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Abstract-This paper presents a robust method to estimate 
the unknown standard deviation of a centred normal distribution 
from a mixture density. This method is applied to different signal 
processing problems. The first one concerns silence segmentation 
from audio data. The second application deals with colour 
class parameter extraction. In tbis later case, the mean is also 
estimated from the observations. 

1. INTRODUCTION 

High-level semantic extraction methods are heavily depen­
dent on the reliability of low-level processes that often require 
the designer to intituively set tuning parameters [1), [2], [3]. 
Many of these low-level processes can be re-expressed as a 
desire to identify the occurrence of particular events expressed 
as features. In that case the task is one of separating and 
extracting a desired class of features C (inliers) from the 
polluting class C (outliers [4]). It is possible to make some 

relatively loose assumptions about the distribution of the class 
C of interest, to allow its statistics to be estimated from an 
observed mix.ture distribution and separated from the outliers 
{5]. 

The modelling of inliers and outlier data has already been 
studied in robust statistics [6], [5]. For instance, in [6], the 
M-estimators are designed to perform robust estimation of 
parameters over a mixture of observations where the inlier 
class is modelled using a centred normal distribution. The scale 
parameter u [6] that controls the rejection of the data in the 
M-estimation is then corresponding to the standard deviation 
of the inliers [5]. This parameter is usually estimated using 
the median or MAD estimators (7]. In [5], distributions for 
both inlier and outlier classes are proposed in the context of 
an image matching application. The inliers follow a Laplacian 
distribution also depending on a unique parameter Ij (standard 
deviation), whereas outlier distribution is modeled by non­
parametric methods computed over the observations [5]. 

Following [6], we consider a class of interest (inlier) with a 
centred normal distribution. This paper proposes a new mech­
anism for estimating inlier statistics (the standard deviation 
u) that is a generalisation of a method proposed for edge 
based segmentation [8]. It employs a non-parametric technique 
for identifying lobes in measured distributions and so is 
more robust that previous approaches. This new mechanism 
is applied to multimedia data analysis. Two low level tasks 
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illustrate the efficiency of the new method: detection of silence 
in audio data and table or court segmentation in sport video 
broadcasts [1], [2], [3]. 

II. PRINCIPLE 
A. The class of Inliers 

Considering two independent random variables, Xo and Xb, 
following the same centred normal law 'Px (x) ,...., #(0, u) , the 
random variable Y = .jX; + Xl has a Rayleigh distribution 
[8], [9]: 

y 
[ y2 

] 'Py(y),= u2 ·cxp -2(12 ·U(y) (I) 

One way to estimate the standard deviation u is to compute 
the distribution 'Py(y) using observation samples {yd, by 
a histogram for instance, and compute the value Ymax C that 
maximises this distribution. The parameter u, or standard 
deviation of the variables X, is then easily computed by; 

(2) 

The notation MS for'the estimate O'MS refers to the Mean Shift 
procedure that has been used to compute }'�axC (cf. section 
II-D). For comparison purposes, we also compute the standard 
least squares estimate using the observations {xd: 

ULS::::IE[X2] (3) 

And the robust Median Absolute Deviation [7]; 

IjMAD = 1.4826· medianlx - median(x)I (4) 

Figure 1 shows th� results of a simulation for those three 
estimations of the standard deviation. All three are close to 
the true value. 

B. The disturbblg o�tliers 

However in practice, the two observed random variables, 
Xa and Xb, follow a mix.ture of two laws [8]. The first one is 
the class of interest,: noted C, of normal distribution N(O, u). 
The second one, noted C, gathers all the outliers of the class 
C. As defined in [4], an outlier is a data point that contains 

