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Abstract— In this paper, we describe a new methodology
to detect the presence of hidden digital content in the Least
Significant Bits (LSB) of images. We introduce the Progressive
Randomization (PR) technique that captures statistical artifacts
inserted during the hiding process. Our technique is a progressive
application of LSB modifying transformations that receives an
image as input, and returns n images that only differ in the LSB
from the initial image. Each step of the progressive random-
ization approach represents a possible content-hiding scenario
with increasing size, and increasing LSB entropy. We validate
our method with 20,000 real, non-synthetic images. Using only
statistical descriptors of LSB occurrences, our method already
performs as well or better than comparable techniques in the
literature.

I. INTRODUCTION

Steganography is the art of secret communication. Its pur-
pose is to hide the presence of communication, as opposed to
cryptography, which aims to make communication unintelligi-
ble to whom do not possess the correct keys [1]. Applications
of steganography can include feature location (identification of
subcomponents within a data set), captioning, time-stamping,
and tamper-proofing (demonstration that original contents have
not been altered). However, there are indications that steganog-
raphy have been used to spread child-pornography pictures in
the internet [2], [3].

In this way, it is important to develop algorithms to detect
the existence of hidden messages. In this context appears the
digital steganalysis, that refers to the body of techniques that
are devised to distinguish between non-stego or cover-objects,
whose do not contain a hidden message, and stego-objects
whose that contain a hidden message.

Digital pictures of natural scenes have distinct statistical
behavior. With proper statistical analysis, we can determine
whether or not an image has been altered, making forgeries
mathematically detectable [4]. In this case, the general purpose
of steganalysis is to collect sufficient statistical evidence about
the presence of hidden messages in images, and use them to
classify [5] whether or not a given image contains a hidden
message.

In general, it is enough to detect whether a message is
hidden in a digital content. For example, law enforcement
agencies can track access logs of hidden contents to build
a network graph of suspects. Later, using other techniques,
such as physical inspection of apprehended material, they
can uncover the actual contents and apprehend the guilty
parties [6].

Among all message embedding techniques, the Least Signif-
icant Bit (LSB) insertion/modification is considered a difficult
one to detect [7], [8].

Johnson and Jajodia [9] have presented a careful analysis
of fingerprints introduced by current steganographic software
packages. However, their study was applied only for color
indexed images. Westfeld and Pfitzmann [10] have introduced
a powerful chi-square steganalytic technique that can detect
images with secret messages that are embedded in consecutive
pixels. Although, their technique is not effective for raw high-
color images and for messages that are randomly scattered
in the image. Fridrich et al. [11] have developed a detection
method based on close pairs of color created by the process
of embedding. However, this approach only works when the
number of colors in the images is less than 30 percent of the
number of pixels. Fridrich et al [12] have analyzed the capacity
for lossless data embedding in the least significant bits and
how this capacity is altered when a message is embedded. It
is not clear how this approach is sensible to different images
given that no training stage was applied.

Compared to previous approaches, Lyu and Farid [13], [14]
have designed a more reliable classification technique. Their
technique decomposes the image into quadrature mirror fil-
ters (QMFs) [15] and hierarchically analyzes the effect of
the embedding process. Shi et al. [16] have used wavelet
decomposition and moments of characteristic functions to
image steganalysis.

In this paper, we describe a new methodology to detect
the presence of hidden digital content in the LSB fields of
images. Our methodology reliably detects messages that are
randomly scattered in the image. We introduce the Progres-
sive Randomization (PR) technique to capture the statistical
artifacts inserted during the hiding process.

Although in this paper we focused on steganalysis, we have
strong experimental evidence that PR approach is appropriate
to: (i) detect digitally retouched images; (ii) classify images
into categories (indoors, outdoors, people, etc); (iii) perform
content based image retrieval; and (iv) detect art forgery.

