to fit a certain DWR for a given parameter
α.

Having obtained the required pdf’s, computation of the
mutual informations is straightforward.

A. Theoretical achievable rates for small WNR’s

From (1), it is easy to see that, by reducingα, the quanti-
zation step∆ can be made larger while keeping constant the
embedding distortionDw. Moreover, from the analysis made
in [1], it is known that the optimum distortion compensation
parameterα decreases according to the value of WNR. With
this two considerations in mind and the fact that we are dealing
with finite DWR’s, one can conjecture that the optimum
quantization step for small WNR’s is such that the whole pdf
of the host signal can be confined inside one quantization bin,
or equivalently, the ratio∆/σx can be made very large. We
could reduce then SCS to a problem with only two meaningful
centroids. It is interesting to note the relation between this

two-centroid scheme and SS: when the host pdf is contained
inside one quantization bin, the embedding process always
moves the host signal towards the positive axis when the
transmitted bit is 0, and towards the opposite direction when
the transmitted bit is 1. Such an embedding process resembles
SS-based watermarking, but a subtle difference between both
schemes must be noted: whereas in the latter embedding is
performed by the addition of a watermark with fixed amplitude
to the host signal (we neglect here any issue concerning
perceptual masking), in the former the watermark depends on
the considered host sample. Because of its great similarity
to SS, we will refer to this scheme in the sequel as DC-SS
(Distortion Compensated - Spread Spectrum).

For the following analysis we consider a Gaussian host and
binary signaling (M = {0, 1}) with equiprobable symbols,
and that the centroids corresponding to the symbolsmi are
located at−x0, x0, respectively (antipodal constellation), with
x0 = ∆/4. Assuming we transmit the messageM = 1, and
particularizing (4) for this case, the following expression for
the received signal is obtained

z = x + w + n = (1 − α)x + αx0 + n, (10)

from which it follows that

fZ|M (z|M = 1) ∼ N (αx0, σ
2

x(1 − α)2 + σ2

n), (11)

i.e. the received signal also follows a Gaussian distribution.
Moreover, sincey = x + w, it is easy to realize that

w = α(x0 − x), Dw = α2(x2

0
+ σ2

x). (12)

Recalling thatλ = 10
DWR

10 andξ = 10
WNR

10 , we have then

λ =
σ2

x

α2(x2

0
+ σ2

x)
, ξ =

α2(x2

0
+ σ2

x)

σ2
n

, (13)

so we can writeσ2

x andσ2

n as functions ofλ, ξ andx0

σ2

x =
λα2x2

0

1 − λα2
, σ2

n =
α2

(

x2

0
+

α2x2

0
λ

1−α2λ

)

ξ
. (14)

It can be analytically shown that the mutual information of
DC-SS is a monotonically increasing function of the following
signal to noise ratio

SNRDC−SS =
x2

0
α2

σ2
x(1 − α)2 + σ2

n

, (15)

which is nothing but the ratio between the mean squared value
of the received signal conditioned on the transmitted message
M = 1 and its variance.

The optimum parameterα can now be calculated by insert-
ing (14) in (15) and maximizing over that parameter, obtaining

α∗
DC−SS(λ, ξ) =

1 + ξ + λξ − [(1 + ξ + λξ)2 − 4λξ2]
1

2

2λξ
,

(16)
which only depends on the WNR and the DWR. For small
WNR’s, the following approximation for the achievable rate
of DC-SS is valid

RDC−SS(λ, ξ, α) ≃
1

2
log(1 + SNRDC−SS). (17)



Inserting (16) in (17) yields the following achievable rate

R∗
DC−SS(λ, ξ) ≃

1

2
log

(

1 +
1

2

[

ξ − λξ − 1 + [(1 + ξ + λξ)2 − 4λξ2]
1

2

]

)

. (18)

In the next section, the validity of (16) and (18) to predict
the performance of SCS for small WNR’s will be verified.

III. R ESULTS AND DISCUSSION

From now on, all the results will stand for Gaussian hosts
and binary signaling. In Fig. 1-a, the true achievable rates
in SCS for negative WNR’s are represented. Two different
DWR’s are considered: 10 and 20 dB. For comparison pur-
poses, the capacity predicted by Costa,

CCosta =
1

2
log

2

(

1 +
Dw

σ2
n

)

, (19)

and the capacity for SS with Gaussian host,

CSS =
1

2
log

2

(

1 +
Dw

σ2
x + σ2

n

)

, (20)

are also plotted.
It can be seen that the achievable rate depends, indeed, on

the host statistics, and below a certain value of WNR (which is
dependent on the DWR) the gain with respect to the uniform
assumption is considerable, but more important is the fact that
the true achievable rates of SCS are never below those of
SS, contrarily to what was reported by Eggers. The optimum
value forα is shown in Fig. 1-b, revealing another surprising
result: the optimumα is discontinuous, and also depends on
the DWR: below a certain WNR, it diverges from the value
obtained by Eggers and gets closer to the one derived by Costa.
The reason for such a discontinuity is the existence of two
local maxima in the curves of the mutual information: when
the location of the global maximum changes sharply, so does
the optimumα (if we would have resorted to the uniform
approximation, there would exist only one maximum in those
curves, as it occurs in [1]).

