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Abstract—Adaptive background modelling based object detec-
tion techniques are widely used in machine vision applications for
handling the challenges of real-world multimodal background.
But they are constrained to specific environment due to relying
on environment specific parameters, and their performancesalso
fluctuate across different operating speeds. On the other side,
basic background subtraction (BBS) is not suitable for real
applications due to manual background initialization requirement
and its inability to handle repetitive multimodal background.
However, it shows better stability across different operating
speeds and can better eliminate noise, shadow, and trailing
effect than adaptive techniques as no model adaptability or
environment related parameters are involved. In this paper, we
propose a hybrid object detection technique for incorporating the
strengths of both approaches. In our technique, Gaussian mixture
models (GMM) is used for maintaining an adaptive background
model and both probabilistic and basic subtraction decisions are
utilized for calculating inexpensive neighbourhood statistics for
guiding the final object detection decision. Experimental results
with two benchmark datasets and comparative analysis with
recent adaptive object detection technique show the strength of
the proposed technique in eliminating noise, shadow, and trailing
effect while maintaining better stability across variableoperating
speeds.

I. I NTRODUCTION

Object detection is the first task in any machine vision
application for extracting moving objects, making it the most
critical part of the system. Two types of object detection
techniques are commonly used, one using a stored background
image of the scene and then identifying the moving regions by
finding its difference from current image with a threshold. This
technique is known as basic background subtraction (BBS)
[1] and the simplest technique of detecting moving objects,
however it is unrealistic for real-world applications as the
background may change over time, and the system needs to be
initialized with clear background which is impossible in most
cases. The second type of detection techniques use adaptive
background modelling to cope with the challenges associated
with the dynamics of real-world background with sudden and
gradual illumination variations, intrinsic repetitive background
motions, and global motions due to camera displacements.

Gaussian mixture models (GMM) is commonly used by
adaptive techniques for background modelling, where each

pixel is modelled independently by a mixture of at most
K Gaussian distributions, and each Gaussian represents the
colour/intensity distribution of one of the different environ-
ment components e.g., moving objects, shadow, illumination
changes, sky, tree leaves, and static background, observedby
the pixel over time. These techniques are appropriate for real-
world applications, as the background model maintained by
them can automatically evolve over time with the change of
operating environment and handle multimodal background.
However they are constrained to specific environment due to
inherent dependency on environment related parameters, and
their performances widely fluctuate across different operating
speeds. On the other hand, basic subtraction can better elimi-
nate noise, shadow, and trailing effect than adaptive techniques
for using intensity thresholding, and also shows better stability
across different operating speeds since no model adaptability
or environment related parameter is involved.

In this paper, we propose a hybrid object detection technique
for incorporating the strengths of both techniques. Our tech-
nique maintains a GMM-based adaptive background model for
each pixel and determines two pixel level detection decisions.
One decision is taken using a probabilistic formulation based
on the learned mixture while the other is based on basic
background subtraction considering multimodal background.
Since, computation time is critical for real-time applications,
multiple believed-to-be backgrounds for the basic subtraction
are generated from the Gaussian mixture model without main-
taining a separate model. Then, the final detection decisionis
guided by two inexpensive neighbourhood statistics computed
based on those decisions.

The proposed technique is evaluated by extensive exper-
iments with two benchmark datasets. Both qualitative and
quantitative comparisons with recent GMM-based object de-
tection technique clearly show its better stability acrossdiffer-
ent operating speeds and the strengths in eliminating shadow,
noise, and trailing effect. The results also validates the im-
provement in computational complexity in maintaining the
underlying background model by prohibiting redundant model
induction in the mixture.



