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Abstract— In this paper we introduce an algorithm – com-
monly known as a film mode detector – for separating progressive
source video from interlaced source video. Due to interlacing arti-
facts in the presence of motion, a difference in isophote curvature
can be measured and a threshold for effective classification can
be set. This can be used in a video converter to ensure high
quality output. We study two approaches.

I. I NTRODUCTION

Many elements are needed to make a full video converter.
Some of the most important elements are a deinterlacer, a
spatial resolution up-converter (super resolution) and a frame
rate converter. The input video can be either interlaced or pro-
gressive [1]. In an interlaced video signal (broadcast or stored
on e.g. DVD discs) one can have progressive video embedded,
e.g. when the signal is of film source telecined to interlaced
[1]. By doing a pull-down – that is recreating the original
progressive frames from the interlaced fields – before further
processing, interlacing artifacts can be avoided in progressive
material as a deinterlacing would not necessarily remove all
interlacing artifacts [2], [3]. The quality of interlaced material
will in the presence of motion also suffer from just being
merged to frames instead of being properly deinterlaced.

Thus determining the scan format of the input is vital for
the further processing and the output quality. Hence another
key element in a video converter is the input scan format
detector. This element is often called film mode detection as
film was earlier the only source of progressive material, but
today progressive material can also originate from high quality
video cameras.

If the input source is DVD, the MPEG-2-codec facilitates
flagging of video as either interlaced or progressive, which
could make source detection obsolete. Unfortunately, it is far
from sure that the flagging has been done correctly [4] and if
the source is standard broadcast there is no flagging.

II. T HEORY

A. The Difference Between Interlaced and Progressive

To develop an effective algorithm for separating progressive
source video from interlaced source video we need to establish
exactly what the difference between the two formats is and
how to measure this difference. The key to this lies in the
motion in the image sequence.

Ideally one can just merge two consecutive interlaced fields
to a frame, but this only works when there is no motion in
the sequence. When motion is present it will give rise to the

Fig. 1. Interlacing artifacts: Serration, none (progressive) and line crawl

two types of artifact shown in figure 1 and explained in [2].
These artifacts are exactly what gave rise to the idea of the
algorithm presented in this paper.

Three topics have to be considered to get to the final
algorithm and they are given in the following three sections.

B. The Measurement – Isophote Curvature

As can be seen directly from figure 1, a lot of crenella-
tion and serration appears in the merging of two interlaced
fields that is not present when merging two fields to their
original progressive frame. We therefore suggest that isophote
curvature of the image is a good measure of the difference, as
interlaced video will on average have a higher curvature. The
equation for the curvature,κ, using image derivatives is
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The image derivatives are computed using scale-space deriva-
tives [5].

C. Measuring the Statistical Difference

To measure the difference between the curvature of inter-
laced and progressive video we build histograms of the curva-
ture for sequences of a certain number of frames. To measure
the actual difference, we use the Kullback-Leibler Divergence
[6], DKL(P (κ), Q(κ)) =

∑
κ P (κ)(log P (κ)− log Q(κ)), as

it puts weight on differences in the tail of a distribution. In
our case that is where the high curvatures are represented
and as can be seen in figure 1, where we expect the major
difference in curvature between interlaced and progressive.
The histogram bins cover|κ| ∈ [0, 100]. To avoid 0-bins we
use the Laplace-estimator of the probabilities and initialize all
of the 101 bins with one sample each [7].



D. Edges

From figure 1 we see that the most significant information
about the difference between interlaced and progressive can be
found at edges. 5-10% of all pixels are on average detected as
edges using a standard Canny edge detector, so if the edge
detector takes less than 90-95% of the time a full frame
curvature calculation takes, it lowers the computational cost
of the algorithm.

E. Two Approaches to a Solution

The use ofDKL as a measure implies the first idea for our
algorithm, namely to build a distribution of curvature from a
lot of progressive material and then compare unknowns to it.
We denote the known distribution of ’all’ progressive material
P . To measure the divergence fromP using DKL we take
smaller bites of an interlaced stream of video and build a
distribution and denote itQ. We also make distributions from
bites of progressive video embedded in an interlaced stream
and this is denotedQ′. For testing purposes ’the unknown’ is
of course known and thus the distinction betweenQ andQ′.

