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_ Abstract—Adaptive background modelling based object detec- pixel is modelled independently by a mixture of at most
tion techniques are widely used in machine vision applicatins for K Gaussian distributions, and each Gaussian represents the
handling the challenges of real-world multimodal backgrownd. Colour/intensity distribution of one of the different erom-

But they are constrained to specific environment due to relyig ¢ t - biects. shad illuminati
on environment specific parameters, and their performanceslso ment components €.g., moving objects, shadow, Ifluminatio

fluctuate across different operating speeds. On the other gé, Changes, sky, tree leaves, and static background, obsbyved
basic background subtraction (BBS) is not suitable for real the pixel over time. These techniques are appropriate fir re
applications due to manual background initialization requirement  \orld applications, as the background model maintained by
and its inability to handle repetitive multimodal background. them can automatically evolve over time with the change of
However, it shows better stability across different operaing . . .

speeds and can better eliminate noise, shadow, and trailing operating environment and handle mlullt|m0d.al background.
effect than adaptive techniques as no model adaptability or However they are constrained to specific environment due to
environment related parameters are involved. In this paperwe inherent dependency on environment related parameteds, an
propose a hybrid object detection technique for incorporaing the  their performances widely fluctuate across different ofirega
strengths of both approaches. In our technique, Gaussian miure — ghaaqs. On the other hand, basic subtraction can better elim

models (GMM) is used for maintaining an adaptive background . i .
model and both probabilistic and basic subtraction decisias are nate noise, shadow, and trailing effect than adaptive igcles

utilized for calculating inexpensive neighbourhood stasitics for ~ for using intensity thresholding, and also shows bettebikity
guiding the final object detection decision. Experimental esults across different operating speeds since no model adaptabil
with two benchmark datasets and comparative analysis with or environment related parameter is involved.

recent adaptive object detection technique show the stretig of

the proposed technique in eliminating noise, shadow, and &iling In this paper, we propose a hybrid object detection tecliqu

effect while maintaining better stability across variableoperating  for incorporating the strengths of both techniques. Ouh+tec
speeds. nigue maintains a GMM-based adaptive background model for
|. INTRODUCTION each pixel and determines two pixel level detection deoisio

Object detection is the first task in any machine visiogne decision is taken using a probabilistic formulationdols

anplication for extracting movina obiects. making it the sho on the learned mixture while the other is based on basic
pp 9 g 0bl ' 9 background subtraction considering multimodal backgdoun

critical part of the system. Two types of object detectiog. . . ; o L .
. ) ince, computation time is critical for real-time applioas,
techniques are commonly used, one using a stored backgrounqiiple believed-to-be backgrounds for the basic suliac

. ; o : . u
'mage C.’f th? scene and then |den.t|fy|ng th_e moving regions ay, generated from the Gaussian mixture model without main-
finding its difference from current image with a thresholdist

; . . . ining a separate model. Then, the final detection decision
technique is known as basic background subtraction (BBS). : . . -
. . . . . ided by two inexpensive neighbourhood statistics coegbut
[1] and the simplest technique of detecting moving objec .
L I I ased on those decisions.
however it is unrealistic for real-world applications a% th
background may change over time, and the system needs to b&he proposed technique is evaluated by extensive exper-
initialized with clear background which is impossible in sho iments with two benchmark datasets. Both qualitative and
cases. The second type of detection techniques use adapjivantitative comparisons with recent GMM-based object de-
background modelling to cope with the challenges assatiatection technique clearly show its better stability acrdifier-
with the dynamics of real-world background with sudden areht operating speeds and the strengths in eliminating shado
gradual illumination variations, intrinsic repetitivedi@round noise, and trailing effect. The results also validates the i
motions, and global motions due to camera displacementsprovement in computational complexity in maintaining the
Gaussian mixture models (GMM) is commonly used bynderlying background model by prohibiting redundant niode
adaptive techniques for background modelling, where eattduction in the mixture.



II. RELATED WORK I1l. THE PROPOSED TECHNIQUE

A classical and the most widely cited object detection tech- I the proposed technique, each pixel of a scene is modelled
nique was introduced by Stauffer and Grimson (S&G)[2] usinfgdependently by a mixture of at moaf Gaussian distribu-
adaptive Gaussian mixture models [3]. In this techniquehealons. Let thekth Gaussian in the mixture be denoted/as
pixel is modelled using a separate Gaussian mixture, whitth meanyu, variancesy, the most recently observed pixel
is continuously learnt by an online approximation. Objeiflu€m, the number of observed pixel valugs and weight
detection at the current scene is then performed at pixel-lewr Such thaty ., wi = 1. Letn(x) denotes the probability
by comparing its value against the most likely backgrourRixel intensityz in Gaussianyy..

