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Abstract— In this paper we consider the problem of robust
perceptual hashing as composite hypothesis testing. First, we
formulate this problem as multiple hypothesis testing under
prior ambiguity about source statistics and channel parameters
representing a family of restricted geometric attacks. We intro-
duce an efficient universal test that achieves the performance
of informed decision rules for the specified class of source and
geometric channel models. Finally, we consider the practical
hash construction, which compromises computational complexity,
robustness to geometrical transformations, lack of priors about
source statistics and security requirements. The proposed hashis
based on a binary hypothesis testing for randomly or semantically
selected blocks or regions in sequences or images. We present the
results of experimental validation of the developed concept that
justifies the practical efficiency of the elaborated framework.

I. I NTRODUCTION

New possibilities of digital imaging and audio open wide
prospects in modern imaging science, content management
and secure communications. However, despite the obvious
advantages of modern digital technologies and their ongoing
progress, these developments carry inherent risks, such as
copyright violation, unauthorized prohibited usage and distri-
bution of digital media, high fidelity efficient counterfeiting
of digital and analog content as well as brand products.
An urgent need for reliable document, product and person
identification also calls for emerging necessity in robust and
secure techniques, capable of withstanding various attacks, and
at the same time preserving privacy. On the other hand, the
issue of security is not necessarily emphasized in several other
relevant applications, such as content indexing and retrieval,
navigation, interaction with the physical world objects and
scenes, but such tasks also require reliable and computationally
efficient techniques for semantic content management. Thus,
the need for such kind of techniques can be considered in
secure and non-secure applications.

The solution to the above problems can be considered based
on hash functions. Traditional cryptographic hash function
based mechanisms have been found lacking for this purpose
due to the peculiar nature of multimedia data. Namely, with
multimedia data, the same content can have many different
digital representations. For example, an image can be rep-
resented in different formats and would be perceptually or
semantically the same although the two digital files would be
entirely different.

Robust perceptual hashing (a.k.a. as fingerprinting in some
contexts) has been recently proposed as primitives to over-
come the above problems and have constituted the core of a
challenging and dynamically developing research area.

Although the robustness/invariance aspects of multimedia
hashing have received a lot of attention especially in com-
puter vision, the issue of security still remains to be an
open and little-studied problem. New information-theoretic
and detection-theoretic approaches to secure hashing, as well
as carefully designed attacks, should be proposed and inves-
tigated. This aspect will potentially have a great impact on
security applications, such as content, object, person authen-
tication and identification, tamper evidence, synchronization,
forensic analysis and brand protection.

The design of efficient robust hashing techniques is very
challenging problem that should address the compromise be-
tween various conflicting requirements that cover:

• robustness to distortions, i.e., the ability of hash function
to produce either the same or close in some sense results
under the legitimate distortions applied to the same data
that include both signal processing and desynchornization
transformations (that can be achieved using either special
labeling or error correction decoding);

• security, i.e., the ability of the attacker to deduce the
knowledge about the hash (indexm) without the knowl-
edge of keyk based on the observed datayN and
knowledge of hash codebook construction (equivoca-
tion H(M |Y N ) = H(M) − I(M ;Y N )) or about the
key k based on the observed datayN (equivocation
H(K|Y N ) = H(K) − I(K;Y N )); this also includes
the one-way hashing or non-invertibility property, i.e.,
computationally expensiveness in finding original data
given a hash indexm and a hash function (codebook
construction), and collision-free property, which refersto
the fact that given an input and a hash function, it is
computationally hard to find a second image such that
produces the same hash outside the regime of allowable
distortions.

• universality, i.e., the practical aspects of optimal hash
construction under the lack of statistics about input source
distribution and channel distortions that is related to the
machine learning framework and universal hypothesis
testing.



Thus, a robust perceptual hash function can be defined
as a one-way function, which takes multimedia objects as
inputs, and generates sufficiently-short binary strings, that are
approximately invariant under perceptual-quality-preserving
modifications (also termed as attacks).

The domain of robust image hashing is an active and rapidly
developing research direction that attracts significant attention
in data-hiding community. Most of elaborated robust image
hashes are mainly targeting providing tolerance to a wide range
of perceptually insignificant distortions. Such robustness might
be granted due to the use of error correcting codes [3], hash
computation as quantized robust pseudorandom robust semi-
global statistics of an image [1], or using randomly quantized
perceptually invariant image feature points [2]. In all above
mentioned cases, a set of experiments is performed to justify
the efficiency of the developed methods facing certain attacks.

