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Abstract—Image based rendering is a promising way to function [4]. In [5] as well as [6], the authors show that the
produce arbitrary views of a scene using images instead of spectrum of the plenoptic function is approximately band-
object models. However, depth variations and occlusions cae limited by the maximum and minimum depths in the scene

blurring in the rendered images. The solution is to use some dh distinctive bow-tie sh = thi ¢ th
geometrical information in order to steer the interpolation filters ana has a distnctive bow-tie shape. From this spectrum, the

according to the depth. The level of detail of this geometrys authors are able to deduce the number of samples (i.e. inages
often predetermined. In this paper, we present a method for necessary for an aliasing-free rendering. They also shaiv th
extracting depth layers in the presence of occlusions for iage the interpolation filter can be steered with an angle that
based rendering. Moreover, we show how the layer extractiosan depends on the depth of the scene in order to reduce aliasing.

be made to estimate depth layers in an adaptive manner, based H . th i iod of th ]
on the spectral analysis of the plenoptic function. The rendring owever, In many cases, the sampling period ot the cameras 1S

system therefore automatically adapts the number of depthdyers 100 large (i.e. not enough images) and this simple intetjzoia
based on the scene and the spacing of the sample cameras. is not sufficient. In this case, the scene must be split into

different depth layers such that each layer has a tightertimw
|. INTRODUCTION and can be individually rendered free of aliasing. Thewfor

Image based rendering is a method of generating arbitrdRgre is a clear tradeoff between the number of images, the
views of a scene that differs from the traditional computdlmber of layers and the depth variation. o
graphics approach. Instead of rendering views of 3D scepes b Layers have been used for many a_pphcatmns in multi-view
projecting objects and their textures, new views are reziefMages. Several layered representatlons have been ptbpose
by interpolating available nearby images. That is, the egen SUch as the layered-depth-images [7]. They have been used
not represented by its objects but by the light rays that ageccessfully in free-viewpoint video [8] as well. However,
captured by the cameras. This is the case for example in th§Se methods are designed to produce an accurate depth map
popular Light Field (LF) [1] and Lumigraph [2], [3] represen of thg scene. New wews_of_ the scene are rendered t.hrough
tations. New views are obtained simply by interpolatingriro Warping of the Iayers. This is very sensitive to errors in the
the sampled light rays. The advantage of such a method is tAgPth reconstruction. _ _ _
little or no geometry of the scene is required, as opposed toOthgr layered representations are dg5|gned for.|mag_e based
a full geometric model which can be very difficult to obtaif€ndering such as the coherent layers in Pop-up light fidld [9
from natural images. Moreover, the rendering algorithmes prand plenoptic layers [10] (a.k.a plenoptic manifolds) anel a
duce convincing photorealistic results since the intexfeni P@sed on approximate geometry rather than exact depth},In [5
viewpoints are obtained through combinations of real insagdn€ authors show that a certain number of layers is optinal fo
The main drawback of such a representation is the fact ti@iven scene and number of cameras. Therefore extracting
a huge amount of data (typically hundreds or thousands '8fre layers is supe_rfluous. Some scenes do not require ad-
images [1]) need to be captured, stored and transmitted. vanced Iayer. extraction methods. In fact, the layer extmct_

Image Based Rendering is a sampling and interpolatiéHOUlfj be tallore_d to the scene a}nd the s_amples _of the Light
problem. It is therefore interesting to study the problem ifi€ld in an adaptive manner. Thatis, there is a relation eetw
a traditional sampling and interpolation framework. Thet i the complexity of the scene (depth variation, occlusiom-no
to estimate the spectrum of the signal at hand and determ{g@bertian) and the layer extraction. A simple scene witalsm
the sampling frequency necessary for a reconstruction frd@Pth variation only requires very few depth layers which
from aliasing. All the visual information can be characted ©@n be extracted very quickly, e.g. testing for two diffetren

with a single seven dimensional function called the pleicoptd€Pths only. A scene with large depth variations requiresyma
different rendering depths and therefore the layer edtact