no information about the system - the inlier class C - to be 

estimated. Figure 2' shows the distribution 'Py (y) simulated 
using mixed observations ofthe random variables Xo and Xb. 
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Fig. I. Rayleigh Distribution Py (y) simulated with 100000 samples from 
Xa � )1/(0,,, "" 2) and Xb N N(O, <T = 2): in red wlid line <TMS "" . 
2.0413, in green daslulot line "MAO = 1.9997 and in black dash line O'LS "" 
1.9996. 
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fig. 2, Rayleigh Distribution with outliers: 100000 samples X a , X b have 
been mdependelllly generated from N(O, 0' "" 2) and mixed with 500000 
samples from )1/(3,0' = 1) for X. and from N(12,0' = 3) for Xb. 
Estimated standard deviation: in red salid line O'MS = 2.0413, in green 
daslrdm line "MAO == 2.9209 and in black dash line O'LS = 7.3283, 

The estimation of the standard deviation using our method is 
closer to the true value than the other standard methods, 

Depending on the proportion and the distribution of the 
outliers, the location of the relevant peak in Pdy) gets 
trickier. Assuming that the peak of interest for the estimation 
of (7 is the closest to the value y = 0, we propose to use 
the mean shift procedure [10] to estimate the local maxima of 
interest r�axC from 'Py(y). 

C Generalization 

More generally, for a random variable Y computed from 
independent random variables Vi, Xi '" N(o, (7) such as: 

Y;;:: I: Xl 
i=l,"',n 

has the X function with n degrees of freedom as a probability 
density function [9]: 

21-l} yn-l [y2 ] 
Py(y) = -_. - ·exp -- ·U(y) 

r (?) (J'n 2(72 (5) 

The maximum of py(y) is then linked to the unknown 
parameter (7 such as; 

l';"aJ< c = arg maxy 'Py (y) 

=In=l(7 
(6) 

Once the ma.'{imum r�axC is located, this relation provides 
an estimate of the unknown parameter (7. 

D. Findi,lg the maximum l'�ax C using Mean Shift 

The mean shift is a non parametric estimator of the density 
gradient. By computing its zeros, the maxima of the distribu­
tion can then be located [10]. We collect a set of independent 
observations {yd of the random variable Y. Considering the 
Epanechnikov kernel, the closest mode to the value y = ° is 
computed using the following mean shift procedure: 

Init y = 0 (or y;;:: mindyd) 
Mh (y) ;;::: nl. LYkE[v-h;y+hj Yk - Y 

Y f- Y + Mh(y) 
till convergence Ymax C :::: Y 

(7) 

where nll is the number of observation samples Yk is the 
interval [y-h; y+hl. The bandwidth parameter h, that controls 
the resolution of the mode selection, has been manually set in 
our applications in section III [10]. 

III. ApPLICATIONS 
Application of this robust parameter estimation for edge 

segmentation in images has already been proposed in [8l. We 
consider here two other segmentation tasks. In section III­
A, a silence detection method in audio streams is proposed. 
In section ill-B, an automatic colour region segmentation is 
presented for sport video indexing purposes. 

A. Silence detection in audio data. 

In sport broadcast, the audio stream is composed of different 
source of sounds (audience, referees, etc.). One of particular 
importance, is the silence that appears in between those 
classes. We propose to use our method to segment the silence 
class C in audio data from the non-silence one C. We assume 
that the hypotheses regarding the class C are met (cf. section 
II-A). 

1) From stereo dara: Considering a stereo audio signal 
(sr(k), sl(k) (k, index the audio samples). we assume that 
the two data streams, Sr and S/, are independent and provide 
the observations of our random variables Xa and Xb• The 
samples {Yd are computed by Yk = Js;'(k) + ar(k), Figure 
3 shows the distribution Py (y) drawn from those observations. 
As the perception of silence is only possible on longer duration 
than only one audio sample (at a frequency f s = 44100H z, a 
sample lasts for O.03ms), we propose another way to use our 
method in the next section. 
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Fig. 3. Distribution Py (y) computed using stereo audio samples from a 
snooker broadcast. Estimated standard deviation: (TMS = 7. 7544e - 004, 
(TMAD = 0.0022 and (TLS = 0.02. 