II. RELATED WORK

A classical and the most widely cited object detection tech-
nique was introduced by Stauffer and Grimson (S&G)[2] using
adaptive Gaussian mixture models [3]. In this technique, each
pixel is modelled using a separate Gaussian mixture, which
is continuously learnt by an online approximation. Object
detection at the current scene is then performed at pixel-level
by comparing its value against the most likely background
Gaussians, determined by a thresholdT , representing the
proportion by which the pixel is going to observe the back-
ground. However, simplicity of this technique in separating
moving objects from multimodal background has attracted
many researchers to enhance this technique further, primarily
to improve its adaptability, computational complexity, and
detection quality.

Lee [4] proposed an adaptive learning rate for each Gaussian
model to improve the convergence rate without affecting
the stability. He also incorporated a Bayesian framework to
isolate the most likely background Gaussians and generate
an intuitive representation of the believed-to-be background.
The user-defined thresholdT in the original work is replaced
with two parameters of the sigmoid function modelling the
posterior probability of a Gaussian to be background. Although
these parameters are trained from some commonly observed
surveillance videos, both are inherently relying on the pro-
portion by which a pixel is going to observe the background.
KaewTraKulPong and Bowden [5] also addressed the slow
learning rate with a shadow detection algorithm.

Shimadaet al.[6] proposed an approach for improving the
computational time of the (S&G) technique by reducing the
number of concurrent models for a pixel through merging.

Several multi-stage techniques are proposed to improve
the detection quality. Zeng and Lai [7] developed a two
stage background/foreground classification procedure where
the pixel-based GMM classifier is augmented with a region-
based classifier to remove undesirable subtraction due to
shadow, automatic white balance, and sudden illumination
changes. Huanget al.[8] addressed the same issue inversely,
by first dividing each scene into a set of motion coherent
regions, then constructing pixel-based background models,
and finally using these models to classify each region into
background/foreground. Zhang and Chen [9] introduced sup-
port vector machine to further classify foreground pixels into
motion/non-motion classes to reduce false motion detection in
complex background.

Allili et al.[10] improved the detection quality in the
presence of sudden illumination changes and shadows by
generalising the Gaussian pdf to accommodate better fitting
of the background model.

In general, GMM-based adaptive object detection tech-
niques can be broadly categorized into single stage and multi-
stage techniques. Single stage techniques use only pixel level
information while multi-stage techniques utilize the pixel level
decisions for further improvement at higher level for region
level classification.

III. T HE PROPOSED TECHNIQUE

In the proposed technique, each pixel of a scene is modelled
independently by a mixture of at mostK Gaussian distribu-
tions. Let thekth Gaussian in the mixture be denoted asηk

with meanµk, varianceσ2
k, the most recently observed pixel

valuemk, the number of observed pixel valuesck, and weight
ωk such that

∑

∀k ωk = 1. Let ηk(x) denotes the probability
pixel intensityx in Gaussianηk.

A. Model learning

The system starts with no model in the mixture of a pixel
and then for every new observationxt of the pixel at timet, it
is first matched against each of the existing models wherext is
no further than 3 standard deviations orS from the mean. Here
S is a constant, typically used in basic background subtraction
as a background-foreground separating threshold. As setting
S low has shown guaranteed high quality object detection for
a wide range of surveillance test sequences in [11], we set a
fixed value (S = 20) for all operating environments determined
from a sensitivity analysis. Of all the matched models, the one
(sayηi) with the maximum weight times the probability ofxt

in the model is selected as follows:

i = arg max∀k:|xt−µk|≤max(3σk,S){ωkηk(xt)}; (1)

and its associated parameters are updated as follows:

mi ← xt; (2)

ci ← ci + 1; (3)

βi ← (1− α)/ci + α; (4)

σ2
i ← (1− βi)σ

2
i + βi(xt − µi)

2; (5)

µi ← (1− βi)µi + βixt; (6)

ωi ← (1− α)ωi + α. (7)

If no match is found, a new Gaussian (sayηi) is introduced
with mi = µi = xt, σi = 30, ci = 1, andωi = α. The weights
of the remaining Gaussians are updated as

∀k 6= i : ωk ← (1 − α)ωk (8)

in both the cases. Finally weights of all the models are normal-
ized such that

∑

∀k ωk = 1. In the proposed technique, high
quality mixtures are maintained than existing GMM-based
techniques by not allowing redundant models in the mixtures
with a relaxed model matching threshold. We propose to use
max(3σk, S) instead of 3σk as model matching threshold
for preventing near-duplication model induction when model
variance becomes very small due to stable observations over
time.