These results evidence the non-validity of the uniform
assumption for small WNR’s: as long as the value ofα is
decreased, so does the ratioσx/∆ in order to keep DWR con-
stant. When the ratioσx/∆ is sufficiently small, the uniform
assumption no longer holds, and even the absolute location of
the centroids becomes relevant in the calculation ofI(Z; M).
In fact, to achieve the maximum embedding rate, they must be
symmetrically located around the host mean. The decreasing
in the ratioσx/∆ implies that the number of centroids with
a non-negligible assignment probability is also decreasing,
until the limiting case where only one centroid for each
symbol is used. Costa had shown in [4] a similar behavior for
the optimum number of codewords in his capacity-achieving
scheme: for small WNR’s,α∗

Costa tends to 0 and the number
of required codewords per symbol tends to 1, thus confirming
the conjecture made in Section II-A.

Now, we will verify the theoretical achievable rates and the
optimumα that were derived in that Section II-A for the DC-
SS scheme. Equation (18) gives an excellent estimate for the
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Fig. 1. Binary SCS with Gaussian host: achievable rates (a) and optimum
distortion compensation parameter (b)

achievable rate of SCS when DC-SS assumptions hold, as it
can be readily seen in Fig. 2-a. Moreover, it is not difficult to
prove that DC-SS always performs better than SS for DWR’s
greater than 0 dB. We noted above the difference between
the optimum parameterα derived by Eggers and the one
we obtained for DWR< ∞. The analytical expression (16)
derived for DC-SS closely matches the optimumα in SCS
when DC-SS assumptions hold, as can be seen in Fig. 2-b.
Furthermore, it can be easily shown that

lim
DWR→−∞

α∗
DC−SS = lim

λ→0

α∗
DC−SS = α∗

Costa, (21)

whereα∗
Costa =

(

1 + ξ−1
)−1

stands for the optimum parame-
terα derived by Costa in [4]. Fig. 1-b shows that the parameter
α in SCS is approximately fitted by that derived by Costa for
low WNR’s; the lower the DWR, the wider the range where
such an approximation is valid. The result (21) makes sense
because forDWR → −∞ the variance of the host signal is
negligible compared to∆, and thus the DC-SS assumptions
always hold.

IV. CONNECTIONS BETWEENSCSAND ISS

The reduction of SCS to a two-centroid problem (DC-
SS) resembles a recently proposed scheme by Malvar and
Florêncio in [5], the so-called ISS (Improved Spread Spec-
trum), which is a generalized spread spectrum method that
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Fig. 2. Comparison between the achievable rates obtained numerically for
SCS and theoretical ones for DC-SS and SS (a), and comparisonbetween
optimum parameterα in SCS and DC-SS (b). A Gaussian host was considered
in both plots.

varies the amplitude of the watermark depending on the
considered host sample, providing significant gains over tra-
ditional SS. Although several versions of ISS are describedin
[5], we only consider here thelinear one in order to clearly
show the connections between DC-SS and ISS, revealing that
the latter can be interpreted as a scheme with twovirtual
centroids, similarly to the former, being both approaches
equivalent in terms of performance. For the analysis, the con-
sidered scenario will be the same as that of SCS, introduced
in Section I.

In traditional spread spectrum, the embedding function
particularized for one sample is simplyy = x + bσu, with
b = ±1 depending on the to-be-transmitted bit, andσu the
watermark amplitude. In the linear approximation of ISS, the
embedding function can be written as

y = x + γbσu − νx = (1 − ν)x + γbσu, (22)

beingγ andν two parameters in the range [0,1] that control
the watermark amplitude and host rejection, respectively (note
that spread spectrum is a particular case of (22) forγ = 1 and
ν = 0). It can be inferred from (22) that

Dw = γ2σ2

u + ν2σ2

x, (23)

fZ|B(z|b = 1) ∼ N (γσu, (1 − ν)2σ2

x + σ2

n). (24)

By comparing (11) and (24), it can be noted thatσu plays in
(24) the role of the centroidx0 in (11). The main difference
between ISS and DC-SS is the fact that ISS uses two parame-
ters for embedding, namelyγ andν, whereas DC-SS uses only
one parameter. However, parameterγ in ISS is actually fixed
to make the distortion (23) equal to that of spread spectrum,
yielding γ =

√

(σ2
u − ν2σ2

x)/σ2
u, so, similarly to DC-SS, the

achievable rate for ISS can be estimated by maximizing over
ν the following expression

RISS(λ, ξ) ≃
1

2
log(1 + SNRISS), (25)

where

SNRISS =
σ2

u − ν2σ2

x

(1 − ν)2σ2
x + σ2

n

. (26)

By some straightforward algebraic manipulations, it is easy to
show that (26) is equal to (15), thusν∗ = α∗

DC−SS and
RISS = RDC−SS , and the results derived for DC-SS also
apply for ISS. Since the achievable rate of ISS is equal to
that of DC-SS, it is evident that the former is outperformed
by SCS when the WNR increases. The drawback of ISS is
that the number of centroids is not increased according to the
WNR, as we pointed out in Section III.

V. CONCLUSIONS AND FURTHER WORK

We have analyzed the achievable rates of SCS by rejecting
the uniform assumption, concluding that such an assumption
leads to a significant underestimation of the true achievable
rates for small watermark to noise ratios. As a matter of
fact, the exact analysis has revealed an important result: the
performance of SCS is dependent on the host statistics, and
it is never worse than that of SS in terms of the achievable
rate under AWGN attacks, hence there is no reason for using
SS even when the watermarks must survive high noise levels.
By reducing SCS to a problem with only two meaningful
centroids, we have obtained some novel theoretical expressions
that characterize the performance of SCS for small watermark
to noise ratios and allow to derive some interesting relations
between SCS, SS and ISS.

The analysis carried out here can be made easily extensive
to other host distributions besides the Gaussian, and it can
be extended to the calculation of the probability of error in
SCS-based schemes, in order to show the true performance of
decoders operating at low-WNR regimes.
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