To get directly comparable resultsQ and Q′ are made
in pairs from a progressive original. Interlaced is made by
artificially removing every second line from the original and
progressive embedded in interlaced is made by a process
corresponding to telecine for PAL [1]. Then each field,i,in
these sequences is merged with its neighboring field,i + 1.
Q is made from the interlaced sequence with every frame
having artifacts.Q′ is made from the embedded progressive
and will only have artifacts in every second frame, as every
other second frame is a merge of a progressive original frame.
Starting withn progressive frames we getn interlaced fields
andn− 1 merged frames for buildingQ and2n progressive-
embedded-in-interlaced fields and thus2n− 1 frames forQ′.

1) Method One: is detection by comparingQ and Q′

distributions of short sequences to the archetype of progressive
video,P . Thus, naturally, we generally expectDKL(P,Q) to
be larger thanDKL(P, Q′).

2) Method Two:is called Zigzag as it takes the distribution
of every second frame, the subsetX = (1, 3, 5...), of a
short sequence and compares it to the distribution of every
other second frame, the subsetY = (2, 4, 6...), of the same
sequence. If the sequence is interlaced,DKL(QX , QY ) should
be very small as both subsets have interlaced frames. But
for progressive video embedded in interlaced,DKL(Q′X , Q′

Y )
should be large as you compare the distribution of the inter-
laced subset to the distribution of the progressive subset.

F. Comparing the Two Approaches

DKL is an asymmetric measure, making it well suited for
the asymmetric data in method one, but not so good for the
symmetric data (QX and QY or Q′X and Q′

Y ) in method
two. As it turned out this worked well in the implementation,
but could otherwise have been avoided by using a symmetric
measure like the Jensen-Shannon divergence [8].

Building P for method one might give a very general
distribution, maybe causing the difference between sequences

to appear larger than the difference between interlaced and
progressive. Method two does not have this problem as it
measures locally on a sequence, which then could cause a
loss of generality and uniformity over sequences.

Both methods fails to distinguish between the two scan
formats in sequence parts without any motion. We do not
consider this to be a problem, as this kind of video is also
where a good motion adaptive or compensated deinterlacer
will not harm a progressive sequence, just as frame merging
intended to rejoin the two fields making up a progressive frame
will not deteriorate interlaced video. Motion is the source of
difference between interlaced and progressive video.

III. OTHER WORK

The subject of scan format detection seems to have limited
focus in academia, but it is a key element in actually building
a video converter as can be seen in the patents [9] and [10].
Some industrial research has made it into academia, as can be
seen in the papers [11] and [12]. They both use motion vector
based film mode detection. None of the papers give any test
results stating the quality of the method.

A major reason for the lack of interest in academia is that
for NTSC (USA and Asia) a 3:2 pull-down is used for telecine
leading to a given cadence at which a field will be shown twice
(see [10], [1]) and thus simplifying the matter significantly
[10]. The simplification does not apply to PAL telecine and
the presence of noise will also complicate the NTSC case.

Nobody seems to have applied image geometry to the
problem before us.

IV. RESULTS

For the testing we have used 8-bit gray-scale video corre-
sponding to the luminance component of almost any TV or
video signal. We have taken single chapters of 6,000-12,000
frames each from five different movies on DVD. They are
processed inchunksof 480 frames each, the chunks subdivided
into bites of 10-160 frames. The curvature is computed at
different fixed scales in scale-space. If theratio between
extrema values inDKL for interlaced and progressive is larger
than 1, then agap exists and athreshold can be set to
determine the scan format (see fig. 4). The correctness can
be measured byrecall = correct/(correct + missed).