In the steganalysis context, our technique is a progressive
application of LSB modifying transformations that receives
an image as input, and returns n images that only differ in
the LSB from the initial image. Each step of the progressive
randomization approach, represents a possible content-hiding
scenario with increasing size, and increasing LSB entropy.

We validate our methodology in a database with 20,000

3140-7803-9752-5/06/$20.00 ©2006 IEEE



real, non-synthetic images. Using only statistical descriptors
of LSB values occurrences, our method already performs as
well or better than comparable existing techniques in the
literature [9]–[14].

In Section II, we show how we can use the LSBs of an
image to embed a message. In Section III, we present the
chosen statistical descriptors, the feature regions selection, and
our progressive randomization detection framework. In Sec-
tion IV, we present experimental results. Finally, we discuss
the conclusions, future work, and extensions in Section V.

II. LSB STEGANOGRAPHY BACKGROUND

Among all message embedding techniques, the least sig-
nificant bit (LSB) insertion/modification is a difficult one to
detect [7], [8]. In general, it is imperceptible to humans [7]. A
typical color image has three channels: red, green and blue
(R,G,B); each one offers one possible bit per pixel to the
hiding process. In Figure 1, we show an example on how
we can possibly hide information in the LSB fields. Suppose

Fig. 1. An example of LSB embedding of the bits 1110.

that we want to embed the bits 1110 into the selected area. We
have one bit available at each pixel and we need four pixels to
hide our bit sequence. In other words, the embedding process
consists in the proper modulation of the LSB of selected pixels.

III. PROPOSED METHOD

In this section, we describe our detection framework. It is
a combination of statistical descriptors χ2 and UT , feature
region selection, and the progressive randomization stage.

A. Statistical descriptors

Any possible LSB information hiding procedure will change
the contents of a selected number of pixels. This implies in a
change of pixel values statistics in a local neighborhood.

An L-bit color channel can represent 2L possible values. If
we split these values into 2L−1 pairs which only differs in the
LSBs, we are considering all possible patterns of neighboring
bits for the LSBs. Each of these pairs are called pair of value
(PoV) in the sequence [10].

When we use all the available LSB fields to hide a message
in an image, the distribution of odd and even values of a PoV
will be the same as the 0/1 distribution of the message bits. The

idea of the statistical analysis is to compare the theoretically
expected frequency distribution of the PoVs with the real
observed ones [10]. However, we do not have the original
image and thus the expected frequency. In the original image,
the theoretically expected frequency is the arithmetical mean
of the two frequencies in a PoV. As we know, the embedding
function only affects the LSBs, so it does not affect the PoVs
distribution after an embedding. Given that, the arithmetical
mean remains the same in each PoV, and we can derive the
expected frequency through the arithmetic mean between the
two frequencies in each PoV.

As presented in [10], [17], we can apply the χ2 (chi squared-
test) and UT (Ueli Maurer Universal Test) over these PoVs
to detect hidden messages. In our detection framework, we
extend these two descriptors. The χ2 test general formula is

χ2 =

ν+1
∑

i=1

(fobs
i − fexp

i )2

fexp
i

, (1)

where ν is the number of analyzed PoVs, f obs
i and fexp

i

are the observed frequencies and the expected frequencies
respectively. UT splits an input data S into n blocks. For each
block bi, it analyzes each of the n−1 remaining blocks looking
for the most recent occurrence of bi and takes the log of the
summed temporal occurrences. For the sake of brevity, we do
not delve into more details of UT test here [18].

Previous approaches that use these descriptors can only
detect sequential messages hidden in the first available pixels’
LSB. Those approaches only consider the descriptors’ value,
and do not take in account that, for different images, the
threshold value for detection may be quite distinct.

Moreover, simply measuring the descriptors constitute a
low-order statistic measurement. This approach can be de-
feated by techniques that maintain basic statistical profiles in
the hiding process. We address the low-order statistics problem
by looking at the descriptors’ behavior along selected regions
(feature regions).

B. Feature regions selection

Given an image I , we want r regions with size l× l pixels
that have enough information to produce good descriptors1.

