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Abstract—This paper describes an evaluation of a number
of subsets of features for the purpose of image annotation
using a non-parametric density estimation algorithm (described
in [1]). By applying some general recommendations from the
literature and through evaluating a range of low-level visual
feature configurations and subsets, we achieve an improvement
in performance, measured by the mean average precision, from
0.2861 to 0.3800. We demonstrate the significant impact that the
choice of visual or low-level features can have on an automatic
image annotation system. There is often a large set of possible
features that may be used and a corresponding large number
of variables that can be configured or tuned for each feature in
addition to other options for the annotation approach. Judicious
and effective selection of features for image annotation is required
to achieve the best performance with the least user design effort.
We discuss the performance of the chosen feature subsets in
comparison with previous results and propose some general
recommendations observed from the work so far.

I. INTRODUCTION

Much work has been expended on the topic of feature
selection for machine learning, data analysis and informa-
tion retrieval. When dealing with a very large and multi-
dimensional data set, such as those found in multimedia or
scientific applications, it is often critical to choose wisely the
features used to index the set. The purposes of feature selection
include reducing dimensionality, removing irrelevant and re-
dundant information, reducing the amount of data needed and
improving the accuracy of the annotator [2]. Feature selection
assumes that from a set of available features there is an optimal
subset that will be the most efficient and provide the best
performance.

Automatic image annotation aims to reduce human effort
in labelling and categorising images by training or otherwise
configuring a system to classify images based on extracted
low-level visual features such as colour, shape or texture.
In this way image annotation systems attempt to find words
such as “water”, “building”, “people” from an analysis of the
image’s pixels. The image annotation process generally con-
sists of three phases: pre-processing, training (or classification
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or tuning) and application (or evaluation). In the data pre-
processing phase raw image data is analysed, features are
extracted and information is gathered. The output from this
phase together with labels for the training set are passed to
the training phase which applies some technique to develop
a model to predict labels for previously unseen data. Some
applications may apply a cross-validation step at this point
to evaluate the performance, give feedback to the data pre-
processing phase and repeat the training with altered config-
urations. The resulting model and a test set of unseen data
are finally input to the evaluation phase which assesses the
performance of the annotator.

In addition to the traditional uses of low-level features to
annotate images with semantic labels, there is also potential
benefit to be gained from applying image annotation to enhace
query by example applications. Rather than comparing a
query image using complex low-level feature descriptors it is
possible to use the “keyword space” to index complex media
objects using textual semantic labels and hence improve the
performance and user experience [3]. In this way, even less
accurate semantic labels are still incredibly useful as a single
descriptor classifying visually similar images.

The annotation approach used in this evaluation is based
on a nonparametric density estimation technique proposed by
Yavlinsky et al. [1]. The nonparametric density estimator is
applied to Bayes Theorem to provide an estimator of the true
problem space density that makes no prior assumptions. This
approach provides a simple, robust framework using global
feature values for automated image annotation.

Features commonly used for automatic image annotation
are generally visual features focused around colour, texture or
shape descriptors which can be automatically extracted from
an image. The values from these features may be continuous
or discrete, numerical, a histogram or string in format and
generally describe an image based on the identification of
patterns or relationships at the pixel level. This level of
description is less than ideal for a human user who would
prefer higher-level semantic descriptions such as “tree”, “bird”
or “building”. Image annotation attempts to bridge the well-
known problem of the semantic gap [4].

Two main issues tend to complicate feature selection. The



first is redundancy when combining top-performing features,
which are strongly-related, has little or no added benefit.
This is due to underlying similarity in the patterns which
are described by the features. The second is multivariate
prediction where high performing single features may not
improve significantly when used in combination with other
features while poorly performing features may demonstrate a
exceptional improvement when applied together. These issues
and their impact on performance are well illustrated by the
evaluation described in section II-C.

The selection of features for image retrieval or indexing
has been well analysed by Deselaers et al. [5] who describe a
large variety of visual features and compare their performance
quantitatively. The correlation of these features is also anal-
ysed and some of this information is applied to select features
in our work. Some of the results obtained by Deselaers et
al. are confirmed through our evaluation. The comprehensive
overview of image retrieval written by Datta et al. [6] also
covers the issues of feature selection and visual descriptors (or
“image signatures”) for identifying similar images. It is likely
that the conclusions reached in these papers on image retrieval
(where the goal is to find similar images or images that match
a query) will apply equally well the image annotation tasks
(where the goal is to find the most similar image and transfer
the classification or label to the unknown image).