B. Object detection

Two independent detection decisionsDi(x, y) (1 ≤ i ≤ 2)
are made for each pixel(x, y), whereDi(x, y) can be1 and
0 for foreground and background, respectively.



1) Probabilistic background subtraction,D1(x, y): First,
we use a probabilistic formulation [4] to classify the current
observationxt:

P (B|xt) =

∑

∀k ηk(xt)ωkP (ηk)
∑

∀k ηk(xt)ωk
; (9)

whereB represents the background class andxt is classified as
foreground ifP (B|xt) < 0.5. HereP (ηk) is the background
probability estimated using following sigmoid function:

P (ηk) = 1/(1 + e−aωk/σk+b); (10)

where the constantsa = 96 and b = 3 are suggested in [4]
after sensitivity analysis on commonly observed surveillance
sequences. The background probabilityP (ηk) increases either
with the increase of weight or decrease of variance.

2) Basic background subtraction with multi-background,
D2(x, y): Multiple dominating backgrounds are automatically
identified from the mixture for intrinsic repetitive background
motion in the environment.

First, all existing models in the mixture are sorted in
descending order of their background probabilitiesP (ηk)’s
such that after sortingP (η1) ≥ P (η2) ≥ · · · ≥ P (ηK). Now,
η1 always represents the most dominating background. Two
different statistics are utilized for identifying multiple dominat-
ing backgrounds. One is obviously the weight of the Gaussian,
as the existence of similarly weighted models corresponds to
the existence of a repetitive multimodal background. The other
is the observation stability. Standard deviationσk of modelηk

is a good measure of its stability as lowσk corresponds to
stable observation and highσk indicates varying intensities.
However, this is not true when the static background is
revealed after a long observation of varying intensities due to
moving foregrounds as it may introduce a new modelηi with
very high σi. To avoid this situation, we use an alternative
measuredk = |mk − µk| for each Gaussianηk. This measure
is always closer to zero and shorter in Gaussians with stable
observations than those representing fluctuating observations.
The test for Gaussianηk, k = 2, 3, . . . is carried out as follows:

|ω1/d1 − ωk/dk|d1/ω1 < f ; (11)

where the constantf = 0.05 is determined from a sensitivity
analysis.

If B models are identified in the set of most dominating
background models, a pixel with valuext at timet is consid-
ered background if

∃ii=1,...,B : |mi − xt| ≤ S/i. (12)

Note that the test thresholdS/i decreases linearly withi to
make sure that enough intensity band is left to represent the
foreground even for largeB. This measure is found to reduce
false negative error where a foreground pixel is undetected.

3) Hybrid detection decision,D(x, y): Final detection
D(x, y) for a pixel (x, y) is determined using the hybrid de-
tection algorithm (Algorithm 1). For each pixel-level detection
decisionDi(x, y), a neighbourhood weightWi is computed

(a) (b) (c)

Fig. 1. Object detection onPETS2006-B1sequence; (a) test frame; (b) ideal
result; and (c) detection result. Red and green pixels represent detections
by probabilistic subtraction and basic subtraction, respectively, while yellow
pixels represent detections by both approaches.

representing the proportion of foreground pixels within the
neighbourhood including that pixel:

Wi(x, y) = ∀(m,n)ǫNDi(m, n)/Nc; (13)

here N is the neighbourhood of the pixel (x,y) andNc is
total number of pixels inN . Only a spatial 8-connected
neighbourhood is considered without any temporal pixels for
avoiding increased space and computational complexity.

