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Abstract— Media authentication is important in content de-
livery via untrusted intermediaries, such as peer-to-peer (P2P)
file sharing. Many differently encoded versions of a media
file might exist. Our previous work applied distributed source
coding to distinguish the legitimate diversity of encoded images
from tampering. An authentication decoder was supplied with a
Slepian-Wolf encoded lossy version of the image as authentication
data. Distributed source coding provided the desired robustness
against legitimate encoding variations, while detecting illegitimate
modification.

We augment the decoder to localize tampering in an image
already deemed to be inauthentic. The localization decoder
requires only incremental localization data beyond the authenti-
cation data since we use rate-adaptive distributed source codes.
Both decoders perform joint bitplane decoding, rather than
conditional bitplane decoding. Our results demonstrate that
tampered image blocks can be identified with high probability
using authentication plus localization data of only a few hundred
bytes for a 512x512 image.

I. INTRODUCTION

Media authentication is important in content delivery via
untrusted intermediaries, such as peer-to-peer (P2P) file shar-
ing or P2P multicast streaming. In these applications, many
differently encoded versions of the original file might exist.
Moreover, transcoding and bitstream truncation at intermediate
nodes might give rise to further diversity. But intermediaries
might also tamper with the media for many reasons, such as
interfering with the distribution of a particular file, piggyback-
ing unauthentic content, or generally discrediting a distribution
system. In previous work [1], we applied distributed source
coding to image authentication to distinguish the diversity of
legitimate encodings from malicious manipulation.

Past approaches fall into two groups: watermarks and media
hashes. A “fragile” watermark can be embedded into the host
signal waveform without perceptual distortion [2] [3]. Users
can confirm the authenticity by extracting the watermark from
the received content. The system design should ensure that the
watermark survives lossy compression, but that it “breaks” as a
result of a malicious manipulation. Unfortunately, watermark-
ing authentication is not backward compatible with previously
encoded contents; unmarked contents cannot be authenticated
later. Embedded watermarks might also increase the bit-rate
required when compressing a media file.
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Media hashing [4] [5] achieves authentication of previously
encoded media (as well as localization of tampering) by
using an authentication server to supply authentication data to
the user. Media hashes are inspired by cryptographic digital
signatures [6], but unlike cryptographic hash functions, media
hash functions offer proof of perceptual integrity. Using a
cryptographic hash, a single bit difference leads to an entirely
different hash value. If two media signals are perceptually
indistinguishable, they should have identical hash values. A
common approach of media hashing is extracting the fea-
tures which have perceptual importance and should survive
compression. The authentication data are generated by com-
pressing the features or generating their hash values. The user
checks the authenticity of the received content by comparing
the features or their hash values to the authentication data.

We review our image authentication system based on dis-
tributed source coding [1] in Section II. Compared to con-
ventional media hashing, our scheme also exploits knowledge
of the variation among legitimate images. In Section III, we
augment the authentication decoder into a localization decoder
that localizes tampering in images already deemed to be
inauthentic by the authentication decoder. Simulation results
in Section IV show that tampered pixels are identified with
high probability.

II. BACKGROUND

Fig. 1 is the block diagram for both image authentication
of [1] and tampering localization of this paper. We first review
the authentication system. We denote the source image as
. The user receives the image-to-be-authenticated y as the
output of a two-state lossy channel that models legitimate and
illegitimate modifications. The left-hand side of Fig. 1 shows
that the authentication data consist of a Slepian-Wolf encoded
lossy version of z and a digital signature of that version. The
authentication decoder, in the right-hand side of Fig. 1, knows
the statistics of the worst permissible legitimate channel and
can correctly decode the authentication data only with the help
of an authentic image y as side information.

We model the image-to-be-authenticated y by way of the
space-varying two-state lossy channel in Fig. 2. The legiti-
mate state of the channel performs lossy JPEG2000 or JPEG
compression and reconstruction with peak signal-to-noise ratio
(PSNR) of 30dB or better. The illegitimate state additionally
includes malicious tampering.
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Fig. 2. Space-varying two-state lossy channel

Fig. 3 demonstrates this channel. The source image x is
“Lena” at 8-bit 512x512 resolution. In the legitimate state, the
channel output is JPEG2000 compression and reconstruction at
(the worst permissible) 30dB PSNR. In the illegitimate state, a
text banner is overlaid on the reconstructed image. The channel
state variable S; is defined per nonoverlapping 16x16 blocks
of image y. If any pixel in block B; is part of the banner text,
S; = 1; otherwise, S; = 0.

