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Abstract— Due to rapid advances in networking and sensing
technology we are witnessing a growing interest in sensor
networks, in which a variety of sensors are connected to each
other and to computational devices capable of multimodal signal
processing and data analysis. Such networks are seen to play an
increasingly important role as key enablers in emerging pervasive
computing technologies. In the first part of this paper we give
an overview of recent developments in the area of multimodal
sensor networks, paying special attention to ambient intelligence
applications. In the second part, we discuss how the time series
generated by data streams emanating from the sensors can
be mined for temporal patterns, indicating cross-sensor signal
correlations.

I. I NTRODUCTION: AMBIENT INTELLIGENCE

Ambient Intelligence (AmI) is a term coined by Philips
management to conjure up a vision of an imminent future
in which persons are surrounded by a multitude of fine-
grained distributed networks comprising sensors, computa-
tional devices and electronics that are unobtrusively embedded
in everyday objects such as furniture, clothes, and vehicles,
and that together create electronic habitats that are sensitive,
adaptive and responsive to the presence of people [1], [2]. It
is envisaged that these environments will be able to identify
the people that dwell in them, recognize their actions and even
their emotions and intentions, and assist them according their
individual preferences and needs.

This vision was subsequently endorsed by the European
Commission and supported by a sizable chunk of the FP6
ICT program budget. The long-term ambition is to create
an AmISpace in which the seamless interoperation between
different environments (home, work, vehicle, public spaces,
etc.) facilitates participation by the individual in a multiplicity
of social and business communities [3]. Clearly, the AmI
vision is part of a much wider emerging technological trend
(dating back to Mark Weiser) that goes by the name of
ubiquitous (or pervasive) computing and that aims to take
full advantage of the relentless miniaturization in the semi-
conductor arena and the convergence of consumer electronics,
(wireless) networking and mobile communication.

To progress towards the AmI goals, three major functional-
ities need to be realised:

• Context awareness:The data streams from a plethora of
multimodal sensors embedded in the environment need to
be processed and fused to derive a semantically accurate
interpretation of the users identity and actions. It should

be noted that sensing spectrum is rapidly expanding in
step with progress in consumer electronics.

• Ubiquitous access:Extensive and self-configuring net-
works guarantee seamless and trusted communication
between a host of devices and support for ubiquitous
access to communication, information and services.

• Natural interaction: The pervasive computing becomes
invisible as a new communication semantics is estab-
lished between the AmI system and its human users.

Due to space limitations it is impossible to include a detailed
list of all major research efforts. Suffice it to say that highly
visible initiatives include the European FP6-IPsMulti-modal
Services for Meetings and Communications(CHIL [4]), Cog-
nitive Robot Companion(COGNIRON [5]), Context Aware
Vision using Image-based Active Recognition(CAVIAR [6]),
Ambient Intelligence for the Networked Home Environment
(AMIGO [7]), Human-Computer Interfaces Similar to Human-
Human Communication(SIMILAR [8]), Ambient Intelligence
for Mobile Communications through Wireless Sensor Networks
(e-SENSE) [9], as well as MIT’s Project Oxygen [10], MERL’s
Ambient Intelligence for Better Buildings [11] and Georgia
Tech Aware Home [12]. All these projects focus on one or
more aspects of the AmI experience. They include (among
others) adaptive houses that automatically adjust lighting and
temperature settings to achieve optimal user satisfaction at
minimal energy costs [13], [14], smart meeting rooms that
provide late-comers with a summary of the arguments so
far [4], and smart beds that unobtrusively monitor the sleep
pattern, heart and breathing rate of seniors.

II. SENSORNETWORKS AND PERCEPTUAL

TECHNOLOGIES

The role of sensor networks in an AmI environment is to fur-
nish the higher levels of the system with answers to theW5+
questions:Who: Tracking and identifying persons and pets,
i.e. the actors of the AmI environment;Where and When:
Providing a time frame for location and object associations to
determine context;What: Recognizing activities, interactions,
spatio-temporal relations, but also linguistic and non-linguistic
messages, signals, and signs;Why: Association of actions
with action semantics, scripts and plans, identification of
tasks and behaviour patterns;How: Tracing the information
flow through multiple modalities, recognizing expressions,
movements, gestures.



The information provided by the sensors is used to drive
systems that automatically analyse human behaviour [15]. As
it is impossible to give a comprehensive overview of the
sensors most commonly used in AmI application, we will
restrict ourselves to the most important classes.

A. Audiovisual Sensors

Traditionally, research has focused mainly on audio-visual
observations as these modalities provide almost all signals that
humans make use of in interpersonal communication [16],
[17]. Most prominent in the visual domain are face detec-
tion and identification [18], person and object tracking [19]–
[21], facial expression recognition [22], body posture recogni-
tion [23], [24], attention direction sensing [25], hand tracking
and hand gesture recognition [26].