The work described in this article focuses on identifing
suitable features at the data pre-processing stage before an
annotator has been trained or applied. In contrast other ap-
proaches have used machine learning techniques to identify
features or tune a classifier based on performance often using
a wrapper approach [7] during the classification/training phase.
Setia and Burkhardt [8] focus more on the configuration, tun-
ing and weighting of a feature subset based on a quantitative
computed measure of likelihood that describes the similarity
of a feature and its discriminative ability. This is implemented
using a wrapper approach with a support vector machine. A
powerful but consuming approach is proposed by Lu et al. [9]
who use a genetic algorithm to find the best features.

Incorporating feature subset selection feedback into the
classification training phase of the annotation process helps to
reduce the level of user configuration and therefore expertise
required to set up an annotator for a particular dataset. This
approach has been shown to work reasonably well in certain
situations but may have less success when the dataset is high-
dimensional and of small sample size due to the expense of
evaluating every possible combination of features, variables
and weights and the potential corruption of a good feature
set by the presence of a “bad” feature. Kohavi et al. [7] and
Viitaniemi and Laaksonen [10] also emphasise the influence
and hence importance of choosing the evaluation metric to
judge the performance improvements which is critical when
performing feature subset selection and tuning.

The issue of feature selection is not limited to automatic
image annotation. In a collection of short articles by multiple
authors, Liu et al. [2] summarise many of the broader issues
relating to feature selection in data mining and machine

learning for a variety of application domains. Little et al. [11]
used feature selection within a case-based classifier for bio-
medical data to weight (and hence select) features according
to classification performance evaluated via cross-validation.

The motivation behind this work is two-fold: firstly to
improve the performance and assess the stability of the non-
parametric density estimation based (Npde) annotator. Sec-
ondly, to examine the level of effort (i.e., feature selection
and fine-tuning) required to achieve significant results before
diminishing returns reduce the value of the work.

The remainder of this paper discusses briefly the rationale
behind the selection of features, the variables that can effect
the choice and performance and presents the results from an
evaluation. Some recommendations for feature selection in this
area are proposed and conclusions presented.

II. FEATURE SELECTION AND EVALUATION

There are a wide variety of factors which influence the
choice of features for automatic image annotation. Many of
these are purely pragmatic factors such as the type of data,
available analysis tools or space, size and efficiency concerns.
Other decisions may require more indepth understanding of
the data topography and the intended annotation approach.
Even if an approach is used which conducts feature selection
or weighting within the classification/training phase it is still
likely that a subset of all available features will need to be
chosen.

This section describes the features used and the evaluation
of various combinations of features using a non-parametric
density estimation approach [1] and the standard Corel5K
image subset [12]. This subset consists of 5000 images from
the Corel Stock Photo Library divided into a training set of
4500 with the remaining images used for testing. Images are
labelled with 1–5 keywords from a vocabulary of 371 words.
Only keywords with at least 2 images in the test set were
evaluated which reduced the vocabulary to 179 keywords.
While the Corel subset has been criticised for not providing
sufficient variation for adequately assessing image annotation
[13], it is still widely used and provides a very variable tool
for comparison. We use the same setup as evaluations by [14],
[15], [16], [17], [1] which differs slightly from that of the
dataset’s original paper.

In addition, previous experience has shown that results
achieved using this dataset translate relatively to other larger
and more complex datasets. Preliminary experiments con-
ducted on a subset of the Getty image collection proposed
by Yavlinsky et al. [1] confirm this.

A. Features

We used an internal tool (f_extract) to calculate feature files
for each image and each feature. This package provides a
large number of options to extract colour and texture features
(among others) from images and calculate different descriptors
based on statistical analysis of the histogram or by dividing the
image into segments, weighting and combining the resulting
values.



A conservative estimate, based on a subset of available
features and configuration options in f_extract alone, finds in
excess of 500 likely individual features that can be extracted
and used for image annotation. The first problem is how to
systematically define a likely subset of features. This section
describes the colour and texture features used in this evaluation
and gives the various configuration options available for each.
These features represent commonly used and accepted features
for image classification.