The common open problems of state-of-the-art in robust
hashing are:

• lack of systematic information-theoretic or decision-
theoretic analysis in both construction and performance;

• lack of solid security understanding;
• optimal practical design concerns the selection of the

most representative and robust features and construc-
tion of the corresponding classifiers (joint classifier and
feature optimization (JCFO)) that can provide the best
attainable exponent;

• lack of theoretical link between random coding exponent
and hypothesis testing problem for robust hashing as a
joint design of optimal source-channel code.

That is why the goal of this paper is to introduce a
decision-theoretic framework for the analysis and construction
of perceptually robust hashing that is free from the above
drawbacks. According to this framework we will formulate
the main open problems and challenges that will guide the
development of future robust hashing methods. Finally, we
believe that this framework will help establish the theoretical
limits on performance and security of these systems. Our main
initial statements can be summarized as:

• robust hashing is a joint design of optimal semantic
source-channel coding;

• a useful tool for its design and analysis is a multiple
hypothesis testing framework.

This paper differs from the previous ones in part of:

• decision-theoretic analysis based on the multiple hypoth-
esis testing framework;

• practical aspects of robust hashing construction includ-
ing robustness to distortions, security, universality with
respect to prior knowledge about source statistics and
geometrical channel state and complexity;

• error bounds on robust hashing performance;
• practical joint design of classifier and feature optimization

formulation of robust hashing.

This paper is organized as follows. The theoretical formula-
tion of robust hashing as composite hypothesis testing is given
in Section II. The universal hypothesis testing is considered

in Section III. Practical hash construction is explained in
Section IV. Finally, Section V concludes this paper.

Notations We use capital letters to denote scalar ran-
dom variablesX, XN to denote vector random variables,
corresponding small lettersx and xN to denote the real-
izations of scalar and vector random variables, respectively.
The superscriptN is used to designate length-N vectors
xN = [x[1], x[2], ..., x[N ]] with kth elementx[k]. We use
X ∼ pX(x) or simply X ∼ p(x) to indicate that a random
variable X is distributed according topX(x). p(xN ;Hm)
denotes pdf/pmf ofxN under hypothesisHm. Calligraphic
fonts X denote setsX ∈ X and |X | denotes the cardinality
of setX .

II. H ASHING AS COMPOSITE HYPOTHESIS TESTING

The hashing problem can be considered as|M|-ary hy-
pothesis testing problem. The composite character of hashing
problem comes from a fact that both the distribution of discrete
memoryless source (DMS)pXN (xN ) and the parameters of
channel are unknown. We will assume that the source gener-
ates the sequencesxN from the pmfpXN (xN ; sJ

X), wheresJ
X

are the parameters of distribution given on a setSJ
X that is

assumed to be discrete with the fixed cardinality.
The channel is modeled as a cascade of a fixed memoryless

channel given by the transition probabilityp(v|x) and an
invertible global mappingTθ, which models a geometric
transformation. We will assume that the family{Tθ, θ ∈ ΘN}
satisfies the conditions of: (a) mapping invertibilityTθ :
YN → VN for all N and for all θ ∈ ΘN ; (b) restricted
cardinality that is either fixed or grows subexponentially with
N , i.e., lim supN→∞

1
N

ln |ΘN | = 0.
The considered set-up is presented in Figure 1.
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Fig. 1. Hashing as multiple hypothesis testing.

The corresponding|M|-ary hypothesis testing is given in
the form:

Hm : Y N ∼ p(yN ; sJ
X , θ,Hm), (1)

with 1 ≤ m ≤ |M|, sJ
X ∈ SJ

X , θ ∈ ΘN .
We will estimate the performance of hypothesis testing

according to the average probability of error for a given set
of sourcesJ

X and channelθ parameters in|M|-ary composite



hypothesis testing and a chosen decision ruleψ:

Pe(s
J
X , θ, ψ) =

1

|M|

|M|
∑

m=1

Pr[ψ(Y N ) 6= m| m in force, sJ
X , θ].

(2)
In more general case, the analysis of performance might

also include the expressions for probabilities of missPF and
alarm PM and the corresponding decision rules are chosen
depending on the problem requirements.