Audio has been used most extensively to detect speech
and identify and localize speakers (a.o. through microphone
arrays [27]), speech recognition [28], and estimation of audi-
tory features relevant to communication. Other uses of audio
modality include determining properties of the source, e.g.
detecting head orientation of speaking persons in the room.
Recently more attention has been paid to general auditory
signal analysis in order to identify broader classes of sounds.
These include non-speech vocalizations, e.g. laughter or shouts
for their obvious relevance for activity and emotion recogni-
tion, as well as sounds associated with various activities [29].
A striking example is the ShotSpotter system, which utilises
connected roof-mounted microphones to detect gunshots and
triangulate the location of origin. The system can even direct
cameras to try and record the scene.

B. Passive Infrared Sensors (PIR)

Passive infrared sensors (PIR) register the infrared emis-
sions from objects (notably humans, animals and vehicles) and
since their spectral signature may be quite distinct from the
visual one, they provide complementary features for motion
and object classification. With a network of PIR devices
deployed in the AmI environment, it becomes possible to
detect fire and smoke, but also to learn movement patterns
of the inhabitants, and novel correlations.

C. RFID

Radio-frequency identification (RFID) technology is making
inroads in the AmI setting as it allows both sensing of object
proximity and identification. Passive RFID tags are small,
flexible and do not require endogenous power to operate.
They can therefore be placed on every-day objects, woven
into fabric, or even injected into animals or people (for a more
in-depth discussion we refer to [30]). Strategically positioned
RFID readers will be able to identify the objects or persons
that pass in their proximity. Collecting the data from different
readers allows the system to piece together the whereabouts of
the main actors in an AmI scenario. With the right technology,
it is even possible to infer activity patterns, as demonstrated by
the so-callediBracelet, a device developed by Intel resembling
a wrist-watch which contains a small, short-range RFID reader.

This reader registers the ID-tags on all objects the user touches.
By sticking a large number of RFID tags on a variety of objects
and appliances (e.g. kettle, faucet, coffee mugs, etc.) in the
household or office, it becomes possible to infer what activity
a person is involved in (e.g. making a cup of coffee). Tagging
the users of an AmI system with RFID is also very useful
for collecting ground truth data for face, gesture, body posture
and speech recognition applications, which usually incorporate
statistical models that require large amounts of data for robust
operation.

D. Multimodal Wearables

Thanks to the advances in solid state electronics it is now
possible to integrate a variety of sensors into compact wearable
devices. One example is the experimental SenseCam [31]
developed by Microsoft Research Cambridge that combines
a digital camera with a number of other sensors, including:
light-intensity and light-color sensors, a PIR detector (for body
heat), a temperature sensor, and a multiple-axis accelerometer.
In addition there is an audio level detector, an audio recorder
and a GPS. Certain changes in sensor readings can be used
to automatically trigger the camera: e.g. a significant change
in light level, or the detection of body heat in front of the
camera can cause the camera to take a picture. The SenseCam
has been used in an archival experiment to create a “lifetime
store of everything” (MyLifeBits[32]). SUN Microsystems has
launched a similar initiative with their SUNSPOT wearable
sensor [33].

Researchers are also beginning to take advantage of the pos-
sibilities offered by modern cell-phones that are increasingly
packed with a variety of sensors. The iPhone is a case in
point: it comes equipped with an accelerometer, an ambient
light sensor and an infrared sensor. Moreover, a combination
of GPS, Bluetooth devices and basestation triangulation allows
for an approximate location determination. For a more in-depth
description of one such experiment we refer to section III-D.

III. M INING FOR TEMPORAL PATTERNS

A. Introduction

In the preceding section we have outlined the wide and
expanding range of sensors that are being deployed in AmI
environments. In the wake of these technological developments
we are witnessing an equally vigorous expansion in the
arsenal of data analysis tools used to process the data streams
generated by these networks. Most research has focused on
sensor networks that have been set up with a specific scenario
in mind with respect to which the incoming data streams can
be checked. They are therefore relatively specific (“narrow-
minded” if you like) about the data they monitor and the
corresponding events they detect and report upon. However,
with sensor availability and connectivity increasing by leaps
and bounds, it has become viable to take a more experimental
and “open-minded” stance and allow a network of sensors and
computational devices to pro-actively inspect the many data
streams that impinge on it in an effort to uncover unanticipated
meaningful spatio-temporal patterns or associations.



Although interesting in their own right, such associations
might in fact have a significant practical value as they can con-
tribute to the robustness of the sensing process. For instance,
if it is observed that large readings from sensor A are usually
accompanied by a strong signal from sensor B, then the firing
of sensor B might add support to a less than convincing peak
in the signal from A that would otherwise have been missed.
Furthermore, once reliable temporal patterns have been estab-
lished, they can be used by the system to predict forthcoming
events. Such predictions are extremely useful when planning
future actions (e.g. an AmI house could switch on the heating
15 mins before the occupants are expected to arrive) or in data-
driven attention mechanisms: attention levels are increased
when the actual events turn out to differ significantly from
the predicted ones (e.g. in an assisted living scenario for
senior citizens). These developments have therefore spurned
a renewed interest in data mining and prediction algorithms
for time series [34].