Colour: Colour is a key feature in identifying visual
similarity and a number of colour space descriptors have
been proposed often using different models of colour space
based on definitions of human colour perception or printing
needs. Functions for generating 3D colour histograms for an
image are provided by f_extract. The available colour spaces
used were: RGB, HSV, HSL, Y’CbCr, CIELUV, CIELAB. The
number of bins that each axis of a colour space is divided into
can also be configured. We used bins of 2+2+2; 4+2+2 and
8+8+8 in our initial evaluations.

Texture: Tamura (coarseness, contrast and directionality +
window size and maximum range of coarseness), Gabor (scale
and orientation)

Statistical Moments-based Features: Features themselves
may be in a complex form, for example, as a vector of 100
numbers. The f_extract tool therefore provides another kind
of feature which is the concatenation of three sets of statistics
for the colour channel or texture histogram based on the first
N statistical moments. In statistics, the moments provide an
estimation of population parameters such as mean, variance,
skewness, kurtosis, etc. The resulting feature for an image
is the concatenation of these moment values and provides
a simpler and potentially more meaningful summary of the
feature than the complete vector.

Spatial awareness: The f_extract tool also enables spatial
information from the image to be maintained by dividing the
image up into regions. The required feature is extracted from
each region independently and then the results are combined
to produce a result which will be influenced by the distribution
of the image. This can be done through specifying a tile
size (e.g., T3x3 will divide the image into 9 equal segments)
or through specifying a weighted spatial distribution type,
either global (entire image) or focus, structured, local, centre
for other arrangements. In addition to the feature specific
options, each feature was also calculated over 3x3, 5x5 and
8x8 tiles plus global, local, focus and centred divisions of the
image to incorporate some spatial information into the feature
descriptor.

Once a likely subset of features has been determined, the
second problem is to decide which features are likely to be
redundant or highly correlated and which feature sets may
suffer from multivariate prediction. Using information from
Desalears et al. [5] and based on preliminary assessments, we
developed a list of likely feature combinations. The general
pattern used was to include one or more colour features plus
optionally a Tamura texture feature and/or a Gabor texture
feature. This list of feature subsets is given in Table VI.

Table I
SUMMARY OF RESULTS FOR INDIVIDUAL COLOUR FEATURES

Feature (# eval) Mean Median Std Dev Min/Max
all (176) 0.2074 0.2253 0.0614 0.0828 / 0.3120
stat. moments (168) 0.2127 0.2294 0.0576 0.0829 / 0.3120
spatial: any (144) 0.2236 0.2385 0.0545 0.0829 / 0.3120
spatial: 3x3 (24) 0.2569 0.2650 0.0260 0.1828 / 0.3016
spatial: 5x5 (24) 0.2648 0.2690 0.0324 0.1822 / 0.3120
spatial: 8x8 (24) 0.2376 0.2355 0.0231 0.1932 / 0.2747
spatial: Center (24) 0.2461 0.2450 0.0268 0.1651 / 0.2747
spatial: Focus (24) 0.1204 0.1189 0.0164 0.0829 / 0.1534
spatial: Local (24) 0.2202 0.2226 0.0252 0.1550 / 0.2576
bin dist: 2+2+2 (55) 0.2129 0.2306 0.0644 0.0829 / 0.3110
bin dist: 4+2+2 (55) 0.2149 0.2351 0.0609 0.0879 / 0.3120
bin dist: 8+8+8 (55) 0.2103 0.2214 0.0471 0.0999 / 0.2747
CIELAB (21) 0.2329 0.2520 0.0619 0.1245 / 0.3120
CIELUV (21) 0.2227 0.2411 0.0580 0.1176 / 0.2976
HSV (42) 0.2198 0.2391 0.0534 0.1119 / 0.2972
RGB (21) 0.1660 0.1817 0.0484 0.0829 / 0.2373

For the results given here, the distance metric is set to L1-
distance and features are unweighted. The summary results
given in Table VII for Npde2 and Npde3 have had some
feature weighting applied. More work is needed to fully
explore the effect and meaning of distance measures and
feature weighting in this context.