Gaussigns, determined b_y a.thre§hdrd representing the A. Model learning

proportion by which the pixel is going to observe the back-
ground. However, simplicity of this technique in separgtin The system starts with no model in the mixture of a pixel
moving objects from multimodal background has attracted then for every new observatiop of the pixel at timet, it

many researchers to enhance this technique further, plymaiS first matched against each of the existing models where

detection quality. S is a constant, typically used in basic background subtracti

Lee [4] proposed an adaptive learning rate for each Gaussfsh @ Packground-foreground separating threshold. Asgetti
model to improve the convergence rate without affecting '0W has shown guaranteed high quality object detection for
the stability. He also incorporated a Bayesian framework fbWide range of surveillance test sequences in [11], we set a

isolate the most likely background Gaussians and generiigd value 6 = 20) for all operating environments determined
an intuitive representation of the believed-to-be backgtb from a sensitivity analysis. Of all the matched models, the o

The user-defined thresholid in the original work is replaced (S&Y7:) with the maximum weight times the probability of
with two parameters of the sigmoid function modelling th the model is selected as follows:

posterior probability of a Gaussian to be background. Altfto
these parameters are trained from some commonly observed
surveillance videos, both are inherently relying on the-prand its associated parameters are updated as follows:
portion by which a pixel is going to observe the background.

i = arg MAXYE: |2y — py | <max(304,S) {Wkﬁk (xt)}; (1)

KaewTraKulPong and Bowden [5] also addressed the slow My = T3 @
learning rate with a shadow detection algorithm. ¢+ 1; 3)
Shimadaet al[6] proposed an approach for improving the
computational time of the (S&G) technique by reducing the Gi — (1—a)/c + a; 4)
number of concurrent models for a pixel through merging. ) ) )
Several multi-stage techniques are proposed to improve o; — (L= Bi)oi + Bi(ze — pa); (®)
the detection quality. Zeng and Lai [7] developed a two pi — (1= B + Buae; 6)

stage background/foreground classification procedureravhe

the pixel-based GMM classifier is augmented with a region- wi — (1 - a)w; + . (7)

based classifier to remove undesirable subtraction due to

shadow, automatic white balance, and sudden illuminatinno match is found, a new Gaussian (s@y is introduced

changes. Huangt al[8] addressed the same issue inverselWith m; = yi; = x4, 0y = 30, ¢; = 1, andw; = . The weights

by first dividing each scene into a set of motion cohereff the remaining Gaussians are updated as

regions, then constructing pixel-based background models .

and finally using these models to classify each region into Yk i wp = (1= o) ®)

background/foreground. Zhang and Chen [9] introduced sup-both the cases. Finally weights of all the models are nbrma

port vector machine to further classify foreground pixei®i ized such thad",, wi = 1. In the proposed technique, high

motion/non-motion classes to reduce false motion detedtio quality mixtures are maintained than existing GMM-based

complex background. techniques by not allowing redundant models in the mixtures
Allili et al[10] improved the detection quality in thewith a relaxed model matching threshold. We propose to use

presence of sudden illumination changes and shadows ihyx(30y,S) instead of30, as model matching threshold

generalising the Gaussian pdf to accommodate better fittifay preventing near-duplication model induction when mode

of the background model. variance becomes very small due to stable observations over
In general, GMM-based adaptive object detection tectime.

nigues can be broadly categorized into single stage and-mult ) )

stage techniques. Single stage techniques use only pigl 18- Object detection

information while multi-stage techniques utilize the pilevel Two independent detection decisiofs(x,y) (1 <i < 2)

decisions for further improvement at higher level for regioare made for each pixélk, y), whereD,(x,y) can bel and

level classification. 0 for foreground and background, respectively.



ZVk (1) Wi
whereB represents the background class apd classified as
foreground if P(B|x:) < 0.5. Here P(ny,) is the background Fig. 1. Object detection oRETS2006-Bkequence; (a) test frame; (b) ideal

1) Probabilistic background subtraction); (z,y): First, ot A
we use a probabilistic formulation [4] to classify the cuntre _
observationz;: :’E | g
P ._: ‘I,_
P(Bl|z;) = i M (24) 0k (nk); ©)
(b)

©

probability estimated using following sigmoid function: result; and (c) detection result. Red and green pixels septedetections
by probabilistic subtraction and basic subtraction, regpay, while yellow
P(nk) = 1/(1 + e—“wk/0k+b); (10) pixels represent detections by both approaches.

where the constants = 96 andb = 3 are suggested in [4]

after sensitivity analysis on commonly observed survedéa representing the proportion of foreground pixels withire th
sequences. The background probabilt; ) increases either neighbourhood including that pixel:

with the increase of weight or decrease of variance. : . _ .