2) From mono stream audio data: When only one audio 
stream s(k) is available, the observations Yk can be computed 
using successive samples as follows: 

Yk = 2: s2(i) 
iEt>. 

(8) 

The size of the temporal window llk centred on the sample k 
defines the number n of data considered to compute samples of 
the random variable Y. It is also corresponding to the degree 
of freedom in the distribution of the inlier class (cf. equation 
5). 

3) Thresholding: One application of our method is the 
segmentation of the data set in between the two classes C 
and C. One simple way is to classify data such as: 

{ Xk E � if IXk I < 30" 
Xk E C otherwise 

or 
{ Yk E � if Yk < 3vn=I 0" 

Y k E C otherwise 

The value 30" insures that 99.7% of the class C are selected. 
Figure 4 shows an example of segmented audio signal of a 
tennis video computed using a temporal window Ll = 40ms 
[2). 

Fig. 4. Silence Detection in Pierce audio data [2]: in green the class C and 
in blue C. 

For audio data, the variable Y, as defined in equation 8, 
correspond to the loudness or energy of the signal. It is a basic 

feature used for indexing sport videos [11]. Figure 5 shows 
the loudness information of a snooker broadcast computed at 
two different temporal resolutions Ll. The relative error of the 
estimation O"MS at multiresolution (using equation 6) has been 
leSS than 0.01 in those experiments (ll changing from O.OO1s 
to Is). The accuracy of the estimation is then not sensitive to 
the choice of the temporal window II in computing Y. 

II = O.OOls 
Fig_ 5. Loudness inforniation Y (in blue) with the corresponding Y m"" C 
(in green) computed at different temporal resolution. 

B. Colour Region segmentation in images 

The application considered in this section concerns the court 
and snooker table detection in tennis and snooker videos [I], 
[2], [3]. The class C of interest is the homogeneus colour 
of those objects. Depending of the camera view (for indoor 
snooker videos) or varying lighting condition (in outdoor ten­
nis videos), the statistics of this class of interest are temporally 
changing. We therefore propose to estimate those parameters 
for each image of the sequence instead of manually setting 
them [12]. From RGB images, we compute the variables: { r = R+�+B 

_ G 
g - R+G+B 

1= Rlx�t5B 

{ Xa = r - fie 

and then Xb = 9 - fI� 

Xc = I - flf 
Following [1], the means fie' tt� and flf are estimated by 
considering the maximum peak in the colour distribution 
P(r, g, I). This is performed in a coarse to fine way: first the 
maximum peak is located in the 3D colour histogram and then 
starting from those first estimates of the means, a Meanshift 
procedure is performed to refine the values /lc' /lg and /lb· 

The random variable Y is computed either Y 
JX; + X� C1'l'(yIC) is a Rayleigh distribution) or Y == 

JX� + X; + X; (Py(yIC) is a Maxwell distribution). Fig­
ure 6 shows the distribution Py (y) computed using the visual 
data from an image of a snooker table (cf. figure 8 (d)). 

The robustness of, the method is assessed by performing the 
estimation of 0" on .each images of a snooker video shot as 
illustrated in figure 7. The stability in both the estimations of 
the means and the standard deviation insures the success of the 
segmentation of the regions of interest in the videos. Figure 8 
shows the resulting segmentation of snooker table and a court 
in sport video images. 
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Fig. 6. Maxwell distribution computed with visual data (snooker broadcast 
image cf. figure 8 (d». Estimated standard deviation "MS = ?0174. 

"-.---------�--------�-

Fig. 7. Top: Means J.lc, J.l� and J.l� estimated over the shot Bottom: the 
corresponding estimated standard deviation "MS. The variance of the "MS 
is less than U.U00002 over the sequence. 

IV. CONCLUSION 
We proposed a method to robustly estimate the standard 

deviation of a class of data driven by a centred normal 
distribution from a observed mixture. This method has been 
successfully applied over two types of data, audio and visual, 
for segmentation purposes, 
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