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Abstract— Source pruning is performed whenever the data rate of
the compressed source exceeds the available communicationor storage
resources. In this paper, we propose a framework for rate-distortion
optimized pruning of a video source. The framework selects which
packets, if any, from the compressed representation of the source should
be discarded so that the data rate of the pruned source is adjusted
accordingly, while the resulting reconstruction distortion is minimized.
The framework relies on a rate-distortion preamble that is created at
compression time for the video source and that comprises thevideo
packets’ sizes, interdependencies and distortion importances. As one
application of the pruning framework, we design a low-complexity
rate-distortion optimized ARQ scheme for video streaming. In the
experiments, we examine the performance of the pruning framework
depending on the employed distortion model that describes the effect of
packet interdependencies on the reconstruction quality. In addition, our
experimental results show that the enhanced ARQ technique provides
significant performance gains over a conventional system for video
streaming that does not take into account the different importance of the
individual video packets. These gains are achieved withoutan increase
in packet scheduling complexity, which makes the proposed technique
suitable for online R-D optimized streaming.

I. I NTRODUCTION

Pruning of compressed and packetized sources is quite common
in the media world today. This operation, also known as packet
dropping, is performed by discarding packets from the compressed
representation of the media source, either for communication or
storage applications. Source pruning is necessary whenever the data
rate of the source exceeds the available capacity of the storage system
or the communication channel.

Deciding which packets to discard from a compressed media source
can be very involved. This is due to the interdependencies between
the media packets created at compression and their influence on the
reconstruction quality of the source. Specifically, media is typically
compressed using predictive schemes where the successful decoding
of a packet is dependent on successful decoding of previous (and
even future) packets. Then, pruning a packet that appears early in
the prediction chain may trigger a significant amount of quality
degradation along the successive packets in the prediction chain.

Scalable coding [1] has been proposed to deal with this problem,
since the scalable (or layered) representations provide an intuitive
way to select which parts of the compressed media to retain/discard
so that the data rate constraint is met. However, scalable coding
techniques have not gained a wide acceptance in practice, due to
a few shortcomings, e.g., their coding inefficiency. Furthermore, the
presence of different frame types, namely I, P and B, in conventional
MPEG coding also provides a natural way of prioritizing segments
of the media content when source pruning is performed. However,
pruning non-scalable or non-prioritized packetized media presents a
more challenging problem as the compressed data does not suggest a
straightforward way of placing priorities on the media packets. In this
paper, we focus on the problem of source pruning for non-scalably
coded video streams. It should be noted that an alternative solution
to source pruning for data rate adaptation is to simply re-encode the

compressed media presentation at the available data rate. However,
this approach, known as transcoding [2], may not be always feasible
due to the higher complexity that is involved.

In this paper, we propose a framework for rate-distortion optimized
pruning of compressed video sources. The framework selects which
packets, if any, from the compressed representation of the source
should be discarded so that the data rate of the pruned source is
adjusted accordingly, while the resulting reconstruction distortion is
minimized. The framework relies on a rate-distortion preamble that
comprises the video packets’ sizes, interdependencies and distortion
importances. The framework can be exploited for efficient rate
adaptation at a streaming server or at an intermediate proxy (for
both unicast and broadcast applications), as it provides for fine
packet classification based on pruning the compressed media stream
at different target data rates. In particular, each packet can be tagged
with a single rate threshold value above which the packet should
be selected for streaming and below which the packet should be
discarded. To this end, in conjunction with the pruning framework, we
design an enhanced ARQ scheme for video streaming that achieves
significant improvement in quality relative to conventional ARQ
streaming, however without an increase in online complexity.

Most closely related contemporaneous works to the present paper
are those on packet dropping in media networking and communi-
cation, such as [5–8], that consider various approaches for making
intelligent packet dropping decisions, with or without R-D optimiza-
tion. Another body of related works is that on low-complexity and
R-D optimized streaming, such as those in [9, 10], where strategies
for R-D optimized streaming with reduced complexity are proposed.