If the statistics of sourcesJ
X and channel parameterθ are

known, the probability of error (2) can be rewritten as:

Pe =
1

|M|

|M|
∑

m=1

Pr[ψ(Y N ) 6= m| m in force]. (3)

The test that minimizes the above error probability is the
maximum likelihood (ML) decision rule:

Ĥm = ψML(yN ) = arg max
1≤m≤|M|

p(yN ;Hm). (4)

This corresponds to the rate-distortion formulation when
the DMS with the pmfpXN (xN ) generates2NH(X) typical
sequences that are mapped to|M| = 2NR sequences as:

ψML : XN → {1, 2, · · · , 2NR}, (5)

thus assigning an indexm to all sequencesxN that are within
some distance measuredN (xN , x̂N (m)) bounded byD to the
sequencêxN (m), whereH(X) denotes the entropy andR
stands for the rate.

Moreover, the maximum number of uniquely recognizable
sequenceŝxN (m) for a givenD and the unknownθ under the
condition that the source pmfpXN (xN ) is selected such to be
matched with the DMC is defined by2NRmax where:

Rmax = min
θ∈ΘN

max
p

XN

I(X;Y ). (6)

It should be noticed that there exists generally no decision
rule that achievesPe, if the DMS and channel parameters are
not known.

III. U NIVERSAL HYPOTHESIS TESTING

The universal decision rules are independent of unknown
parameterssJ

X and θ. However, in general the performance
will depend on them. Therefore, a universal test is said to be
efficient, if it achieves exponential decay of error probability
for all values ofsJ

X andθ:

lim sup
N→∞

max
sJ

X
∈SJ

X

max
θ∈ΘN

1

N
ln
Pe(s

J
X , θ, ψ)

Pe

= 0. (7)

In fact, considering the parameters of DMSsJ
X and channel

state θ as random with some pmfs, one can apply Bayes
approach using integration ofp(yN ; sJ

X , θ,Hm) over the cor-
responding pmfs. However, this approach has some drawbacks
related to: (a) the lack of knowledge of prior distributions; (b)
once the realizations of parameters are drawn, they remain
fixed through the experiment and (c) the integrals are diffi-
cult to compute in practice. Therefore, not always universal
hypothesis testing based on generalized ML (GML) is used:

ψGML(yN ) = arg max
1≤m≤|M|

max
sJ

X
∈SJ

X

max
θ∈ΘN

p(yN ; sJ
X , θ,Hm)

(8)
or

ψGML(yN ) = arg max
1≤m≤|M|

p(yN ; ŝJ
X , θ̂, Hm) (9)

where ŝJ
X = arg maxsJ

X
∈SJ

X

p(yN ; sJ
X , θ,Hm) and θ̂ =

arg maxθ∈ΘN
p(yN ; sJ

X , θ,Hm) are the ML-estimate ofsJ
X

andθ, respectively.
One can find the conditions of GML universality under

the assumptions about the parameter setSJ
X and indexΘN

considered in Section II according to:

max
sJ

X
∈SJ

X

max
θ∈ΘN

Pe(s
J
X , θ, ψ)

Pe

≤ |ΘN ||SX |J (N + 1)|X |(1+2|Y|),

(10)
and thus the GML hypothesis testing rule is universal [4].

IV. PRACTICAL HASH CONSTRUCTION

The considered|M|-ary hypothesis testing is a very com-
plex problem that covers various aspects considered below:

• computational complexityfor the authorized users should
be low;

• robustness to geometrical transformationsis very crucial
for the robust media hashing. Practically, it can be solved
in several different ways:

– exhaustive searchover ΘN is possible without loss
in performance under the specific constraints on the
set ΘN in price of computational complexity (the
above considered GML strategy);

– selection of robust or invariant featuresthat assumes
the transformation to some specific domain or appli-
cation of robust feature extractors that might lead to
the dimensionality reduction. If the transformation is
not invertible, there might be the loss in performance
due to data processing inequality. Such a transforma-
tion reduces the distance between the distributions
of yN under different hypothesis before and after
transformation that increases inversely proportionally
the probability of error;

• priors about the source statisticsare very important due
to high variability of image statistics. In the most cases,
some parametric families such as Generalized Gaussian
are used in the transform domains such as DCT or DWT;

• securitycan be achieved by the randomized feature se-
lection or key-dependent randomized codebook construc-
tion. The loss in performance accuracy should be care-
fully analyzed depending to the randomization scheme.