Algorithm 1 : Hybrid Detection

Input : Di(x, y) andWi(x, y) for all (x, y) (1 ≤ i ≤ 2)
Output : D(x, y) for all (x, y)
foreach (x, y) do

if W1(x, y) > 0.5 And W2(x, y) > 0.5 then
D(x, y) = Foreground

else if W1(x, y) > 0.5 And W2(x, y) < 0.5 then
if D1(x, y) ∧D2(x, y) then

D(x, y) = Foreground
else

D(x, y) = Background
end

else
if W2(x, y) > 0.5 then

D(x, y) = Foreground
else

D(x, y) = Background
end

end
end

A pixel within a dense foreground region is identified by
majority voting when the corresponding neighbourhood weight
Wi(x, y) is greater than0.5. When both probabilistic and
basic subtraction decisions identify a pixel within a dense
foreground region (W1(x, y) > 0.5 And W2(x, y) > 0.5),
the corresponding pixel is classified as foreground irrespective
of it’s own classification, as this will improve the detection
quality inside object regions. The scenarios of moving shadows
and trailing effect are identified whenW1(x, y) > 0.5 and
W2(x, y) < 0.5. These are also shown visually in Figure 1(c)
by the red pixels, which are eliminated by ANDing of pixel
level decisions (D1(x, y)∧D2(x, y)). For default case, priority
is given to basic subtraction decisionW2(x, y) for ensuring
detection in dense foreground region and eliminating sparse
noises in the scene.



Fig. 2. Computational complexity reduction in the proposedmodel learning
stage forK = 3. x and y represent the average proportions of foreground
and multimodal pixels, respectively.

C. Computational complexity reduction in model learning,CR

As mentioned before, the mixture quality of the proposed
technique is improved by the modified model matching thresh-
old max(3σ, S). However the complexity reduction will de-
pend on the exposure of foreground and degree of multimodal-
ity in a particular operating environment. Only two models are
sufficient for unimodal pixels with foreground, and a single
model is enough for unimodal background pixels. In case of
multimodal foreground pixels, no complexity gain is possible
as all of theK models will be utilized. Ifx and y be the
average proportions of foreground and multimodal pixels in
a scene, then the total complexity reduction (CR) can be
expressed using the following equation:

CR =
x(1 − y)(K − 2)

K

+

(

1− x

K

)

[y + (1− y)(K − 1)] (14)

Figure 2 plots the percentage of complexity reduction with
different proportions ofx andy for K = 3. The gain decreases
with the increase of multimodality for a fixed foreground
proportion. It also decreases for a constant multimodality
with increased foreground proportion. At fast learning rate,
on average 33% gain will be possible with different operating
environments forK = 3.

IV. EXPERIMENTS

The proposed detection technique is evaluated by extensive
experiments with 14 test sequences fromPETS [12] and
Wallflower [13] datasets. The results are compared qualita-
tively and quantitatively with the recent GMM-based object
detection technique proposed by Lee [4].

A. Qualitative evaluation

We used a novel visualisation method for qualitative evalu-
ation of mixtures by representing both the number of models

TABLE I
ERROR RATES AT MEDIUM LEARNING RATE(α = 0.01) AND THE

STANDARD DEVIATION OF THE ERROR RATES OVER THREE LEARNING

RATES (α = 0.1, α = 0.01, AND α = 0.001).

Test Sequence
%Error Rate (FP + FN)

α = 0.01 Stdev
Lee Proposed Lee Proposed

1. PETS2000 4.1 1.6 1.3 0.0
2. PETS2006-B1 10.3 3.9 1.2 0.5
3. PETS2006-B2 3.8 2.7 0.3 0.3
4. PETS2006-B3 5.6 2.4 1.1 0.3
5. PETS2006-B4 11.3 5.6 1.1 0.9
6. Bootstrap 13.3 11.8 2.1 1.3
7. Camouflage 29.8 12.1 9.6 2.3
8. Fground Aper. 67.2 15.8 7.4 0.0
9. Light Switch 86.1 85.0 32.9 14.8
10. Moved Object 0.5 0.1 3.3 3.8
11. Time Of Day 4.1 5.7 7.0 0.6
12. Waving Trees 19.2 13.0 0.5 0.1
13. Football 33.4 21.2 10.8 2.4
14. Walk 0.5 0.2 0.6 0.1

and average mean (µ) distance among the models, where
a unique colour is assigned to a mixture. Figure 3 shows
the distance colour mapping for different number of models.
Based on this mapping, a single RGB image can visualise the
overall mixture quality of all pixels of a frame.