The paper proceeds as follows. In the next section, we present
the rate-distortion preamble that succinctly describes the compressed
video packets. How this information is employed to perform rate-
distortion optimized pruning of a packetized video source is then
described in Section III. The design of the enhanced ARQ scheme that
relies on the pruning framework is the subject of Section IV. Next,
in Section V we examine the performance of the pruning framework
as a function of the employed distortion model, as described in
Section III. In addition, we study in Section V the loss in performance
of source pruning relative to re-encoding the original video signal
at various data rates. We conclude this section with experimental
results that explore the performance of the enhanced ARQ technique
for streaming packetized video content and compare it to that of
conventional ARQ video streaming. Finally, concluding remarks are
provided in Section VI.

II. RATE-DISTORTION PREAMBLE

When a media presentation is compressed, the encoded data are
packetized intodata units and stored in a file on a media server. All
of the data units in the presentation have interdependencies, which
can be expressed by a directed acyclic graph (DAG). Each node of
the graph corresponds to a data unit, and each edge of the graph



directed from data unitl′ to data unitl implies that data unitl can
be decoded only if data unitl′ is first decoded. Associated with each
data unitl is its sizeRl in bits.

In addition, from the DAG we extract for every data unitl a set of
data unitsAl that can be potentially used to reconstructl at decoding.
Specifically,Al includes all of the ancestors ofl in the DAG that are
necessary for decodingl, but also it contains in addition other data
units that may be used to reconstructl in case of an error event. Then,
for every subsetC ⊂ Al we can calculate the resulting reconstruction
distortion∆dl(C) associated with data unitl for that particular event.
This can be obtained as an auxiliary information when the media
presentation is compressed.

Finally, we define therate-distortion preamble for the media
presentation to be the collection of packet sizes and reconstruction
distortion information for every data unit in the presentation. To
compute optimal packet selection decisions when adjusting the data
rate of a media presentation, a pruning algorithm only needs to
consider this compact description of the media presentation rather
than the actual compressed content. How this is performed is the
subject of the next section. It should be noted that the concept of a
rate-distortion preamble has been considered earlier in the context of
proxy-driven streaming [11].

III. R-D OPTIMIZED SOURCEPRUNING

Let there beL packetized data units in the media presentation. We
are interested in finding the vector of packet selection actionsa =
(a1, . . . , aL) for the presentation, whereai = 1 denotes the action
of keeping data uniti in the presentation, whileai = 0 signifies
the converse. The incurred reconstruction error (or distortion) for the
media presentation associated with a particular vectora is denoted
D(a) and can be computed as

D(a) =

L∑

i=1

∆di(Ai(a)) (1)

where the notationAi(a) simply signifies the fact that the choice of
a subset fromAi that will be used to reconstruct data uniti depends
on the selection vectora.

Similarly, the associated data rate of the sourceR(a) as a function
of the selection vector can be computed asR(a) =

∑L

i=1 Riai.
Finally, as described earlier we are interested in finding the optimal
selection vectora∗ that minimizes the resulting reconstruction error
and for which the data rate of the source does not exceed the available
resource as given byR∗, i.e.,

a
∗ = arg min D(a), s.t.R(a) ≤ R∗ (2)

Using the method of Lagrange multipliers the solution to the
constrained optimization problem from (2) can be replaced with an
equivalent convex hull approximation that is obtained as a solution
of the unconstrained optimization problem given as

a
∗ = arg min D(a) + λR(a), (3)

whereλ > 0 is a Lagrange multiplier. Adjustingλ according to the
rate constraintR∗ is usually done in an iterative fashion using fast
convex search techniques such as the bisection search technique.

