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Abstract— In this paper, two simple principal component
regression methods for estimating the optical flow between
frames of video sequences according to a pel-recursive manner
are introduced. These are easy alternatives to dealing with
mixtures of motion vectors in addition to the lack of prior
information on spatial-temporal statistics (although they are
supposed to be normal in a local sense). The 2D motion vector
estimation approaches take into consideration simple image
properties and are used to harmonize regularized least square
estimates. Their main advantage is that no knowledge of the
noise distribution is necessary, although there is a underlying
assumption of localized smoothness. Preliminary experiments
indicate that this approach provides robust estimates of the
optical flow.

I. INTRODUCTION

In video sequences, motion provides important information.
Significant events, such as collision paths, object docking,
sensor obstruction, object properties and occlusion can be
characterized and better understood with the help of optic
flow (OF). Segmenting an OF field (OFF) into coherent
motion groups and estimating each underlying motion are
very challenging tasks when a scene has several independently
moving objects. The problem is further complicated by data
that are noisy, and/or partially incorrect (incomplete).
Regression models can help suppressing some gross data
errors or outliers. However, segmenting an OFF consisting of
a large portion of incorrect data or multiple motion groups
requires high sturdiness that is unattainable by conventional
robust estimators.

The main problem of motion analysis is the difficulty of
getting accurate motion estimates without prior motion
segmentation and vice-versa. Some researchers tried to
address both problems resourcing to unified frameworks
which allow simultaneous motion estimation and
segmentation. One method uses a robust estimator which can

cope with errors due to noise and scene clutter (multiple
moving objects). It is based on the Hough transform
implemented in a search mode. This has the benefit of
identifying the most significant moving regions first and, thus,
providing an effective focus of attention mechanism. The
motion estimator and segmentor also provides information
about the confidence of motion estimates. This procedure is
very useful not only from the point of view of scene
interpretation, but also from the point of other applications
such as video compression and coding.

In coding applications, a block-based approach is often
used for interpolation of lost information between key frames
[14]. The fixed rectangular partitioning of the image used by
some block-based approaches often separates visually
meaningful image features. Pel-recursive (PR) schemes ([6, 7,
13, 14]) can theoretically overcome some of the limitations
associated with blocks by assigning a unique motion vector to
each pixel. Intermediate frames are then constructed by
resampling the image at locations determined by linear
interpolation of the motion vectors. The PR approach can also
manage motion with sub-pixel accuracy. The update of the
motion estimate was based on the minimization of the
displaced frame difference (DFD) at a pixel. In the absence of
additional assumptions about the pixel motion, this estimation
problem becomes “ill-posed” because of the following
problems: a) occlusion; b) the solution to the 2D motion
estimation problem is not unique (aperture problem); and c)
the solution does not continuously depend on the data due to
the fact that motion estimation is highly sensitive to the
presence of observation noise in video images.

Segmenting OF via expectation maximization (EM) for
mixtures of principal component analysis (PCA) because both
techniques share a close relationship can be done successfully
[4, 15]. An approach called generalized PCA (GPCA) models
the OF from scenes containing dynamic textures [18] and it
does not require any initialization. This approach first projects
the data points onto a low-dimensional subspace, then a
polynomial is fit to the projected data points and a basis for
each one of the projected subspaces is obtained from the
derivatives of this polynomials at the data points.

Most methods assume that there is little or no interference
between the individual sample constituents or that all the
constituents in the samples are known ahead of time. In real
world samples, it is very unusual, if not entirely impossible, to



know the entire composition of a mixture sample. Sometimes,
only the quantities of a few constituents in very complex
mixtures of multiple constituents are of interest ([2, 13, 15]).

This work intends to solve OF problems by means of two
different takes on PCA regression (PCR): 1) a combination of
regularized least squares (RLS) and PCA (PCR;); and 2) RLS
followed by regularized PCA regression (PCR;). Both involve
simpler computational procedures than previous attempts at
addressing mixtures [2, 12, 13, 15, 16].

Section II sets up a model for the OF estimation problem
and it states two forms of regression for the computation of
motion: the ordinary least squares (OLS); and, one of its
extensions - the regularized least squares - RLS, ([5, 8-12,
14]). Section III comments PCA in the context of OF, so that
the proposed techniques (PCR; and PCR;) can be formulated.
Section IV shows some experiments used to access their
performance. Finally, a discussion of the results and future
research plans are presented in Section V.