B. Procedure

The general process for evaluating a feature or feature subset
was:

1) Analyse all the images using f_extract to extract the
required feature descriptors.

2) Set the configuration options (feature list, distance met-
ric, weights) for NpdeAnnotator.

3) Run NpdeAnnotator in evaluation mode which uses the
training set to build up the aggregated model, queries for
each label and calculates the mean average precision for
each query (where more than two examples exist).

4) Save the results and basic timing information to file.
5) Remove temporary files for the trained model.
6) Repeat for the next feature subset.

This process was implemented in a shell script and executed
over the list of individual features, the list of selected feature
subsets and for the best performing feature combinations with
a selection of varying feature weights.

C. Results and Discussion

Tables I, II and III summarise the performance of the
individual colour, Gabor and Tamura features respectively,
grouping the features according to the number of tiles, spa-
tial weighting, histogram statistics, bin distribution and other
feature specific configuration choices. Tables IV and V list
the mean average precision of the top ten individual feature
configurations.

The ordering of features in the tables is somewhat deceptive
since there is, of course, no method for ordering features by
increasing performance prior to evaluating them. However, it
does demonstrate the relatively small changes that occur in



Table II
SUMMARY OF RESULTS FOR INDIVIDUAL GABOR FEATURES

Feature (#eval) Mean Median Std Dev Min/Max
All (36) 0.1725 0.1773 0.0313 0.0843 / 0.2067
Scale: 2 (12) 0.1562 0.1727 0.0407 0.0843 / 0.1948
Scale: 4 (12) 0.1825 0.1857 0.0246 0.1195 / 0.2067
Scale: 6 (12) 0.1788 0.1849 0.0200 0.1234 / 0.1975
Orientation: 2 0.1683 0.1815 0.0380 0.0843 / 0.2017
Orientation: 4 0.1754 0.1764 0.0294 0.0918 / 0.2067
Orientation: 6 0.1739 0.1745 0.0277 0.0933 / 0.2054
no spatial (9) 0.1346 0.1234 0.0405 0.0843 / 0.1862
spatial: 3x3 (9) 0.1925 0.1904 0.0108 0.1757 / 0.2067
spatial: 5x5 (9) 0.1900 0.1922 0.0097 0.1733 / 0.2014
spatial: 8x8 (9) 0.1729 0.1720 0.0041 0.1671 / 0.1792

Table III
SUMMARY OF INDIVIDUAL TAMURA FEATURES

Feature (# eval) Mean Median Std Dev Min/Max
all (320) 0.1193 0.1227 0.0263 0.0624 / 0.1761
¬ stat. moments (4) 0.0778 0.0753 0.0041 0.0743 / 0.0823
spatial: global 0.0974 0.0981 0.0071 0.0796 / 0.1153
spatial: 3x3 (44) 0.1419 0.1442 0.0169 0.0935 / 0.1749
spatial: 5x5 (44) 0.1429 0.1450 0.0213 0.1041 / 0.1761
spatial: 8x8 (44) 0.1230 0.1241 0.0163 0.0922 / 0.1525
spatial: center (44) 0.1341 0.1366 0.0111 0.1035 / 0.1521
spatial: focus (44) 0.0797 0.7880 0.0078 0.0624 / 0.1062
spatial: local (44) 0.1223 0.1230 0.0091 0.0979 / 0.1372
dist: 2+2+2 (104) 0.1265 0.1334 0.0288 0.0686 / 0.1761
dist: 4+2+2 (104) 0.1223 0.1288 0.0268 0.0675 / 0.1701
dist: 8+8+8 (104) 0.1112 0.1114 0.0192 0.0624 / 0.1521

Table IV
TOP TEN INDIVIDUAL FEATURES FOR colour: FEATURE, BIN

DISTRIBUTION, TILE SIZE (ALL USING HISTOGRAM STATISTICAL
MOMENTS)

Colour Feature MAP
CIELAB, 4+2+2, 5x5 0.3120
CIELAB, 2+2+2, 5x5 0.3110
CIELAB, 4+2+2, 3x3 0.3016
CIELUV, 2+2+2, 5x5 0.2976
HSV (linear), 2+2+2, 5x5 0.2972
CIELUV, 4+2+2, 5x5 0.2956
Y’CbCr, 2+2+2, 5x5 0.2927
HSL (linear), 2+2+2, 5x5 0.2899
HSV (volume), 2+2+2, 5x5 0.2877
CIELUV, 4+2+2, 3x3 0.2862