As we are aiming blind detection (detection not based in
specific steganography tools), our framework must be able to
detect random, sequential and point-specific messages embed-
ded in the images.

First, we select four regions that cover the entire image
without overlap, Qrs or Quads regions2. Then, we identify
four regions in the image that are rich in detail, Hrs or Harris-
regions. All of them are graphically depicted for a real example
in Figure 2. To find the Hrs regions, we use a filter as defined
by Harris and Stephens [19],

Hp = det(G) − α tr(G)2, (2)

1There are hidings that look for regions in the image that are rich in details
to reduce the inserted artifacts in the LSB channel [7], [9].

2If we use the whole image instead of regions we may not identify messages
embedded in specific locations.
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Fig. 2. Qrs and Hrs feature regions extraction.

where det(.) is the determinant operation, tr(.) is the matrix
trace, α is a scale factor, and G is a symmetric 2 × 2 matrix

G =

[ ∑

∇2
x

∑

∇x∇y
∑

∇x∇y

∑

∇2
y

]

. (3)

C. Progressive randomization

In this paper, we introduce the Progressive Randomization
(PR) methodology that captures statistical artifacts inserted
during the hiding process.

The progressive randomization framework is a progressive
application of LSB modifying transformations. It receives the
original image I as input, and returns n images, which only
differ in the LSB from the original image. The output is a
direct transformation of the input Oi = Ti(I).

The Ti transformations represent possible hiding processes
of messages with different sizes. In our experiments (Sec-
tion IV), we use n = 6 with message sizes3 01%, 05%, 10%,
25%, 50%, and 75%. Given that we are detecting contents that
are randomly scattered in the image, the greater the message
embedding, the greater the value of the LSB entropy.

For the original image and for each generated image, we
compute the chosen statistical descriptors values in the selected
regions. In our experiments, we have selected eight feature
regions and two descriptors (χ2 and UT ).

We need to consider variations in the context of different
images. Our descriptors must be robust to these variations.
We are interested in the variation rate of our descriptors
rather than in their direct values. If we normalize all the
measurements taken from the transformations and the original
image, we handle this problem. In this way, we get the relative
relationship of each step of the progressive randomization and
the original image,

Norm(Oi) = dj(Oi)/dj(I), (4)

where dj denotes a descriptor of an image taken in a region
1 ≤ j ≤ k. In our approach, the descriptor d can be χ2 or UT .
Figures 3(a-b) show the behavior of our descriptors along the

3A message with size m% is a block of information that uses m percent
of the available LSBs.

progressive randomization approach of an image. The embed-
ding process we consider is based on a random position key
that tells us where to embed each bit. Also, if you are hiding
a message, you either encrypt or compress it beforehand,
which lends the message pseudo-random with high entropy.
In this case, the greater the embedded message (x-axis) the
greater the normalized measured descriptor (y-axis) value. The
modified bits change a local region even in the cases when
we use extra methods to globally preserve statistics. With the
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Fig. 3. Normalized descriptor’s behavior Q1 region of Figure 2 along the
progressive randomization. (a) χ2. (b) UT .

normalization, the descriptors’ behavior becomes independent
of the particular image.

We use a labeled set of images to learn the behavior of our
statistical descriptors and train different classifiers (supervised
learning). The goal is to determine whether a new incoming
image contains a hidden message. We test and validate our
framework using two classifiers: Linear Discriminant Analysis
(LDA) and a two-class Support Vector Machine (SVM) [5],
[20]. We also perform our tests and validation using Bagging
ensemble [5].

IV. EXPERIMENTS AND RESULTS

In this section, we describe how we train, test and validate
our framework. We show the accuracy of our approach with
the selected classifiers and compare our results with previous
work in the literature [10], [13], [14], [17].
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We validate our methodology in a database with 20,000
real, non-synthetic images. All images have a resolution of
512 × 512 pixels and are stored in the PNG format. These
images come from personal and from copyright-free image
databases in the internet.