. . . must test for more depths. Following this analysis, the @nsth
MMSP’ 09, October 5-7, 2009, Rio de Janeiro, Brazil. in [11] and [12] reconstruct an approximate depth map based
978-1-4244-4464-9/09/$25.00 (©2009 |EEE. on interpolating images with different constant depth rfiite



and fusing in-focus regions. In [9], the user manually estsa spread disparity gradients,,. In this way, each layer has a

layers until satisfied with the rendered result. tighter spectrum and the new constraint becomes:
The rendering system presented in this paper contains At 1
novelty with respect to [5], [11], [12] and [9] in several M " Bk (2)

ways. First, we do not assume known geometry as in [ : . .
; . ; . “There is therefore an interplay between the sampling rate
Second, we do not require user interaction as in [9]. Third, . . -
SRR ) : t or, equivalently the number of images, the minimum and
the depth estimation in [11] is block-based which may cause__. :
. ; . ! maximum depths in the sceheand the number of depth layers
reconstruction artifacts in the boundaries of layers andsdo
not take into account occlusions. Finally, [12] does noetak
into account occlusions and relies on the user for the number [Il. L AYER EXTRACTION AND RENDERING
of layers. In contrast, our depth estimation and interpmiat |n this section, we present a layer extraction algorithnt tha
both take occlusions into account and the number of layerstétkes into account the particular structure of the LF. That i
adaptively estimated. _ it uses the fact that points in space are mapped onto lines in
The paper is organized as follows: In Section II, we discusse LF and occlusions occur in a specific order. Moreover,
the structure of the Light Field and look at its spectrunk is designed to deal with any number of images (i.e. two
Section IIl derives a patch-based layer extraction usingo? more). Note that the constraints applied to the energy
simple matching criterion. In Section IV, we show how theninimization are the same as in [10], [13]. However, instefid
method can be tailored to the scene observed by automgticalying on active contours and the level-set method, we use a
adapting the number of layers. Section V illustrates sonpatch-based algorithm to find potential layer boundariéés T
results and we conclude in Section VI. enables a drastic speed-up in computation times while being
very effective at finding layer edges. The second part of the
section describes how new views are interpolated using the

As mentioned above, the rendering of new views from ggmented layers and the knowledge of occlusions.
set of sample images is a sampling and interpolation problem

It is therefore interesting to look at the spectrum of theadaf® A patch-based layer extraction
at hand (i.e. the plenoptic function). This problem has beenSimilar to the stereo methods used in [14] and [15], we
studied by Chai et al. in [5] for the scenario of multiple vieewassume that layer boundaries occur at intensity and coter di
along a baseline as illustrated in Figure 1(a). In this cante continuities. An initial step in the layer extraction is tafore
the plenoptic function is parameterized witkz, i, t) where t0 segment a reference image into a set of patchesising
(z,y) are the image coordinates ands the position of the the mean-shift algorithm [16]. Given a set of predetermined
camera along the baseline. Using the pinhole camera modeR@ssible disparity gradients,,, each segment,, is assigned
can be shown that a poipt= (z, y, 0) with depthz,, = f/d,, t0a layerm using a matching criterion and an occlusion rea-
in the image at = 0 will be projected onto the image i, Soning. Note that the method presented here differs frorh [14
as: and [15] in that the number of layers or assigned disparities
Pk = (Tp — dimtr, Yp, th), (1) s aninput to the layer extraction. We also use more than two
images if they are available. Finally, the algorithm opesah
whered,, is the disparity gradient anflis the focal length of 5 two-pass manner instead of multiple iterations.

the camera. This relation enables one to obtairj some irssightThe layer extraction is performed by minimizing the energy
on the structure and the spectrum of the multiview data. Ifjnctional