A large body of work in multimodal signal processing for
modeling temporal patterns deals with applications of Hidden
Markov Models (HMM) which, building on their success in
speech recognition (e.g. see [35] for a nice overview), have
become the mainstay of spatio-temporal segmentation (e.g.
see [36]). However, for the applications we have in mind
(clustering of time series emanating from sensors) the classical
HMM approach has two main disadvantages. First of all,
the standard estimation algorithms (i.e. evaluation, decoding
and learning) assume that the topology of the HMM-structure
(in terms of states and transitions) is known. Clearly, when
it comes to data mining, finding the structure is the crux
of the problem. Rao and Cook [37] try to remedy this by
defining high-level inhabitant activity states as clusters of
elementary actions. A task-based Markov model represents
the inhabitant activities as states in a simple hidden Markov
model, which is then used to predict the next user activity. Sec-
ondly, (as pointed out in [38]) Markov models have difficulty
incorporating temporal patterns across different timescales.
For these reasons we will briefly highlight four alternative
approaches that seem better suited to deal with the problem
of detecting temporal patterns in sensor data streams (for
additional references we refer to [34]).

B. T-patterns

The first approach we inspect is proposed by Magnus-
son [39]. He proposes an exhaustive search for recurring
temporal patterns (dubbedT-patterns) in symbolic time se-
ries, where each symbol represents the onset of a particular
event or activity. The principle here is to investigate possible
relationships between pairs of symbols and then build trees of
such temporal dependencies in a hierarchical fashion. To this
end, the notion ofCritical Interval (CI) is introduced:[d1, d2]
is considered as a CI for the pair of symbols(A,B) if an
occurrence ofA at time t implies thatB is more likely to
occur in the time interval[t + d1, t + d2] than in a random
interval of the same size. The standardp-value is used as a
measure for how exceptional the occurrence regularity of the

combination under scrutiny is. Patterns that turn out to be
significant (with respect to a pre-definedp-value) are assigned
a new symbol, whereupon the search resumes.

C. Clustering data streams from ultra-low resolution sensors

The second approach is a methodology for clustering the
time series generated by the low-resolution sensors (e.g. binary
interruption or motion sensors) [40]. In their work, the authors
extol some of the virtues of these sensors. First, as they are
very cheap, it is possible to install a very dense networks of
sensors at minimal cost. In addition, they are seen to be far
less intrusive and privacy-critical than high-resolution sensors
like surveillance cameras. Finally, for simple applications (e.g.
monitoring movements of people inside a building), low-
resolution sensors achieve results comparable to the ones
obtained with high-resolution sensors.

The proposed method starts by segmenting the training
sequence into small subsequences. Similarity between these
subsequences is defined in terms of their generating HMMs.
More precisely, for each subsequencesi a single HMM Hi

is trained. Similarity betweensi and sj is then defined by
computing how likelysi is with respect to HMMHj and
vice versa. The similarities thus obtained are then used to
incrementally build a hierarchical cluster tree: whenever two
nodes (each comprising one or more subsequences) are merged
into one cluster, a new updated HMM is trained using all the
subsequences in the proposed cluster.

This method is demonstrated with an experiment, in which a
department comprising several offices and common rooms was
wired with binary motion sensors. Peaks in the sensors’ cross-
correlation functions are indicative of their physical separation.
Long-term observations of the sensors’ activation patterns
therefore generate an inter-sensor distance matrix, which can
be used to reconstruct an approximate physical layout (e.g.
using standard algorithms such as multi-dimensional scaling).
This shows how careful analysis of multiple data streams can
obviate the need for manual calibration.

D. Eigenbehaviors

Analysis of human behaviour patterns is made easy with the
introduction of sensing capabilities to cell phones. Working
with a large collection of data captured from Bluetooth-
equipped mobile phones continuously logging location, prox-
imate people, and communcation of 100 subjects at MIT
during the course of nine months, Eagle and Pentland [38]
develop methods to uncover daily human behaviour routines.
Encoding the historic data for each subject in an activity
matrix (where each row represents a chronology of one day’s
location logging) it becomes possible to uncover important
temporal patterns by performing PCA and focusing on the
most prominent eigenvectors (dubbedeigenbehaviors). These
eigenbehaviors often have clear semantic interpretation (e.g.
weekday versus weekend) and are able to capture long-delay
correlations (e.g. sleeping late in the morning is a good
predictor for being out late that night). In fact, it turns out
that these low-dimensional models are sufficiently accurate to



predict (with nearly 80% accuracy) the afternoon’s activities
based on the data collected in the morning.

E. Active LeZi: Compression-based Pattern Extraction

A final approach to detecting temporal patterns is to use the
LZW compression algorithm as a pattern extractor [34]. This
algorithm can easily accommodate streaming data and real-
time learning as the pattern table (the so-called dictionary) is
easily updated each time a symbol is added to the stream. The
patterns based on the dictionary thus obtained can be post-
processed by removing patterns that are either very rare, or
exhibit a high variability in their duration.

IV. CONCLUSION

Finding temporal patterns in multiple streams of sensor data
is essential for automatic analysis of human behaviours and
habits in the ambient environment. In this paper we have
reviewed the context of this problem as it pertains to recent
sensor technology, as well as four different approaches that
have different merits and weak points. As with many problems
in computer science, there is no single best approach, and
choice rests on the system designer.
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