II. PROBLEM FORMULATION

The displacement of every pixel in each frame forms the
displacement vector field (DVF) and its estimation can be
done using at least two successive frames. A vector is
assigned to each point in the image when a pixel belongs to a
moving area, if its intensity has changed between consecutive
frames. Hence, our goal is to find the corresponding intensity
value I,(r) of the k-th frame at location r = [x, y]', and d(r) =
[d., d,,]T the corresponding displacement vector (DV) at the
working point r in the current frame through PR algorithms.
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Fig. 1. Backward motion estimation problem.

PR algorithms minimize the DFD function in a small area
containing the working point assuming constant image
intensity along the motion trajectory. The perfect registration

of frames will result in /;(r)=I;_;(r-d(r)). Figure 1 shows some
examples of pixel neighbourhoods. The DFD represents the
error due to the nonlinear temporal prediction of the intensity
field through the DV and is given by

A(r;d(0)=I(xr)-1 (r-d(r)) . (D

In this text, OF is the 2D field of instant velocities or,
equivalently, displacement vectors (DVs), of brightness
patterns in the image plane. PR algorithms are recursive
predictor-corrector-type of estimators [14]. They start from an
initial estimation made for a given point by prediction from a
previous pixel or set of pixels or from some other prediction
scheme. Later, this estimate is corrected according to some
metrics and/or other criteria.

The relationship between the DVF and the intensity field is
nonlinear. An estimate of d(r), is obtained by directly
minimizing A(r,d(r)) or by determining a linear relationship
between these two variables through some model. This is
accomplished by using a Taylor series expansion of I ,(r-
d(r)) about the location (r-d'(r)), where d'(r) represents a
prediction of d(r) in i-th step. This results in
A(r,r-d'(r))=-u" VI (r-d'(r))+e(r,d(r)) , where the
displacement update vector is u=[u,, uy]T =d(r) — d'(r), e(r,
d(r)) stands for the truncation error resulting from higher
order terms (linearization error) and V=[0/0;, 8/8y]T represents
the spatial gradient operator. Applying Eq.(1) to all points in
a neighbourhood of pixels R around r gives

z=Gu+n, 2

where the temporal gradients A(r, r-d'(r)) have been stacked
to form the Nx/ observation vector z containing DFD

information on all the pixels in R, the Nx2 matrix G is

obtained by stacking the spatial gradient operators at each
observation, and the error terms have formed the Nx/ noise
vector n. The PR estimator for each pixel located at position r
of a frame k can be written as

d"'(r) =d(r) + ui(r),

where u'(r) is the current motion update vector obtained
through a motion estimation procedure that attempts to solve
(2), d'(r) is the DV at iteration i and d""'(r) is the corrected
DV.

This work concentrates its attention on regression-like
methods to solve Eq. (2) for u. These algorithms use the
matrix pxp GG in one way or another.

The ordinary least squares (OLS) estimate of the update
vector is

u, =(G"G)'G"z,

which is given by the minimizer of the functional J(u)= || z-
Gu || 2 (for more details, see [4, 5, 7]). The assumptions made
about n for least squares estimation are E(n) = 0, and Var(n)



= E(nn") = oIy, where E(n) is the expected value (mean) of
n, and Iy, is the identity matrix of order N. From now on, G
will be analyzed as being an NXp matrix in order to make the
whole theoretical discussion easier. Since G may be very
often ill-conditioned, the solution given by the previous
expression will be usually unacceptable due to the noise
amplification resulting from the calculation of the inverse
matrix G'G. In other words, the data are erroneous or noisy.
Hence, one cannot expect an exact solution for z=Gu +
n, but rather an approximation according to some course of
action.

The regularized minimum norm solution to Eq. (2) - also
known as regularized least square (RLS) solution — is given by

uns(A)=(G'G+A)'G'z.

In order to improve the RLS estimate of the motion update
vector, we propose a strategy which takes into consideration
the local properties of the image. It is described in the next
section.
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Figure 2. Examples of causal masks.

Each row of G has entries [gy;, gyi]T, withi =1, ..., N. The
spatial gradients of I;; are calculated through a bilinear
interpolation scheme similar to what is done in [4, 5].

The entries f, ,(r) corresponding to a given pixel location

inside a causal mask are needed to compute the spatial
gradients by means of bilinear interpolation [4, 5] at

location r=[x,y]" as follows:

S

where [*] is the largest integer that is smaller than or equal to

x, the bilinear interpolated intensity Jia (1) g specified by
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with £, (r)= f,_,(x |+i,| ¥ |+ ) . The equation above can

be used for evaluating the second order spatial derivatives
of f,,(r) at rby means of backward differences:
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I1I. ON THE USE OF PRINCIPAL COMPONENT
ANALYSIS IN REGRESSION

The main idea behind the two proposed PCR procedures is
the PCA of the G matrix [10-12]. They yield the same result,
but differ in accuracy, and computing time.