2) Basic background subtraction with multi-background, Wil@, y) = Vimmen Di(m, n)/Ne; (13)
Ds(x,y): Multiple dominating backgrounds are automaticalljpere IV is the neighbourhood of the pixel (x,y) amdl. is
identified from the mixture for intrinsic repetitive backgmnd total number of pixels inN. Only a spatial 8-connected
motion in the environment. neighbourhood is considered without any temporal pixets fo

First, all existing models in the mixture are sorted i@voiding increased space and computational complexity.
descending order of their background probabilit&;)'s  Algorithm 1: Hybrid Detection
such that after sortind®(n:) > P(n2) 22 P(nx). Now, Input: D;(z,y) andWi(z,y) for all (z,y) (1 <i<2)

m always re_pr_esents thg most _doml_na_tmg ba_ckgrou_nd. TWOOutput: D(z,y) for all (z,y)
different statistics are utilized for identifying multgptiominat-  f5reach (z,y) do

ing backgrounds. One is obviously the weight of the Gaussian | i yy, (z,y) > 0.5 And Wa(z,y) > 0.5 then
as the existence of similarly weighted models correspoads t | D(z,y) = Foreground
the existence of a repetitive multimodal background. Tlmeot else if Wy (z,y) > 0.5 And Wa(z, ) < 0.5 then
is the observation stability. Standard deviatignof modelry, if Di(x,y) A Da(z,y) then
is a good measure of its stability as lowy, corresponds to | D(x,y) = Foreground
stable observation and high, indicates varying intensities. else
However, this is not true when the static background is | D(z,y) = Background
revealed after a long observation of varying intensities th end
moving foregrounds as it may introduce a new magelith else
very high ;. To avoid this situation, we use an alternative if Wa(z,y) > 0.5 then
measurel, = |my — ui| for each Gaussian,. This measure | D(z,y) = Foreground
is always closer to zero and shorter in Gaussians with stable else
observations than those representing fluctuating obsengat | D(z,y) = Background
The test for Gaussian, k£ = 2, 3, .. . is carried out as follows: end
end
lwi/dy — wi/di|dy /w1 < f; (11) end

where the constant = 0.05 is determined from a sensitivity 5 pixel within a dense foreground region is identified by

analysis. L _ . majority voting when the corresponding neighbourhood Weig
If B models are identified in the set of most dommatmgv,(

; ' i . ) i(z,y) is greater thar0.5. When both probabilistic and
background models, a pixel with valug at timet is consid- pagic subtraction decisions identify a pixel within a dense
ered background if

foreground region 11 (x,y) > 0.5 And Wa(x,y) > 0.5),
Yiier.. B |mi — x| < S (12) the. correspondin_g pix_eI is class.ified.as_ foreground irreﬁ;mg
Y of it's own classification, as this will improve the detectio
Note that the test thresholfl/i decreases linearly with to quality inside object regions. The scenarios of moving skexd
make sure that enough intensity band is left to represent ted trailing effect are identified wheW,(z,y) > 0.5 and
foreground even for larg®. This measure is found to reducelV;(z,y) < 0.5. These are also shown visually in Figure 1(c)
false negative error where a foreground pixel is undetectedby the red pixels, which are eliminated by ANDing of pixel
3) Hybrid detection decisionD(z,y): Final detection level decisionsD;(x,y)AD2(x,y)). For default case, priority
D(xz,y) for a pixel (z,y) is determined using the hybrid de-is given to basic subtraction decisid#i;(z,y) for ensuring
tection algorithm (Algorithm 1). For each pixel-level deien detection in dense foreground region and eliminating pars
decision D;(x,y), a neighbourhood weighi#; is computed noises in the scene.



07 TABLE |
ERROR RATES AT MEDIUM LEARNING RATE(a = 0.01) AND THE
STANDARD DEVIATION OF THE ERROR RATES OVER THREE LEARNING
RATES (o = 0.1, a = 0.01, AND o = 0.001).

0.6

o
3

g %Error Rate (FP + FN)
8 Test Sequence o= 0.01 Stdev
504 Lee | Proposed| Lee | Proposed
-ﬁ 1. PETS2000 41 1.6 1.3 0.0
%03 2. PETS2006-B1 | 10.3 3.9 1.2 0.5
?g‘ 3. PETS2006-B2 | 3.8 2.7 0.3 0.3
02 4. PETS2006-B3 | 5.6 24 11 0.3
5. PETS2006-B4 | 11.3 5.6 11 0.9
6. Bootstrap 13.3 11.8 2.1 1.3
01 7. Camouflage 29.8 12.1 9.6 2.3
8. Fground Aper. | 67.2 15.8 7.4 0.0
0.0 : 9. Light Switch 86.1 85.0 32.9 14.8
0.0 0.1 0.2 0.3 . 04 0.5 0.6 0.7 0.8 0.9 1.0 10. MOVed Object 0.5 0.1 3.3 3.8
% Foreground (x) 11. Time Of Day | 4.1 5.7 7.0 0.6
i . . . . 12. Waving Trees| 19.2 13.0 0.5 0.1
Fig. 2. Computational complexity reduction in the proposeadel learning 13. Football 33.4 21.2 10.8 24
stage forK' = 3. = and y represent the average proportions of foreground 14. Walk 05 0.2 0.6 0.1

and multimodal pixels, respectively.