Here, we define a classifier accuracy as the ratio between
the number of correctly classified images in the testing set (set
of images not used in the training phase) and the total number
of images. False positive rate (FPR) is the ratio between the
number of non-stego images that are misclassified as stego
and the total number of non-stego images. Finally, we define
false negative rate (FNR), as the ratio between the number of
stego images that are misclassified as non-stego and the total
number of stego images.

A. Training and testing

We assume that all our 20,000 images are non-stego (images
that do not contain any hidden message).

In order to train a classifier, we need both stego and non-
stego examples. To obtain stego examples, we embed messages
in a subset of our database. One stego image can contain an
embedded message of variable size. We have selected n = 6
possible content-hiding scenarios with message sizes 1%, 5%,
10%, 25%, 50%, and 75% of the LSB channel available space
to simulate stego images.

We have created a version of our image database for
each one of our selected content-hiding scenarios. We apply
the Progressive Randomization over each image, analyze it
looking for its feature regions, measure the descriptors on
these regions and normalize the analyzed values (Section III-
C). Later, we train a two-class (non-stego/stego) classifier for
each group of stego-images and perform the test phase over a
set of non-trained images.

Figures 4(a-b) show the UT descriptor separability measured
on the image showed in Figure 2. Note the differences in the
descriptor values when we apply the progressive randomiza-
tion operation over a stego image. The greater the embedded
message, the lower the ratio between subsequent iterations of
the progressive randomization operation.

B. Validation

We select eight regions (Section III-C), four regions (Quads)
that are spatially constant, and four regions (Harris) that are
instance specific. For each region, we calculate two statistical
descriptors (χ2 and UT ). With n = 6 possible transforma-
tions, we have 112 descriptor values. After normalization
(Section III-C), our classification procedures operate on a 96-
dimensional space.

Our C++ implementation, running on an
AMD 64 bits 3,200+ with 2 GB of RAM, generates
the 96-dimensional descriptor vector of an image with
resolution of 512× 512 pixels in 30 seconds.

After training the selected classifiers (one for each relative
message size), we test our framework as we have described
in Section IV-A. In our experiments, we have used the
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Fig. 4. Behavior of UT over the image showed in Figure 2, along the
progressive randomization. (a) Non-stego image. (b) Stego version of the same
image with an embedded message of size |M | = 25% of the LSB channel
available space.

R software package [21] to train and evaluate the selected
classifiers (Section III-C).

We perform a k-fold cross-validation. We partition the
20,000 images into k = 10 subsets of size 2,000 images. Of
the k subsets, we retain one as the validation data for testing
the model, and the remaining k−1 subsets we use as training
data. We repeat the cross-validation process k times (the folds),
with each of the k subsets used exactly once as the validation
data. We average the k results (µ) from the folds and calculate
the standard deviation, σ. In all subsequent tables, we report
the results of a 10-fold cross-validation (all using the same
partition of the image collection).

C. Progressive randomization

Table I presents the results for stand-alone (white back-
ground) and for Bagging (gray background) classifiers for
each chosen relative-size message embedding. We have chosen
100 iterations for Bagging. When we have testing cases with
small relative-size embeddings (e.g., |M | = 01% and
|M | = 05%), LDA produces better results than SVM-
RBF. In the remaining cases, SVM-RBF produces better
accuracies than LDA. Although SVM-RBF produces better
results, it is computationally expensive. In this case, we can
use Bagging ensemble with a weaker classifier like LDA.
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TABLE I
PAIRWISE CLASSIFICATION WITH FOUR Qrs AND FOUR Hrs .