PCA is a useful method to solve problems including
exploratory data analysis, classification, variable decorrelation
prior to the use of neural networks, pattern recognition, data
compression, and noise reduction, for example. The
formulation of PCA implies a Gaussian latent variable model
and can easily lead to Bayesian models.

This technique is used whenever uncorrelated linear
combinations of variables are wanted which reduces the
dimensions of a set of variables by reconstructing them into
uncorrelated combinations. It combines the variables that
account for the largest part of the variance to form the first
PC. The second PC accounts for the next largest amount of
variance, and so on, until the complete sample set variance is
combined into progressively smaller uncorrelated component
categories. Each successive component explains portions of
the variance in the total sample. PCA relates to the second
statistical moment of G, which is proportional to G'G and it
partitions G into matrices T and P (sometimes called scores
and loadings, respectively), such that:

G=TP".

Matrix T contains the eigenvectors of G'G ordered by their
eigenvalues with the largest first and in descending order. If P
has the same rank as G, i.e., P contains the eigenvectors to all
nonzero eigenvalues, then T = GP is a rotation of G. The first
column of P, p;, gives the direction that minimizes the
orthogonal distances from the samples to their projection onto
this vector. This means that the first column of T represents
the largest possible sum of squares as compared to any other

direction in RM. It is customary to center the variables in

matrix G prior to using PCA. This makes G”G proportional to
the variance-covariance matrix. The first principal axis is then
the direction in which the data have the largest spread. T and
P can be found by means of singular value decomposition.
When dimensionality reduction is needed, the number of
components can be chosen via examination of the eigenvalues
or, for instance, considering the residual error from cross-
validation ([5, 12]). Due to the nature of our stated motion
estimation problem, the PCs will be kept and used to group
displacement vectors inside a neighbourhood. The resulting
clusters give an idea about the mixture of motion vectors
inside a mask.

As its name implies, this method is closely related to
principal components analysis. In essence, it is just multiple
linear regression of PCA scores on z. The formal solution may
be written as [19]:

e, = P(TTT) ' Tz,



The previous expression is called PCR;. It should be pointed
out that the inverse is stabilized in an altogether different way
from philosophy behind the regularized least squares (RLS)
solution

urs(A)=(G'G+A)'G"z,

where a regularization matrix A tries to compensate for
deviations from the smoothness constraint.

Returning to PCR;, the scores vectors (columns in T) of
different components are orthogonal. PCR; uses a truncated
inverse where only the scores corresponding to large
eigenvalues are included. The main drawback of PCR; is that
the largest variation in G might not correlate with z and
therefore the method may require the use of a more complex
model. Some nice properties of the PCA are:

1) If the complete set of PCs is used, PCA will produce
the same results as the original OLS, but with possibly
more accuracy, if the original G'G matrix has inversion
problems.

2) If G'G is nearly singular, a solution better than the
one given by the OLS can be obtained by means of a
reduced set of PCs due to the calculated variances .

3) Since the PCs are uncorrelated, straightforward
significance tests may be employed that do not need be
concerned with the order in which the PCs were entered
into the regression model. The regression coefficients will
be uncorrelated and the amounts explained by each PC are
independent and hence additive so that the results may be
reported in the form of an analysis of variance.

4) If the PCs can be easily interpreted, the resultant
regression equations may be more meaningful.

The criteria for deciding when the PCR; estimator is
superior to OLS estimators depend on the values of the true
regression coefficients in the model.

The previous solution can also be regularized:

Upop, = P(TTT+E)' Tz,

with E standing for a regularization matrix in the PC domain.

IV. EXPERIMENTS

Grouping objects can be posed as a mathematical problem
consisting of finding region boundaries. This discrimination
analysis (DA) among objects can be highly nonlinear.

Sometimes the problem is such that a sample may belong to
more than one class at the same time, or not belong to any
class. In this method each class is modelled by a multivariate
normal in the score space from PCA. Two measures are used
to determine whether a sample belongs to a specific class or
not. One is the leverage or the Mahalanobis distance to the
center of the class, the class boundary being computable as an
ellipse (please, see Fig. 3). The other is the norm of the
residual, which must be lower than a critical value.

In Fig.3, a set of observations is plotted with respect to the
first two principal components (PCs). One can easily
apprehend that there is a strong suggestion of four distinct
groups on which convex hulls and ellipses have been drawn
around the four suspected groups. It is likely that the four
clusters shown correspond to four different types of
displacement vectors. For a big neighbourhood, it could
happen that these vectors would not be readily distinguished
using only one variable at a time, but the plot with respect to
the two PCs clearly distinguishes the four populations.