In our authentication system shown in Fig. 1, a pseudo-
random projection (based on a randomly drawn seed K ;) is
applied to the original image x and the projection coefficients
are quantized to yield X . The authentication data comprise two
parts, both derived from X. The Slepian-Wolf bitstream S(X)
is the output of a Slepian-Wolf encoder based on rate-adaptive
low-density parity-check (LDPC) codes [7]. The much smaller
digital signature D(X, K;) consists of the seed K, and a
cryptographic hash value of X signed with a private key.

In our system, the authentication data are generated by a
server upon request. Each response uses a different random
seed K, which is provided to the decoder as part of the
authentication data. This prevents an attack which simply
confines the tampering to the nullspace of the projection.
Based on the random seed, for each 16x16 nonoverlapping
block of pixels B;, we generate a 16x16 pseudorandom matrix
P; by drawing its elements independently from a Gaussian
distribution NV'(1, 02) and normalizing so that || P;||2 = 1. We
choose ¢, = 0.2 empirically. The inner product (B;, P;) is
quantized into an element of X.
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Fig. 3. Fragment of “Lena” image (a) « original, (b) y if >, S; =0, () y
with 37, S; > 0, (d) channel states S; associated with the 16x16 blocks of
output (c).

The rate of the Slepian-Wolf bitstream S(X) determines
how statistically similar the image-to-be-authenticated must
be to the original to be declared authentic. If the conditional
entropy H(X|Y') exceeds the bit-rate R in bits per pixels, X
can no longer be decoded correctly [8]. Therefore, the rate of
S(X) should be chosen to distinguish between the different
joint statistics induced in the images by the legitimate and
illegitimate channel states. At the encoder, we select a Slepian-
Wolf bit-rate just sufficient to authenticate both legitimate
30dB JPEG2000 and JPEG reconstructed versions of x.

At the receiver, the user seeks to authenticate the image
y with authentication data S(X) and D(X, K,). It first
projects y to Y in the same way as during authentication data
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generation. A Slepian-Wolf decoder reconstructs X’ from the
Slepian-Wolf bitstream S(X) using Y as side information.
Decoding is via LDPC belief propagation [9] initialized ac-
cording to the statistics of the legitimate channel state at the
worst permissible quality for the given original image. Finally,
the image digest of X’ is computed and compared to the image
digest, decrypted from the digital signature D (X, K ;) using a
public key. If these two image digests are identical, the receiver
recognizes image y as authentic.

With this system, we demonstrated false positive rates close
to zero for authentication data size less than 40 bytes [1].

III. TAMPERING LOCALIZATION
A. Problem

The authentication problem discussed above is a decision
on the sum of channel states over all blocks in an image;
whether » ., S; =0 or >, .5; > 0. In the case that the image
is inauthentic (3, S; > 0), the tampering localization problem
can be formulated as deciding on .S; for each block, given the
Slepian-Wolf bitstream .S(X') and the digital signature D(X).

B. Authentication and Localization Data Generation

The localization decoder requires more information than the
authentication decoder. Fortunately, since we use rate-adaptive
LDPC codes [7] for Slepian-Wolf coding, the localization de-
coder re-uses the authentication data. Incremental localization
data is sent through the Slepian-Wolf bitstream S(X).

In our previous paper [1], a separate Slepian-Wolf bitstream
was used for each bitplane of X. At the authentication decoder,
the bitplanes were decoded conditionally with previously
decoded ones used as additional side information [10]. But the
localization decoder requires all bitplanes together to estimate
the channel state S; per block. Hence we adopt joint bitplane
coding [11], wherein a single Slepian-Wolf bitstream is used
for all transmitted bitplanes. In order to enable rate-adaptivity
for the overall authentication/localization system, we use joint
bitplane coding for the authentication system as well.

C. Localization Decoder

The localization decoder applies the sum-product algo-
rithm [12] on the factor graph in Fig. 4 to estimate each chan-
nel state likelihood P(S; = 1). Decoding is initialized with
the syndrome nodes values S(X) and the side information Y.

In terms of the factor graph, the joint probability of the
bits of the image projection X and the channel states given
the syndrome values and the side information can be factored
as follows. The factor at each syndrome node is an indicator
function of the satisfaction of that syndrome constraint. The
factor connected to each state node fI(S;) = P(S;). The
factor fg(XZ,S7) = P(XZD/Z,S;) When Sz = 0, fg(X“O)
is proportional to the integral of a Gaussian distribution with
mean Y; and a fixed variance o2 over the quantization interval
of X;. When S; =1, f{(X;,1) is uniform.