LDA SVM-RBF Type
µ σ µ σ

05%
65.2% 1.0% 70.7% 0.9% Stand-alone
69.4% 0.8% 69.0% 0.8% Bagging

10%
75.5% 0.7% 80.2% 0.5% Stand-alone
78.1% 0.8% 78.2% 0.7% Bagging

25%
85.6% 0.8% 89.3% 0.6% Stand-alone
88.7% 0.4% 88.9% 0.6% Bagging

50%
89.0% 0.6% 94.0% 0.5% Stand-alone
93.7% 0.5% 93.7% 0.5% Bagging

75%
92.0% 0.6% 96.3% 0.3% Stand-alone
96.3% 0.4% 96.2% 0.4% Bagging

With this approach, we have Bagging and LDA as the best
tradeoff between accuracy and time complexity. Using Bag-
ging and LDA, we detect stego images with messages of
size |M | = 25% with an accuracy of µ = 88.7% and
σ = 0.4% that is statistically the same result (e.g., µ = 89.3
and σ = 0.6%) of the high-computationally time spending
SVM-RBF. Our results clearly indicate that SVM does not
benefit from bagging.

1) Influence of Harris regions: We use Harris regions in a
subjective/anecdotal attempt to find localized embeddings that
an individual can do in the image areas with high-degree of
details4.

It is important to understand both positive and negative
impacts of using Harris regions when the message is evenly
distributed along all the image, like the ones we use to classify
and validate in this paper.

Using four Harris and four Quads regions is slightly inferior
than using eight constant regions. However, the greater the
embedded message, the lower the difference in the accuracies
of the methods.

2) Final considerations: Looking at our results (Table I,
we see that the smaller the message the worse is the classifier
performance. When we have images with embedded messages
of relative size less than 1% of the LSB channel available
space, the detection is very hard, and still an open problem
– it is almost impossible to detect them. In practice, when
pornographers use images to sell their child-porn images, they
usually use a reasonable portion of the LSB channel available
space. A typical cover image of 1024×768 pixels in resolution
has 294 KB of available space in the LSB channel. A typical
JPEG image of 800 × 600 pixels in resolution has a size of
about 75 KB. In the case where a pornographer wants to
distribute such an image embedded in a typical cover image,
he will use about 25% of the LSB available space. In this
class of problem, our approach detects such activities with
accuracy just under 90% (i.e. µ = 89.3% and σ = 0.6%)
using SVM-RBF.

4In such areas, the inserted artifacts are less noticeable [7], [9].

D. Westfeld-Pfitzmann’s approach

Westfeld and Pfitzmann [10], [17] have devised an approach
that only detects sequential hidden messages embedded from
the first available LSB. This approach is not is not robust
to image contexts variability. Also, it is not robust to detect
messages altered from some embedding message procedure
that keep some basic statistics such as mean, variance, and
standard deviation about the cover image.

Our framework overcomes these problems and increases
the classification accuracy in about 12 percentile points. To
compare Westfeld-Pfitzmann’s results with ours, we have
modified their approach to use a training stage and to consider
the same feature regions as in our approach. Table II compares
both approaches. Our results (gray background) are about 10

TABLE II
WESTFELD-PFITZMANN’S (WP) VS. PROGRESSIVE

RANDOMIZATION (PR) APPROACH.

LDA SVM-RBF Type
µ σ µ σ

05%
60.4% 0.8% 52.6% 0.1% WP
65.2% 1.0% 70.7% 0.9% PR

10%
68.6% 0.9% 54.6% 4.1% WP
75.5% 0.7% 80.2% 0.5% PR

25%
81.6% 0.6% 72.9% 1.9% WP
85.6% 0.8% 89.3% 0.6% PR

50%
90.7% 0.5% 83.0% 0.6% WP
89.0% 0.6% 94.0% 0.5% PR

75%
95.0% 0.4% 84.8% 0.9% WP
92.0% 0.6% 96.3% 0.3% PR

percentile points better than Westfeld-Pfitzmann’s results for
small relative-size message embeddings (e.g., |M | = 05%)
and are about eight percentile points better than Westfeld-
Pfitzmann’s results for medium relative-size message embed-
dings (e.g., |M | = 10% and |M | = 25%).