Now, solving for the optimal vectora∗ as given in (3) can be very
difficult, due to the interdependencies between the data units and
their influence on the reconstruction distortion, especially for media
presentations that contain a large number of data units. Therefore,
we employ an iterative gradient descent procedure that minimizes
the LagrangianJ(a) = D(a) + λR(a) one component at a time,

until convergence. Specifically, leta
(0) be any initial selection vector

and leta(n) = (a
(n)
1 , . . . , a

(n)
L ) be determined forn = 1, 2, . . ., as

follows. We select one componentln ∈ {1, . . . , L} to optimize at
step n in a round-robin fashion, i.e.,ln = (n mod L). Then for
l 6= ln, we let a(n)

l = a
(n−1)
l , while for l = ln, we compute

a
(n)
l = arg min

al

J(a
(n)
1 , . . . , a

(n)
l−1, al, a

(n)
l+1, . . . , a

(n)
L )

= arg min
al

S
(n)
l (1 − al) + λRlal, (4)

where the second equality follows by grouping terms that do not
depend onal and whereS

(n)
l can be regarded as thesensitivity

to losing data unitl, i.e., the amount by which the reconstruction
distortion will increase at decoding if data unitl is discarded, given
the current selection choices for the other data units. Note that the
algorithm is guaranteed to converge because the LagrangianJ(a(n))
is non-increasing withn and is bounded from below with zero, since
it is non-negative.

The minimization (4) is now simple, since each data unitl can be
considered in isolation. Indeed, the optimal selection decisiona∗

l ∈
{0, 1} for data unitl minimizesλl(1−al)+λal, whereλl = S

(n)
l /Rl

can be considered as the distortion per bit utility associated with data
unit l. Finding a∗

l is then done by comparingλl andλ: for λl > λ,
al = 1, while for λl ≤ λ, al should be set to zero.

Computing the sensitivityS(n)
l can exhibit various degrees of

complexity depending on the employed distortion model. This in turn
is determined by the assumptions that are made about the setAl

and the reconstruction distortion function∆dl for a data unitl that
were introduced in Section II. In the section with the experiments,
we examine the performance of the pruning algorithm based on two
different distortion models that have very different implementation
complexities. The first model is additive, i.e., it assumes additivity
of the distortions associated with the events of discarding individual
data units [12, 13]. This implies thatAl contains only the data unitl
itself and∆dl accounts for the total increase in reconstruction error
for the media presentation associated exclusively withl. Computing
S

(n)
l based on this model is quite simple due to its low complexity.

The second distortion model that we will consider is more complex
as it accounts for the influence of the packet interdependencies on the
reconstruction distortion associated with a data unit [4]. Computing
the sensitivityS(n)

l in this case can be much more involved. Finally, it
should be noted that iterative descent algorithms analogous to (3)-(4)
have been considered in [3, 4] in the context of packet scheduling.

IV. RATE-DISTORTION OPTIMIZED ARQ

In this section, we explain the design of a rate-distortion optimized
ARQ scheme based on the pruning algorithm from the previous
section. Letri, for i = 1, . . . , N be a series of monotonically
decreasing transmission rates at which we would like to be able
to stream a media presentation. Then, we employ the optimization
algorithm from Section III to adjust, i.e., to match the data rate of
the presentation to each of the ratesri. In particular, we setR∗ = ri

in (2) and perform the optimization from Section III in order to find
the set of data unitsDU i from the presentation that we need to keep
so that the resulting data rate ofDU i does not exceedri, while its
associated reconstruction error is minimized.

The setsDU i obtained in this manner are typically embedded, i.e.,
DU i ⊂ DU i−1, for i = 2, . . . , N . This provides an additional benefit
to the ARQ technique as it can be used for dynamic rate adaptation
while streaming. Specifically, consider that during streaming the
available transmission rate has suddenly changed fromri to rj , for
ri > rj . A sender based on the ARQ scheme has a windowW of



data units to transmit at present. These data units are fromDU i and
the sender cannot transmit them all due to the rate reduction. Rather
than dropping all of them or making a random selection fromW
to account for the reduced rate, the sender can simply find which
data units fromW belong toDUj , i.e., it can determineW ∩DUj .
Then, only these data units are sent and the rest of them fromW are
omitted. Finally, the sender continues to stream fromDUj having
achieved the smoothest possible transition fromri to rj .