and average mearu) distance among the models, where

a unique colour is assigned to a mixture. Figure 3 shows

As mentioned before, the mixture quality of the proposefle distance colour mapping for different number of models.

technique is improved by the modified model maf[ching_ thresBased on this mapping, a single RGB image can visualise the

pend on the exposure of foreground and degree of multimodal-

ity in a particular operating environment. Only two modeis a 0 127 255
sufficient for unimodal pixels with foreground, and a single Distance scale | | |

model is enough for unimodal background pixels. In case of  Single model |
multimodal foreground pixels, no complexity gain is possib Double model N

as all of the K models will be utilized. Ifz andy be the Multiple models
average proportions of foreground and multimodal pixels ilﬂg. 3. Visualisation of model quality and number: distacoéour mapping
a scene, then the total complexity reductiafiz] can be for single (gray), double (green-orange), and multipleiggpink) models.
expressed using the following equation:

C. Computational complexity reduction in model learniag,

Qualitative comparison results of both object detectiod an
2(1— y)(K —2) r_nodel quality are pres_ented in Figure 4. For each sequence,
Cr = —r first frame, test frame, ideal detection result, and actetdd
11—z tion result along with model quality visualisation are pneted
+ (T) [y+(1—-y)(K—-1)  (14) at medium learning ratey = 0.01 for both techniques. Due to
space limitation, only a small subset of the qualitativaultss
Figure 2 plots the percentage of complexity reduction withre presented here.
different proportions of andy for K’ = 3. The gain decreases In general, we observed significant improvement in the
with the increase of multimodality for a fixed foregroundjetection result of the proposed technique in noise elitiina
proportion. It also decreases for a constant multimodaliiyhich is more prominent ilPETS2000(Figure 4(a)) and
with increased foreground proportion. At fast learningeratwaving TreeqFigure 4(g)).PETS2006-BXFigure 4(b)) and
on average 33% gain will be possible with different ope@tirPETS2006-B2(Figure 4(c)) clearly show the strengths of
environments fork' = 3. the proposed technique in eliminating moving shadows and
trailing effects, and getting the detection results almasse
to ground truths. The mixture quality visualisations alsfect
The proposed detection technique is evaluated by extensie high quality of the mixtures maintained by the proposed
experiments with 14 test sequences fra?&ETS [12] and technique with less number of redundant modelsPETS
Wallflower [13] datasets. The results are compared qualitsequences (Figure 4 (a)-(c)), these improvements arelyclear
tively and quantitatively with the recent GMM-based objecipparent with higher proportion of gray regions.
detection technique proposed by Lee [4].

IV. EXPERIMENTS

B. Quantitative evaluation

A. Qualitative evaluation Table | presents the error rates of test sequences at medium

We used a novel visualisation method for qualitative evallearning rate ¢ = 0.01) and the standard deviation of error
ation of mixtures by representing both the number of modeaiates at three different learning rates=€ 0.1, « = 0.01, and
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Fig. 4. Qualitative comparison results of object detectiol model quality at learning rate, = 0.01 for test sequence (&)ETS2000(b) PETS2006-B;1
(c) PETS2006-B2(d) Bootstrap (e) Moved Object (f) Time Of Day and (e)Waving Trees
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Fig. 5. Plots of four model quality measures: (a) averagebmrmof models per pixel; (b) proportion of single model pemie; (c) average mean distance
for double model mixtures; and (d) average mean distancentdtiple model mixtures.

a = 0.001) for both the techniques (pairwise best shown ipresented in Section IlI-C. The average meah distance
bold). The proposed technique was more robust and stableaasong the models also increased, indicating the high gualit
its error rates were far less sensitive to learning rates. of mixtures with distinct models.
The comparative quantitative results of detection erroes a
In Figure 5, four different measures for mixture qualityresented in Figure 6. The proposed technique outperformed
evaluation are pIOtted at three different Iearning ratdsesg the Lee’s technique in 13 test sequences out of 14 as shown

measures are computed at the test frame of each sequenceiige combined error (FN+FP) plot (Figure 6(c)).
the average on sequences are plotted for comparison. Both

average number of models per pixel and proportion of single V. CONCLUSION
model per frame improved significantly at all learning rates The proposed object detection technique not only outper-
which are consistent with the analytical complexity rethuct formed the recent GMM-based technique in more than 90%
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Fig. 6. Quantitative comparison results of the proposetiegie presented in this paper and the technique of Lee [@pating rateq = 0.01 for 14 test
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