To compromise the above practical requirements, we pro-
pose a suboptimal low-complexity hashing, which consists in
replacement of|M|-ary composite hypothesis testing by a
binary counterpart. According to the proposed approach the
entire sequenceyN is splitted intoL possibly overlapping
blocks as shown in Figure 2.
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Fig. 2. Binary hypothesis based hash construction.

The binary testψB is applied to each blockℓ with 1 ≤ ℓ ≤
L to form the resulting{0, 1}L-hash as a concatenation of the
L-binary decisions. The binary testψB is:

ψB(yP
ℓ ) = arg max

1≤m≤2
max

sJ

X
∈SJ

X

max
θ∈ΘN

p(yP
ℓ ; sJ

X , θ,Hm), (11)

where1 ≤ ℓ ≤ L and it is assumed that all blocks have the
lengthP . Further simplification might come from the fact that
the DMS statistics andθ are the same in allL blocks that can
be estimated only in one block or over entire sequenceyN .

The minimum error probability for each block in assumption
of known source and channel parameters can be bounded as:

PB
e ≤ P (H1)

1−sP (H2)
se−Ds(p(yP ;H1),p(yP ;H2)),∀0 < s < 1,

(12)
whereP (H1) andP (H2) are prior probabilities of hypothesis
H1 and H2 and Ds(p(y

P ;H1), p(y
P ;H2)) is the Chernoff

distances defined as:
Ds(p(y

P ;H1), p(y
P ;H2)) =

= − ln
∫

Y
p(yP ;H1)

(

p(yP ;H2))
p(yP ;H1)

)s

dyP . (13)

The total probability of error is the union of probabilitiesfor
each block.

The practical implementation of considered hash consists of
following steps:

1) Transform step consists in the transformation of data
yN to some possible geometrically invariant or robust
domain where samples are decorrelated and assumed
to be independent and identically distributed. This also
assumes the randomized data sampling. Figure 3 shows
the randomized sampling of image regionR with L

randomly overlapping areas (for simplify assumed to be
rectangles).

pR
R

Fig. 3. Practical hashing with randomized region partition.

2) Feature statistics computationstep consists in the com-
putation of empirical moments (as unbiased estimates of

true moments) from the selected feature pdfs and char-
acteristic functions or their absolute value counterparts:

ΦY (t) =

∫ +∞

−∞

pY (y)ejtydy, (14)

as:

m̂n,ℓ =
1

P

P
∑

i=1

yℓ[i]
n, Mn,ℓ =

∫ +∞

−∞

ΦY,ℓ(t)t
ndt,

(15)

m̂A
n,ℓ =

1

P

P
∑

i=1

|yℓ[i]|
n, MA

n,ℓ =

∫ +∞

−∞

ΦY,ℓ|t|
ndt.

(16)
for n ≥ 1. Depending on a particular application, one
should select informative low-dimensional features with
the overall objective to minimizePB

e in (12) that is
achieved by maximizing the Chernoff distanceDs(., .).

3) Decision makingstep consists in deciding{0, 1} for
each randomized area according to the hypothesisH1

andH2, respectively.
Example with the above text hashing includes the direct

randomized partition of text image areaR ontoL blocks with
the computation of the first moment̂m1,1 that are used for
deciding{0, 1}. More involved transform might also include
a sort of semantic sampling where the statistics are computed
only from the non-white regions that corresponds to the
segmentation and mimics optical character recognition. This
also includes the orientation estimation as a part of geometrical
channel parameterθ in the scope of GML strategy. Similar
functions can be extended to more complex grayscale images
and audio signals.

V. CONCLUSION

In this paper, we dealt with the problem of decision-
theoretic analysis of robust perceptual hashing. Firstly,we
addressed the problem of hashing as composite hypothesis
testing and considered the universal formulation of this prob-
lem and source and channel ambiguity. Secondly, we studied
a practical hash construction that complies with a number
of conflicting requirements to complexity, robustness, lack of
priors and security. We have considered an example of text
hashing and performed extended experimental validation that
confirms the high efficiency of the proposed framework.
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