Table V
TOP TEN INDIVIDUAL FEATURES FOR Gabor: SCALE, ORIENTATION, TILE

SIZE AND Tamura: DISTRIBUTION, WINDOW SIZE, RANGE OF COARSENESS,
TILE SIZE (USING STATISTICAL MOMENTS OF THE HISTOGRAM)

Gabor MAP
4 4 3x3 0.2067
4 6 3x3 0.2054
4 2 3x3 0.2017
4 2 5x5 0.2014
6 2 5x5 0.1975
4 4 5x5 0.1974
6 4 3x3 0.1972
2 2 5x5 0.1948
4 6 5x5 0.1922
6 4 5x5 0.1915

Tamura MAP
2+2+2 2 2 5x5 0.1761
2+2+2 2 2 3x3 0.1749
2+2+2 8 2 5x5 0.1732
2+2+2 6 2 5x5 0.1722
2+2+2 4 2 5x5 0.1719
4+2+2 2 2 5x5 0.1701
2+2+2 2 3 5x5 0.1677
2+2+2 2 3 3x3 0.1671
2+2+2 8 3 5x5 0.1661
4+2+2 4 2 5x5 0.1657

Table VI
TOP 15 BEST PERFORMING FEATURE SUBSETS. ALL COLOUR AND

TAMURA FEATURES ARE DESCRIBED BY STATISTICAL MOMENTS OF THE
HISTOGRAM, ALL BIN DISTRIBUTIONS ARE 2+2+2. THE VALUES FOR

GABOR ARE FOR SCALE AND ORIENTATION. THE VALUES FOR TAMURA
ARE THE WINDOW SIZE AND MAX RANGE OF COARSENESS. C INDICATES

CENTER WEIGHTED SPATIAL DISTRIBUTION.

Feature subset MAP
CIELAB.T3x3, HSV(volume).T3x3, gabor-4-4, Tamura-2-2-C 0.3648
CIELAB.T3x3, HSV(volume).T3x3, gabor-6-4, Tamura-2-2-C 0.3631
CIELAB.T3x3, HSV(linear)-C, gabor-6-4 0.3624
CIELAB.T3x3, HSV(linear)-C, gabor-4-4, Tamura-2-2-C 0.3617
CIELAB.T3x3, HSV(linear)-C, gabor-4-4 0.3600
CIELAB.T3x3, HSV(linear)-C, gabor-6-4, Tamura-2-2-C 0.3597
CIELAB.T3x3, HSV(linear)-C, gabor-4-4, Tamura-2-2.T3x3 0.3596
CIELAB.T3x3, HSV(volume).T3x3, gabor-4-4 0.3579
CIELAB.T3x3, HSV(linear)-C, gabor-6-4, Tamura-2-2.T3x3 0.3556
CIELAB.T3x3, HSV(volume).T3x3, gabor-6-4 0.3554
CIELAB.T3x3, HSV(volume).T3x3, gabor-6-4, Tamura-2-2.T3x3 0.3517
CIELAB.T3x3, HSV(volume).T3x3, gabor-4-4, Tamura-2-2.T3x3 0.3512
HSV(linear)-C, HSV(volume).T3x3, gabor-4-4, Tamura-2-2-C 0.3507
CIELAB.T3x3, HSV(linear)-C, Tamura-2-2.T3x3 0.3505
CIELAB.T3x3, HSV(linear)-C, gabor-4-4, Tamura-6-3.T3x3 0.3503

MAP for each feature and the very close performance of the
highest performing features. The summary of the features,
grouped by feature type and configuration options, gives a
more general idea of the performance of an annotator when
these options are varied. The general reliability of the best
performing features is reassuring as it indicates the stability
of the underlying approach and eliminates the chance that the
distribution, window size, range of coarseness or tile size of
the “best performing” configuration is merely an outlier for an
otherwise poor annotator.