Il. LIGHT FIELD STRUCTURE AND SAMPLING

deed, points in space are mapped onto lines in the LF and lines N

with a larger slope will always occlude lines with a smaller Eior = Z Ep(mn),

ones as illustrated in Figure 1(b). This relation also eesbl n=1

one to show that the spectrum of the plenoptic function where (S1,...,Sx) are the patches extracted by the mean-

approximately bound by a bow-tie delimited by the maximurghift segmentation aneh are the layers with disparity gradient
depth 2, = f/dmin and minimum deptte,.i, = f/dmazs valuesd,,. In order to minimize the total energ¥,.;, we
as depicted in Figure 1(c). Given this spectrum, it can Heinimize each of the partial energi& (m,,) defined for each
shown that the optimal interpolation filter is steered to th@atch. The partial energies are defined as:

mean _dlsparlty g?dlent. Using thls_ mte_rp(_)latlpn, thelm_mr_n E,(m) = Z f(p,m)

sampling rateAt = tx1 — ti to avoid aliasing in the-axis is o=l

given by [5] At = Bth’ whereh = [1/zmin — 1/2maz] and ) , )

B = 1/2Az which is related to the cut-off frequency of the/Nerep = (,9,0) s & pixel on the reference image and
camera: This At only takes into account the knowledge of thef(p’m) is a matching function for the pixel in the other

minimum and maximum depths in the scene. The light fielﬁ]ages' Tpebmalltchir(ljgﬁfunctionalsglejre is simply defined as
can be segmented infd constant depth layers with uniformlyt e sum of absolute differences ( )

K-1
INote thatB may also be limited by the band of the texture of the objects flp,m) = Z [I(Pm.k) — I(Pm.k+1)],
observed. However, we assume here that this band is noedimit 1



AZ X | AU)X
. Zmax_ % <‘slope /2 max
Zmin I IR
Iy B A W
LNy V7Y e
Vo x
> | i
£ \ i, N | | slope  f/z min
vy b . t —

I .
tk (a) tk+1 tk (b)tk+1 (c)

Fig. 1. 2D Light Field structure and spectrum. (a) Two layelbserved by two cameras ip andt, 1. Thex-axis is the image plane; is the depth and’
is the focal length. (b) Positiom of the layers on the image plane as a function of the cameritiquos. Points are mapped onto lines with slope inversely
proportional to their depthlz. (c) Given this structure, the spectrum of the light field gp@ximately bound by the maximum and minimum depths.

where K is the number of images under consideration arfifst generate a layer image for the view to interpolate;ie
Pm.k 1S as defined in (1). Thé&(p,, ) is therefore the intensity |ty ti11]:

of a point in imagek. We use linear interpolation for the L(pm,:) =my forp e S,

intensity since the pointg,, , are not necessarily integer

values. The segmerft, is assigned to the layen with again in a back to front manner to take into account occligsion

Using linear interpolation, the values in the rendered ienag
my, = argmin{E,(m)}. become

Once each segment has been assigned to a layer, we may BiRyn.i) =

the layer index for all the images under consideration as: BL(Pm.k) + al(Pmk+1) L(Pmk) = L(Pmk+1) =m

I(pm,k)v L(pm,k) =m, L(pm,kJrl) 7£ m (4)

I(Pm.k+1); L(Pm.k) # My L(Pm,kr1) = m,

where the layers are constructed in a back to front order (igherea = ¢; — ¢, and 8 = tx41 — t; are the weights from

starting with the smallest,,,). Note that the matching functionthe linear interpolation. Therefore, if the point is vigibin

f(p,m) may be extended to color images by summing thgoth neighboring images, the value in the rendered image is

absolute differences in each of the three color channels. Rearly interpolated with a filter that is skewed accordtog

in [15], we may also use the maximum of the absolutge disparity gradient,, of the layer. However, if the point

difference in each of the color channels instead of the sumis only visible in one of the neighboring images, the value