PCA provides additional information about the data being
analyzed. The eigenvalues of the correlation matrix of
predictor variables play an important role in detecting multi-
collinearity and in analyzing its effects. The PCR estimates
are biased, but may be more accurate than OLS estimates in
terms of mean square error. It is only possible to evaluate the
gain in accuracy for the two new methods, compared to OLS
and RLS, for synthetic video sequences, since knowledge of
the true values of the coefficients is required. Nevertheless,
when severe multi-collinearity is suspected, it is
recommended that at least one set of estimates in addition to
the OLS estimates be computed since these estimates may
help interpreting the data in a different way.

Fig. 3. An example of cluster analysis obtained by means of principal
components.

When PCA reveals the instability of a particular data set,
one should first consider using least squares regression on a
reduced set of variables. If least squares regression is still
unsatisfactory, only then should principal components be
used. Besides exploring the most obvious approach, it
reduces the computer load. Outliers and other observations
should not be automatically removed, because they are not
necessarily bad observations. As a matter of fact, they can
signal some change in the scene context and if they make
sense according to the above-mentioned criteria, they may be
the most informative points in the data. For example, they
may indicate that the data did not come from a normal
population or that the model is not linear.

When cluster analysis is used for video scene dissection,
the aim of a two-dimensional plot with respect to the first two
PCs will almost always be to verify that a given dissection
‘looks’ reasonable. Hence, the diagnosis of areas containing



motion discontinuities can be significantly improved. If
additional knowledge on the existence of borders is used, then
one’s ability to predict the correct motion will increase.

PCs can be used for clustering, given the links between
regression and discrimination. The fact that separation among
populations may be in the directions of the last few PCs does
not mean that PCs should not be used at all.

In regression, their uncorrelatedness implies that each PC
can be assessed independently. This is an advantage compared
to using the original variables, where the contribution of one
of the variables depends on which other variables are also
included in the analysis, unless all elements are uncorrelated.
To classify a new observation, the least distance cluster is
picked up. If a datum is not close to any of the existing
groups, it may be an outlier or come from a new group about
which there is currently no information. Conversely, if the
classes are not well separated, some future observations may
have small distances from more than one class. In such cases,
it may again be undesirable to decide on a single possible
class; instead two or more groups may be listed as possible
loci for the observation.
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Fig. 4. Improvement in motion compensation curves for the “Foreman” and
“Mother and Daughter” sequences.

At this time, partial analyses for the PCR, and the PCR,
motion estimation procedures have been made for some video
sequences. It is a known fact that there is a plethora of metrics
to evaluate both quality as well as deviations from the original
or expected DVFs. The ones used in this work are described
below in conjunction with some results.

The average
IMC} (dB) between two consecutive frames, if S is the frame
being currently analyzed, is given by

o Z[Ik(r)_lk—l(r)]z
IMC(dB) =10log,, —

improvement in motion compensation
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Fig. 5. Displacement field for the Rubik Cube sequence:. (a) Frame of Rubik
Cube Sequence; (b) Corresponding displacement vector field for a 31x31
mask obtained by means of PCR; with SNR=20 dB; and (c) PCR,, 31x31
mask with SNR=20 dB.

For a sequence of K frames, the /MC(dB) becomes [4, 5]:
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When it comes to motion estimation, one seeks algorithms
that have high values of M(dB) . If the detected motion had
no error, the denominator of the previous expression would be
zero (perfect registration of motion) leading to M(dB) =00,

Fig. 4 illustrates the evolution of IMC;(dB) as a function

of the frame number for two noiseless sequences: “Foreman”
and “Mother and Daughter”. These plots have been obtained
without noise. PCR, works outperforms the other estimators
due to the use of regularization in the PC domain

The SNR is defined as shown in [4, 5]:

SNR =10log,,(c” /5, ).

o and o, stand for, respectively, the variances of the

original image as well as the amount of noise corrupting a
given frame.

Fig. 5 shows the DVFs for the “Rubik Cube” sequence with
SNR=20 dB.

V. CONCLUSION

In this paper, two PCR frameworks for the detection of
motion fields are discussed. Both algorithms combine
regression and PCA. The resulting transformed variables are
uncorrelated. Unlike other works ([8, 11, 12]), we are not
interested in reducing the dimensionality of the feature space
describing different types of motion inside a neighbourhood
surrounding a pixel. Instead, we use them in order to validate
motion estimates. They can be seen as simple alternative
ways of dealing with mixtures of motion displacement
vectors. PCR; and PCR2 performed better than RLS
estimators for noiseless and noisy images. More experiments
are still needed in order to test the proposed algorithms with
different types and levels of noise, so that the classification
can be improved. It is also necessary to incorporate more
statistical information in our models and to analyze if this
knowledge will improve the outcome.
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