A. Initial Testing

Following the philosophy of keeping it simple, we started
by doing some small tests. First we took two 40 frame bites
(denoteda and b) from movie A and did a comparison
of Q and Q′ with P , first on a and then onb. Initial
tests at scale1.0 show that theDKL(P,Q) on both were a
factor of four bigger than theDKL(P, Q′) (ratio 4:1) thereby
proving that interlacing introduces a difference in curvature
distributions. Unfortunately the difference between the two
different sequences,a and b, measured asDKL(Qa, Qb) and
DKL(Q′a, Q′

b) are a lot larger than the difference internally
in each sequence between interlaced and progressive. This
indicated that the scale might be wrong and that we would
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Fig. 2. Method one: Threshold (horizontal line) in ’leave one out’ test.

have to limit the measures to regions where the difference
between interlaced and progressive is large, namely at edges.

Lowering the scale helped, but it was using edge detection
and limiting ourselves to measuring curvature at pixels marked
as edges that made it possible to separate interlaced and
progressive at scale 0.5 (using aP made from botha and
b). This shows that distribution of curvature at edges can be
used to detect the scan format of a video sequence.

B. Method One – Comparison withP

The last result presented above is promising and here we
will determine if it can be generalized to larger data sets
and whether a general threshold to separate interlaced and
progressive video can be set using method one. We use
8000 original progressive frames from movie A to build
the distributionP at scales 0.2, 0.3, 0.5 and 1.1. Then we
measuredDKL(P,Q) andDKL(P,Q′) using bites of 20, 40,
80, 160 and 240 frames.

First we did a ’leave one out’ test by taking one chunk from
movie A not used in building P. At bite length 240 and scales
0.5, 0.3 and 0.2, a narrow gap in which to set a threshold was
present (see fig. 2). The ratios between extrema inDKL were
1.33:1, 1.26:1 and 1.04:1 at the three scale respectively.

As a next step, measuring ofDKL on five chunks from the
8000 frames used to buildP was done. Gaps were obtained
for three of the chunks at low scales and for long bites. But
the gaps were at differentDKL-values such that no common
threshold could be set. Trying to use only the frames inQ′

that are progressive did not help either.
To conclude, using method one – comparison to P – leaves

the problem of separating interlaced and progressive unsolved.

C. Method Two – The Zigzag Solution

1) Movie A: Initial testing for method two was also done
on the two bites,a andb, from movie A. using scale 0.5 and
edge detection separation ratios of 439:1 and 52:1 betweenQ
and Q′ for each of the two bites where obtained comparing
the worstDKL values forQ andQ′. All ratios will be given
using the worst of the two choices ofDKL. As seen in fig. 5
the curves for the best and worse seem to meet whenever the
gap between interlaced and progressive narrows .

Increasing the size of the test, a chunk of movie A was
tested at scale 0.5 in bites of 40 frames and gave a ratio of
separation of 6:1 for the full chunk. Lowering the scale (0.4,
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Fig. 3. Method two: min.DKL(Q′) and max.DKL(Q) for each chunk.
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Fig. 4. Method two: Excellent separation for movie B.

0.3, 0.2 and 0.1) gave better ratios, the best being 10:1 at scale
0.3. Higher scales (0.9 and 1.1) gave no separation.

The effect of different bite lengths was tested on the same
chunk using scale 0.3. For the bite lengths 10, 20, 40, 50, 80
and 100 separation ratios were< 1, 2, 10, 7, 29 and 27. So
the longer the bite, the better the separation – as expected.

We continued by testing the scales 0.5, 0.4, 0.3 and 0.2 at
bite lengths 20, 40, 60 and 80 on two more chunks. From
these tests scales 0.2 and 0.3 seemed the best with bite length
80. On the remaining 13 chunks from movie A processed at
bite length 80, scale 0.2 performed better than scale 0.3 at the
crucial parts where the gap between interlaced and progressive
is small (fig. 5). Chunk 7 (fig. 3) makes it impossible to set a
global threshold. As figure 3 shows, changing the bite length
to 160 eliminates this problem, allowing a threshold inDKL

to be set between 0.0030 and 0.0036.
2) Movie B: 19 chunks were tested and as figure 4 shows

we get an excellent separation at scale 0.2 and bite length 80
and the threshold can be set in the interval 0.00017 to 0.075.
The good results for movie B could be caused by the fact,
that the test sequence is set in daylight whereas the one from
movie A is set at nighttime. But it is actually only for chunk
7 where the camera is stationary that movie A causes critical
problems.