This initial depth allocation is now used in a second pass # taken only from the image in which it is visible. This
take into account occlusions. That is, we define the vigjbili distinction is not made in [5], [11], [12].
function for each pixel in the images as:

L(pm.k) = my for p € Sy, k € [1, K],

IV. ADAPTIVE LAYER EXTRACTION

V(p,m, k) = . In this section, we show how the depth layer extraction can
{ L, AL(p, ) < dm O If L(Pm,k) = my fOr p € Si he made adaptive to the scene and the particular application
0, otherwise The adaptive part of the algorithm is based on (2). Assuming

Therefore points that have a disparity gradient larger than the camera parametefsand f are fixed, we are free to select
one being tested are occluded unless the point belongs to #@ A/ and theAt. For example, given a\t, it is possible
layer under consideration since a constant depth layerotant® determine the number of depth layers needed to render the

occlude itself. The matching function becomes: scene without aliasing. According to the sampling theorfjn
the disparity space should be equally divided as
f(p,m) =
K1 - m—205 m — 0.5
Sk L®mk) = IPmp1)|V (0, m, k)Y (P, m, k + 1) dm =~ maz + (1L = —r—)dmin, ~ (5)

r V(P m, k) (pmyk 4+ 1) form =1,..., M and wherel,,;, andd,,., are the minimum
where the denominator is a normalization term. Occludé&id maximum disparity gradients. This range of possible
pixels will therefore be ignored in the second pass. will then be fed to the layer extraction algorithm in Sectltin

. Each patch will be assigned the disparity gradiépt that
B. Rendering minimizes the matching functional in (3). Note that for a

Once the layers have been extracted, the interpolation sshaller number of depth layer®/, the depth estimation is
a new view is obtained through linear interpolation of eadlaster since each patch only needs to be tested for a small
layer with a filter steered to match the layer's depth. It isumber of hypothesized depths. This functional will also
important also to discard occluded pixels since these wilse minimize the difference in intensity of the image pointsttha
blurring of the layer’s boundary. In order to achieve thi® ware used for interpolation in (4) which minimizes blurring
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Fig. 2. Simulation results for th&ddy and Cones data sets. The SNR of rendered images versus the numbereo$ laged in the layer extraction are shown
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in the rendered images. The layer extraction complexity vghere we have usedx = 1 pixel. Therefore an estimate of
linearly proportional to the number of depth layers chosethe maximum and minimum disparitiestd,,.,, and Atd, ;.
Therefore there is a clear advantage to using the minimwanables automatic estimation of the number of depth layers
number of layers. needed in order to meet the minimum sampling criterion. In

We consider three different scenarios for adapting therlayeur current implementation the estimation 4ftd,,,,. and
extraction. First, we study the rendering results for ddfe Atd,,;, is done using a fast block matching algorithm and
M. Second, we consider non-unifortst = ¢, — tx and a simple outlier rejection. The rendering system will tliere
adaptively estimate the\/ in order to achieve minimum extract only the minimumM/ based on the estimates of the
sampling. Finally, we consider the case where the numbermBximum and minimum disparities.
layers is fixed and thé\¢ is adaptively chosen based on the
scene observed. C. Variable minimum and maximum depths

The scenario might call for a fixed number of layéisto
reduce depth estimation and interpolation complexity. Vég m