Table VI shows the fifteen best performing feature subsets
and their MAP. The feature subsets were constructed from fea-
tures in the top 20 performing individual features considering
information from Desaelers et al. [5] about feature correlation,
fitting features to a general pattern of combining 1 or more
colour descriptors with 1 or more texture descriptors and, to a
small extent, checking the time required to extract and process
a feature compared with the potential improvement it offered.

The original feature set used by Yavlinsky et al. (Npde1)
was a 3x3 tiled marginal histogram of global CIELAB colour
space calculated across 2+2+2 bins and a 3x3 tiled marginal
histogram of Tamura texture calculated across 2+2+2 bins
with coherence of 6 and coarseness of 3. It applied euclidean
distance (L2-distance) for each feature value. The feature
set and weights produced from the initial manual selection
of features based on information from previous experiments
(Npde2) used the same CIELAB and tamura features weighted
as 1 and 0.25 respectively and added a Gabor texture descriptor
with scale and orientation values of 4, weighted 0.5 and
an extra colour feature described by a 3x3 tiled marginal
global HSV histogram calculated on 2+2+2 bins and weighted
0.25. This configuration used L1-distance. The final feature set
and weights produced after a selected series of evaluations
consisted of the same CIELAB, HSV and Tamura feature
descriptors weighted 0.75, 0.5 and 0.5 respectively and a



Table VII
SUMMARY OF SYSTEM PERFORMANCE USING THE COREL5K DATASET

(179 QUERY TERMS) AND SHOWING THE IMPROVEMENTS FOR THE NPDE
USING THE GETTY DATASET. MAP=MEAN AVERAGE PRECISION;

P%=PRECISION; R%=RECALL; N+=NUMBER OF WORDS WITH NON-ZERO
RECALL; MBRM=MULTIPLE BERNOULLI REFERENCE MODEL [15] AND

JEC=JOINT EQUAL CONTRIBUTION [18] (BOTH USING 260 QUERY
TERMS).

Approach MAP P% R% N+ MAP(Getty)
Npde1 [1] 28.61 18 21 106 9.21

Npde2 37.15 21 19 93 11.86
Npde3 38.00 23 22 104 13.55

MBRM [15] 35 24 25 122 –
JEC [18] – 27 32 139 –

Gabor texture feature using scale of 6 and orientation of 4
weighted 0.5. All distances were calculated using L1-distance.

Table VII shows results from the original Npde annotator
configuration plus the two new configurations (Npde2, Npde3)
selected from the evaluation phase. In addition results from
Feng et al. [15] using a Multiple Bernoulli Reference Model
(MBRM) and from Makadia et al. [18] using a K-nearest
neighbour, label transfer approach with Joint Equal Contribu-
tion (JEC) to combine the feature distances are shown. Also in-
cluded are preliminary results from applying the same feature
settings for the Npde annotator to a much more challenging
subset of the Getty Image Archive website (described in [1]).
Full analysis of results from this dataset is ongoing.

The improvement for Npde after applying some simple
heuristics from [5] and increasing the number of features from
2 to 4 is strongly indicative of the influence of feature selection
upon the performance of an automatic image annotator. The
relatively small and insignificant gain achieved after more
thorough competitive selection and tuning appears to indicate a
plateau where further improvements do not result in significant
performance gains.

The results for the JEC approach are extremely good. The
authors note:

“One reason for this exceptional performance may
be due to the use of a wide spectrum of different
features, contributing along different “orthogonal”
factors” [18]

The seven features used for JEC were: colour – RGB, HSV &
CIELAB and texture – Gabor (3 scales, 4 orientations), Haar
Wavelet plus quantised versions of each. In addition the JEC
approach used individual distance metrics selected for each
feature rather than a common distance metric for all which
may also contribute to the better performance. It is hoped to
replicate this feature set and evaluate it in future work.

III. DISCUSSION AND RECOMMENDATIONS FOR FEATURE
SELECTION

These general recommendations are based on the evalua-
tions carried out so far on the Npde image annotation tool.
The results achieved are consistent with those presented in
other literature and demonstrate how feature selection can
have a significant impact on the performance of an image

annotation system. These recommendations are intended to
assist in making judgments about selecting the most promising
feature subsets for applications.