V. EXPERIMENTAL RESULTS

This section examines the performances of the optimization frame-
work for source pruning from Section III and the enhanced ARQ
technique for video streaming from Section IV. The packetized video
content used in the experiments are the standard test video sequences
Foreman and Mother & Daughter in QCIF format encoded at 10 fps
using JM 2.1 of the JVT/H.264 video compression standard. Each
sequence is coded with a constant quantization level at an average
luminance (Y) PSNR of about 36 dB and a Group of Pictures (GOP)
size of 20 frames, where each GOP consists of an I frame followed
by 19 consecutive P frames.

A. Pruning Experiments

Here, we examine the performance of the pruning framework as a
function of the employed distortion model, as explained in Section III.
Performance is measured in terms of the average Y-PSNR (dB) of the
reconstructed video sequence as a function of the data rate at which
the encoded video is pruned. The two distortion models that were
described in Section III are the additive model from [12, 13] denoted
henceforthModel 2, and the model from [4], denotedModel 1.
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Fig. 1. Pruning performance forForeman.

In Figure 1, we show the performance of the optimization frame-
work for pruning Foreman based on these two distortion models. It
can be seen thatModel 1 outperformsModel 2 for pruning Foreman
which is expected sinceModel 1 is far more sophisticated and
therefore more accurate. Furthermore, the performance difference
between the two models increases as the available data rate that is
used to prune the source decreases. This is also expected since the
number of pruned data units increases as the data rate is increased
which in turn affects inversely the accuracy ofModel 2. Specifically,
the underlying assumption of this model is that the effects of omitting
individual data units are independent relative to the reconstruction
distortion for the media presentation as explained in Section III. This
certainly holds less true when more data units needs to be discarded
since their locations cannot be placed sufficiently far apart in order to
preserve the independence assumption, as recognized, e.g., in [14].
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Fig. 2. Pruning performance forMother and Daughter.

Next, in Figure 2 we examine the pruning performance of the
two models for the sequence Mother & Daughter. It can be seen
that againModel 1 outperformsModel 2 over the whole range of
available data rates under consideration. However, it should be noted
that the performance difference between the two models is not so
significant here as in the case of Foreman. This is due to nature of
the Mother & Daughter sequence which exhibits less motion and
scene complexity relative to Foreman. Hence, error concealment can
be performed more successfully on missing data units of Mother &
Daughter, which makes the selection of data units to be discarded not
so critical in terms of resulting reconstruction quality of the video
sequence. In the experiments in the next section, we employModel
1 for the design of the proposed ARQ scheme from Section IV.

For comparison purposes, in Figure 1 and 2, we also show
the R-D performance for encoding the original video content at
different rates, denoted asRDbound. It can be seen that the loss
in performance of pruning relative to re-encoding increases as the
available data rate decreases. Furthermore, we can also see that this
loss is content dependent and is due to the differences in terms of
content complexity, as explained above. In summary, the comparison
with RDbound suggests that re-encoding should always be preferred
relative to pruning if such an option is feasible.

B. Streaming Experiments

This section investigates the end-to-end distortion-rate performance
for streaming packetized video content using different algorithms.
Three closed-loop streaming systems are employed in the experi-
ments.Conv. RaDiO is a streaming system that employs a conven-
tional RaDiO technique for packet scheduling such as the one from
[4]. Enh. ARQ is the enhanced ARQ technique proposed in this paper
in Section IV. Finally, the streaming system labelledConv. ARQ is a
conventional streaming system which does not take into account the
importance of individual packets in terms of reconstruction distortion.
In particular, when making transmission decisions,Conv. ARQ does
not distinguish between two packets that contain two different P
frames, except for the size of the packets. Therefore,Conv. ARQ
randomly chooses between two P-frame packets of the same size, for
example, when it needs to reduce the number of transmitted packets.

The forward and the backward channel on the network path
between the server and the client are modeled as follows. Packets
transmitted on these channels are dropped at random, with a drop rate
εF = εB = ε = 10 %. Those packets that are not dropped receive a
random delay, where for the forward and backward delay densitiespF



andpB we use identical shifted Gamma distributions with parameters
(n, α) and right shiftκ, wheren = 2 nodes,1/α = 25 ms, and
κ = 50 ms for a mean delay ofκ + n/α = 100 ms and standard
deviation

√
n/α ≈ 35 ms.