E. Lyu-Farid’s approach

Lyu and Farid [13], [14] have designed a technique that de-
composes the image into quadrature mirror filters (QMFs) [15]
to analyze the effect of the embedding process. They have used
a database of about 40,000 images.

The authors tuned their classifiers parameters to have a
false positive rate of only 1%. They prefer to miss some
images with embedded messages than to misclassify an image
with no message. Table III compares Lyu and Farid’s results
(white background) and ours (gray background). The accuracy
showed there, for comparison, is the percentage of the stego-
images correctly classified. It does not make sense to compute
the accuracy as the number of non-stego images correctly
classified, given that we configured the classifier parameters
to result in a FPR = 1%.

Looking at the table, we can see that our results (gray back-
ground) are more reliable than Lyu and Farid’s results. Our
progressive randomization approach detects small message
embeddings (e.g., |M | = 01% and |M | = 10%) with an ac-
curacy of about two through nine percentile points better than
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TABLE III
LYU AND FARID’S (LF) VS. PROGRESSIVE RANDOMIZATION (PR)

APPROACH CONSIDERING FPR = 1%. LF’S RESULTS FROM [13], [14].

LDA SVM-RBF Type
µ σ µ σ

01%
1.3% – 1.9% – LF
3.2% 0.5% 3.6% 1.0% PR

10%
2.8% – 6.2% – LF
7.0% 0.8% 15.8% 1.1% PR

50%
16.8% – 44.7% – LF
24.2% 1.5% 53.1% 1.6% PR

99%
42.3% – 78.0% – LF
95.8% 0.5% 97.0% 0.6% PR

Lyu and Farid’s approach considering both LDA and SVM-
RBF. For medium message embeddings (e.g., |M | = 50%),
our Progressive Randomization has an improvement of about
eight percentile points over Lyu and Farid’s (about eight
standard deviations) approach considering LDA and two per-
centile points considering SVM-RBF. When we consider large
relative-size message embeddings, our approach is 53 (about
106 standard deviations) percentile points more reliable than
Lyu and Farid’s approach considering LDA and about 19 per-
centile points (about 31 standard deviations) better considering
SVM.

When we have a fixed FPR = 1%, the results using SVM-
RBF, although computationally more expensive, are better
than using simply linear discriminant analysis (LDA). In both
approaches, however, the smaller the message, the worse the
classifier accuracy.

Although our technique still does not take advantage of
spatial coherence, it already performs as well or better than
the existing comparable techniques [9]–[14].

V. CONCLUSIONS AND FUTURE WORK

We have presented a new methodology that allows us to
detect hidden messages randomly scattered in the LSB field
of an image.

Our progressive randomization approach only uses statistics
of the LSB fields to capture the artifacts inserted by the embed-
ding process. Our results have a better accuracy than previous
approaches in the literature, and indicate that our method is
an effective approach for embedding message detection.

The smaller the relative-size-message embedding, the worse
is the classifier performance. The detection of very small
relative-sized contents is still an open problem.

The detection of very small relative-size contents is very
hard, and still an open problem – it is almost impossible
to detect them. However, in practical situations, like when
pornographers use images to sell their child-porn images,
they usually use a reasonable portion of the LSB channel
available space (e.g., 25%). In this class of problem, our
approach detects such activities with accuracy just under 90%
(i.e. µ = 89.3% and σ = 0.6%) using SVM-RBF.

In this paper, we focused on steganalysis. However, we have
already strong experimental evidence that we can apply PR

approach in other contexts such as the detection of digitally
retouched images and art forgery, classification of images and
content based image retrieval.

Our future work includes a theoretical analysis of the
relationship among progressive randomization, entropy, and
information theory to obtain proofs of correctness, and limi-
tations of our method. We are also interested in a multi scale
analysis of our approach to take into account the advantage of
spatial coherence.

Finally, we plan to apply our technique to the detection of
different types of steganography methods, and to other types
of image classification problems.
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