• If it is best to use only a single feature (e.g., for reasons of
speed, space or computational complexity) then a colour
feature such as CIELAB is likely to be the better choice.

• Using histogram statistics rather than the complete vector
produces better results

• Using some spatial information (such as dividing the
image into tiles and combining the output from each tile)
produces better results.

• Combining a colour feature with a texture feature such
as Gabor or Tamura improves the results.

• Increasing the number of features does not always give
better results. More assessment is need to determine
the most likely subset size but good results have been
achieved with feature sets of 4 or less.

It seems reasonable that a colour feature based on human
perception (such as CIELAB or CIELUV) will support better
visual similarity results (however, not necessarily semantic
similarity) and this appears to be consistent with both our
results and that of other evaluations which support CIELAB
as a valuable colour space descriptor. While most of the
top performing feature sets contained a CIELAB feature (see
table VI), it is interesting to note that an alternative feature
set not using CIELAB but combining two very similar HSV
features with Gabor and/or Tamura texture descriptors also
achieve very high MAPs within 0.0140 to 0.0200 of the best
performance. HSV based colour descriptors easily provide the
next best individual performance after CIELAB.

The retention of some spatial information (or locally sen-
sitive features) through the use of tiling or other weighted
segmentation approaches generally improves the performance
as shown in the individual feature tables I, II and III.

Applied individually, texture descriptors such as Gabor and
Tamura do not perform as well as colour descriptors. However
when applied in combination with a colour feature they result
in a significant improvement in the overall MAP for the anno-
tator. Choosing the best configuration options for the texture
features is less clear as there is only slight differences in
performance when values such as scale, orientation, coarseness
and directionality are altered.

Overall, while it is tempting to focus on the slight improve-
ments in the mean average precision, it is dangerous to place
too much importance on improvements that are not significant
enough to truly indicate a general better performance by
the annotator. The detailed summary of the performance of
individual features and subsets presented here is interesting to
help identify those features, configurations and subsets which
indicate promising performance by showing either significant
improvements in the mean average precision for the dataset
or confirming other indications about the stability of a feature
(such as CIELAB) by consistently good average precisions
and smaller deviations in performance.



IV. CONCLUSIONS AND FUTURE WORK

We have demonstrated the importance of feature selection
for image annotation and shown significant gains in MAP for
the Npde annotator. The results and evaluation provided here
demonstrate just how complex the selection of features can
be and how many variables can potentially impact upon the
performance of an image annotator. It is hoped that the general
information here will be useful in determining the best path
to take when choosing features for image annotation.

The adjustment of the feature set used by the Npde an-
notator has improved the MAP significantly from 0.2861 to
a final result using weighted features of 0.3800. Preliminary
evaluations using the more challenging Getty dataset also
resulted in an improvement in the MAP from 9.21 to 13.55.
It is also promising to see that many different features sets
produce approximately comparable results within 0.0100 of
the best performing combination. This indicates that the Npde
annotator’s performance is relatively stable and the top result
is less likely to be an outlier that has been achieved through
careful selection of features tuned specifically to the dataset.

This evaluation has demonstrated that visual features for
image annotation are not independent. Two weakly performing
features can provide significantly better performance when
combined but equally a strongly performing feature can be
negatively effected when combined with another feature. Some
features are complimentary, some have no relationship, some
are conflicting and some have strong correlation which renders
their combination ineffective.

Choosing features based on general guidelines can provide
results which are essentially equivalent in performance to
features selected by expensive training and tuning. This can
reduce development time and, hopefully, the issue of over
fitting by selecting features based on a test set or through
cross-validation. Given the expense of extracting some features
from very large datasets and the consequent computation over-
head required for calculating distances in the annotator, it is
worthwhile considering the possible correlationships between
features prior to training.

Finally, the evaluation and results produced so far give some
promising avenues for further exploration. In the future we aim
to apply this work to other data sets (specifically to a subset of
the Getty photo collection [1] and the IAPR-TC12 collection
from ImageCLEF [19]) to support our conjecture from pre-
liminary experiments that our suggestions are generally valid
across a wider selection of image types and further assess the
impact on performance of feature pre-selection. In addition we
intend to expand the feature set and investigate the influence of
feature weighting and altering individually or globally applied
distance metrics.
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