The retransmission time-out (RTO) interval for the two ARQ
systems is set toµR +3 σR. For theEnh. ARQ system, a sufficiently
large series of ratesri, i = 1, .., N , is chosen to prune the compressed
video sequences, as described in Section IV, so that the pruned
encodingsDU i cover a wide range of transmission rates on the
forward channel. Finally, streaming performance is measured in terms
of the average Y-PSNR (dB) of a reconstructed video sequence at
the client as a function of the average transmission rate (kbps) on the
forward channel. The play-out delay for the videos is set to 600 ms.
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Fig. 3. Streaming performance for Foreman (left) and Moth. & Daug. (right).

In Figure 3 (left), we show the performances of the three systems
for streaming Foreman. It can be seen thatConv. RaDiO outperforms
the other two systems over the whole range of transmission rates.
This is expected, as this system optimizes its current and future
transmission decisions jointly over a certain time horizon, while no
such optimization is present in the two ARQ systems. Furthermore,
the performance ofConv. ARQ is the worst of the three, which
is also expected. As no preferential treatment is given to packets
by Conv. ARQ, its performance degrades quickly as the available
transmission rate is decreased. Finally, what is most important is that
Enh. ARQ provides a substantial gain overConv. ARQ. For example
at 90 kbps, the gain is around 6 dB which is quite significant. At the
same time, the performance loss ofEnh. ARQ relative toConv. RaDiO
does not exceed 1 dB over the whole range of rates.

Similar outcome is observed for streaming Mother & Daughter,
as shown in Figure 3 (right).Conv. ARQ outperforms the other two
systems, whileEnh. ARQ provides an improved performance over
Conv. ARQ. For example, the gain ofEnh. ARQ relative toConv. ARQ
is 4 dB at 35 kbps. Note that in this case the relative performance
differences between the three systems are not so large as those for
Foreman. This is due to the low complexity nature of the Mother &
Daughter sequence, which makes error concealment perform well on
missing packets at the client, as explained in Section V-A. Note also
that now, the performances ofConv. ARQ and Enh. ARQ are quite
similar, with their difference not exceeding 0.2-0.3 dB.

This section concludes by briefly describing the computational
requirements of the three streaming systems. As discussed in [9],
the complexity ofConv. RaDiO is many times larger than that of
conventional streaming systems such asConv. ARQ. At the same
time note that there is no difference in online complexity for
each of the two ARQ systems used in our experiments. This is
because the preprocessing forEnh. ARQ is done off-line, prior to
streaming. Therefore, given the experimental settings that we used,
it is encouraging to see the significant improvement in performance
of Enh. ARQ over Conv. ARQ for the same online complexity, and

the similar performance withConv. RaDiO achieved byEnh. ARQ at
a substantially smaller computational cost.

VI. CONCLUSIONS

We have presented a framework for rate-distortion optimized
pruning of a packetized video source. The framework can be used to
select which packets of the compressed source representation should
be discarded so that the resulting data rate is adjusted accordingly
while the resulting reconstruction distortion is minimized. In con-
junction with the pruning framework, we design a low-complexity
rate-distortion optimized ARQ scheme for video streaming. Our
experimental results show that the performance of our framework
can greatly vary depending on the accuracy of the distortion model
that is employed to describe the effect of packet interdependencies
on the reconstruction distortion. Furthermore, the experiments also
show that the loss in performance of source pruning relative to re-
encoding the original uncompressed source at different data rates
increases significantly as the amount of media content that needs
to be pruned increases. Finally, via another set of experiments we
demonstrated that the enhanced ARQ scheme provides substantial
improvement in performance with no increase in online complexity
over conventional streaming systems, where no distortion information
is taken into account for scheduling the packet transmissions. At the
same time, the optimized ARQ technique achieves performance that
is similar to that of conventional R-D optimized systems, with only
a fraction of their computational complexity.
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