The iterations of belief propagation terminate when the hard
decisions on bits of X satisfy the constraint imposed by the
syndrome S(X). Finally, each block B; of y is declared to be
tampered if P(S; = 1) > «, a fixed decision threshold.
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IV. SIMULATION RESULTS

In practice, the localization decoder would only run if
the authentication decoder deems an image to be inauthen-
tic, so we test the tampering localization system only with
maliciously tampered images. We use test images “Barbara”,
“Lena”, “Mandrill”, and “Peppers” at 512x512 resolution in
8-bit gray resolution. The space-varying two-state channel in
Fig. 2 applies JPEG2000 or JPEG compression and reconstruc-
tion at several qualities above 30dB. The malicious tampering
consists of the overlaying of up to five text banners of different
sizes at random locations in the image. The text banner sizes
are 198x29, 29x254, 119x16, 16x131 and 127x121 pixels.
The text color is white or black, depending on which is
more visible. This avoids generating trivial attacks, such as
overlaying white text on a white area.

We first compare the minimum authentication data rate
required by the authentication decoder and the minimum
authentication plus localization data rate required by the
localization decoder. Fig. 5 shows the Slepian-Wolf bitstream
components S(X) of these rates (in bits per pixel of the
original image z) for “Lena” with X quantized to 3 bitplanes.
All five text banners are placed for malicious tampering,
because greater tampering makes ‘disauthentication’ easier and
localization more difficult. The placement is random for 100
trials, leading to tampering of 12% to 17% of the nonover-
lapping 16x16 blocks of the original image z. To localize
tampering in JPEG2000 or JPEG reconstructions above 30dB,
Fig. 5 indicates that the required authentication plus localiza-
tion rate is roughly 2.5 times the required authentication rate.
The incremental localization rate (the gap between the rates)
discovers not only the location of the tampering but also the
magnitude of the tampering.

Next we investigate the worst-case authentication plus local-
ization rate necessary for localizing tampering in JPEG2000
or JPEG reconstructions above 30dB. We randomly place one
to five text banners over 2000 trials and run the localization
decoder with decision threshold o = 0.5. Fig. 6 is a scatter plot
of authentication plus localization rates versus percentage of
affected blocks, for “Peppers” with the 32x32 image projection
X quantized to 3 bitplanes. The scatter plots for the other
test images are similar. We select the highest rate observed
as the Slepian-Wolf rate for authentication plus localization,
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which gives a bitstream size of 174 bytes for X quantized to 3
bitplanes (less than 6.3% of the compressed image size). For
X quantized to 4 bitplanes, the bitstream size is 232 bytes
(Iess than 8.4% of the compressed image size).

Using these Slepian-Wolf bitstream sizes, we measure vari-
ous failure rates. The blockwise falsely deemed tampered rate
is the proportion of untampered blocks (that is, with S; =
0) that were mistaken for tampered blocks. Conversely, the
blockwise falsely deemed untampered rate is the proportion
of tampered blocks (that is, with S; = 1) that were mistaken
for untampered blocks. We also consider the pixelwise falsely
deemed untampered rate. Fig. 7 shows these failure rates for
X quantized to 3 and 4 bitplanes as the decision threshold «
varies. The curves for X quantized to 4 bitplanes indicate that
our choice of authentication plus localization rate can zero
the blockwise falsely deemed tampered rate, while keeping
the blockwise falsely deemed untampered rate near 20%.
Although the latter result seems weak, we note that most of
the blocks falsely deemed untampered have only a few pixels
tampered. This explains why the corresponding pixelwise
falsely deemed untampered rate is an order of magnitude
less, roughly 2%. This performance is acceptable to localize
banners consisting of hundreds of pixels.
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V. CONCLUSIONS

We augment our earlier image authentication system using
distributed source coding to perform tampering localization in
images already deemed to be inauthentic. Since both systems
use rate-adaptive distributed source codes, the localization
decoder only requires incremental localization rate beyond the
authentication rate. We demonstrate that an authentication plus
localization Slepian-Wolf bitstream of 232 bytes (less than
8.4% of the compressed image size) is sufficient to identify
tampered pixels with 98% confidence, while correctly clas-
sifying untampered blocks. In future work, we will consider
other forms of legitimate and illegitimate editing.
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