3) Movie C: consists of 12 chunks giving an interval for
thresholding ranging from 0.0027 to 0.0062 at scale 0.2 with
bite length 80. Figure 5 illustrates how it is parts with a
stationary camera (and only little object motion) that causes
low values inDKL for Q′.

4) Movie D: 22 chunks were tested at scale 0.2 and
bite length 160 and gave the interval 0.0020 to 0.059 for
thresholding, except for one 160 frame bite, which gave a
unexplainable bump for the interlacedQ with a DKL value
of 0.0036. By visual inspection the bite did not distinguish
itself in any way from its neighboring bites.
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Fig. 5. Method two: Parts with stationary camera corresponds exactly to parts
with small differences betweenDKL of interlaced andDKL of progressive.
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Fig. 6. Method two: Problems in movie E, all though not as bad as this
figure implies.

Using a threshold in the interval 0.0030 to 0.0036 would so
far misclassify nothing progressive and only 160 interlaced
fields, giving an interlaced recall of 31520/(31520+160) =
0.9949. A way of getting a recall of 1 could be detecting
cuts (like in [13]) and only allow changes between the scan
formats when a cut within the bite is also detected.

5) Movie E: All tests so far has been conducted on natural
image sequences, that is camera recordings of the real world,
but movie E is computer animated and thus might give
different results.

And so it did: Some of the 14 chunks processed at scale
0.2 and bite length 160 gave rise to problems as can be seen
in figure 6. However, of the total 84 bites ofQ′ in movie
E, only six gave too low aDKL to be classified correctly
as progressive with a threshold between 0.0030 and 0.0036,
yielding a recall for progressive detection in this sequence of
0.9286. Four of the troublemakers are in stationary parts of the
main titles in chunks 1 and 2 (fig. 6) and the remaining two
are in a part of chunk 9 where the camera is 100% stationary
– as it can only be in computer animated films – and this part
is also very dark, meaning that a wrongful deinterlacing would
do no harm. At bite length 80 frames the six errors persists
and, of course, doubles in numbers. Also new problems appear
in seven bites at other places, but all in similar harmless scenes
as for the previous ones mentioned.

V. CONCLUSION

Two methods to detect scan format has been set forth, only
one of them solving the problem satisfyingly, namely method
two – Zigzag. We recommend using scale 0.2 with a bite
length of 80-160 frames. At these settings method two detects
the correct scan format with recall 0.9875 for progressive and

0.9958 for interlaced. The interlaced miss of one bite in movie
D is inexplicable. The progressive misses in movie E are all
in parts with a stationary camera, little or no object motion
and low-key lighting. In such scenes a wrong detection will
not lead to significant creation of artifacts. Our method has
sufficiently low complexity to be implemented in real-time
hardware/software and thus used in a video converter.

VI. FUTURE WORK

Some further work could be done to improve our scan
format detector.

We have not tested material where each frame is a mix of
the two scan formats, e.g. interlaced video with progressive
graphics (news, MTV, etc.), film source TV broadcasts with
interlaced generated subtitles, or some other mix. In these
cases the gap between the scan formats narrows and some
segmentation of the image plane is most likely needed to
solve these problems properly. All though, in some cases (e.g.
stationary progressive graphics in interlaced video) our algo-
rithm combined with a good motion adaptive or compensated
deinterlacer will most likely yield acceptable results.

Trimming our algorithm to use shorter bites will make
switches between interlaced and progressive faster in programs
mixing the formats inter-frame(documentaries and movie fea-
turettes). One way of doing this could be combining edge
detection with (simple) motion detection to get fewer but more
significant data points for processing.
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