Distance scale
Single model
Double model
Multiple models

Fig. 3. Visualisation of model quality and number: distancecolour mapping
for single (gray), double (green-orange), and multiple (blue-pink) models.

Qualitative comparison results of both object detection and
model quality are presented in Figure 4. For each sequence,
first frame, test frame, ideal detection result, and actual detec-
tion result along with model quality visualisation are presented
at medium learning rate,α = 0.01 for both techniques. Due to
space limitation, only a small subset of the qualitative results
are presented here.

In general, we observed significant improvement in the
detection result of the proposed technique in noise elimination,
which is more prominent inPETS2000(Figure 4(a)) and
Waving Trees(Figure 4(g)).PETS2006-B1(Figure 4(b)) and
PETS2006-B2(Figure 4(c)) clearly show the strengths of
the proposed technique in eliminating moving shadows and
trailing effects, and getting the detection results almostclose
to ground truths. The mixture quality visualisations also reflect
the high quality of the mixtures maintained by the proposed
technique with less number of redundant models. InPETS
sequences (Figure 4 (a)-(c)), these improvements are clearly
apparent with higher proportion of gray regions.

B. Quantitative evaluation

Table I presents the error rates of test sequences at medium
learning rate (α = 0.01) and the standard deviation of error
rates at three different learning rates (α = 0.1, α = 0.01, and



First frame Test frame Ideal result Lee [4] Proposed

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 4. Qualitative comparison results of object detectionand model quality at learning rate,α = 0.01 for test sequence (a)PETS2000; (b) PETS2006-B1;
(c) PETS2006-B2; (d) Bootstrap; (e) Moved Object; (f) Time Of Day; and (e)Waving Trees.

(a) (b) (c) (d)

Fig. 5. Plots of four model quality measures: (a) average number of models per pixel; (b) proportion of single model per frame; (c) average mean distance
for double model mixtures; and (d) average mean distance formultiple model mixtures.

α = 0.001) for both the techniques (pairwise best shown in
bold). The proposed technique was more robust and stable as
its error rates were far less sensitive to learning rates.

In Figure 5, four different measures for mixture quality
evaluation are plotted at three different learning rates. These
measures are computed at the test frame of each sequence and
the average on sequences are plotted for comparison. Both
average number of models per pixel and proportion of single
model per frame improved significantly at all learning rates,
which are consistent with the analytical complexity reduction

presented in Section III-C. The average mean (µ) distance
among the models also increased, indicating the high quality
of mixtures with distinct models.

The comparative quantitative results of detection errors are
presented in Figure 6. The proposed technique outperformed
the Lee’s technique in 13 test sequences out of 14 as shown
in the combined error (FN+FP) plot (Figure 6(c)).

V. CONCLUSION

The proposed object detection technique not only outper-
formed the recent GMM-based technique in more than 90%



(a) (b)

(c) (d)

Fig. 6. Quantitative comparison results of the proposed technique presented in this paper and the technique of Lee [4] atlearning rate,α = 0.01 for 14 test
sequences: (a) FN; (b) FP; (c) FN + FP; and (d) FP/FN plot. FN and FP stand for false negatives and false positives, respectively.

of the test sequences, but also showed better stability across
different operating speeds with almost no shadow, noise,
and trailing effect. All these attributes make the proposed
technique an ideal choice for remote surveillance, where no
prior information about operating environment is available.
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