In some cases, rendering speed is essential perhaps atifle@efore again use (2) to adaptively deduce Mienecessary
expense of a reduction in the quality of the rendering. We magjven an estimate of the. For instance, consider the scenario
therefore choose fewer layers than are required by plenopfihere the camera is moving along a street and is pointed
sampling theory in order to speed up the interpolation. Nofi¢ the direction perpendicular to the movement. The camera
that in general, we should get an improvement in the qualififay move quickly (i.e. a largé\t) if the scene observed is
of the rendered image by using more layers. After, a certai@nstrained to a smalt and may be forced to move slowly
number of layers though, the anti-aliasing criterion isi@etd (j.e. a smallAt) when the scene has a large
and adding more layers gives no further improvement. An
extensive study of the rendered images versus number of V. EXPERIMENTAL RESULTS

layers and number of images is presented in [5]. However,the adaptive layer extraction method presented in thismpape
the experimental results are obtained with a known geometfys peen tested on the benchmark Middlebury stereo vision
An important feature of the rendering system presentediBergj;i4 setgeddy and Cones? [17]. These data sets both contain
the gbility to take advantage of the tradeoff between render pine uniformly sampled multi-baseline stereo images.

quality and the number of layers. In this first part of the analysis, we look at the quality of
the rendered image in terms of signal-to-noise ratio (SNR)

versus the number of depth layers used. In order to provide a

It happens in many cases that the sample images of the LE, 4 ison and obtain a ground truth, we perform a leave-one
are not uniformly distributed. Thé&/ required is therefore not out test. That is, some of the original images are removed and

constant throughout the views. Indeed, the number of Iay% use the rendering algorithm to recover an image that was

A. Image quality versus number of layers

B. Non-uniform image arrays

is given by: left out. The SNR is then computed with respect to the ground
M = AtBfh— (Atf/zmin — Atf/Zmaz) truth. Figure 2 illustrates the results for both data setee T
- tBfh = IAT number of depth layers goes from one to 35 and weHise 3
At

= T(dmaw - dmin) 2Available at: http://vision.middlebury.edu/stereo/.
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quality of the rendered image between the three layer cadehenll layer case. The 30 layer case, however, does not skamificant improvement over
the 11 layer case.

120
140

images. According to the theory in [5], we should noticen ¢; = 0.5. In this case, the algorithm estimatéd = 5.

two points. First, the SNR of the rendered image increaségjures 4(c-d) show the layers and the rendered image in
with the number of layers. After a certain number of layers; = 3.0. In this case, the baseline is doubled and the adaptive
the minimum sampling criterion is achieved and adding moedgorithm increases the number of layersib= 10.

layers does not significantly improve the result. Second, th The EDISON implementation of the mean-shift segmenta-
increase inAt (i.e. using only one out of two or three imagesj)ion was used. The segment matching, layer extraction and
should require more layers in order to achieve the minimurandering functions were implemented using a combination
sampling. Both these aspects are visible in Figure 2. Thedigwf Matlab and C++. In this setup, the segmentation times for
also shows in bold the minimum number of layers defingtie Cones images (375 by 450 pixels) are 2.38 seconds for
by (6). In practice, theM seems to be a bit conservativethe mean-shift segmentation of the reference image and 1.64
This is due to the fact that the sampling theory does nséconds for extracting the layers wifff = 5 and K = 3.

take into account some effects such as the fattening of t®&ce the layers have been extracted, the rendering tim&is O.
spectrum due to occlusions. Note that the difference in SNieconds per frame. Note that these times are given for the
between consecutive choices faf are due to the fact that experimental setup and can be significantly reduced by using
the depths in the scene are not uniformly distributed. It mayptimized code.
be useful in some cases (e.g. scenes with only three depths) t

use non-uniformly spaced,,. Figure 3 illustrates an example . ) )
of extracted layers and rendered images for diffefentThe  Plenoptic sampling theory has shown that there is a clear
layer extraction therefore behaves well with respect to ti&deoff between the amount of geometry and the number
sampling theory. Note that the overall degradation in th®®SNPf images available. Moreover, there is a minimum sampling
of the rendered images in the cases were the baseline isrbiggéerion that gives the number of depth layers needed based

is due to the fact that the layer extraction becomes a mdtB the spacing of the sample images and the maximum and
difficult task. minimum depths. In this paper, we presented a simple and

h q ¢ | teed h q _effective layer extraction method that deals with occlasio
For the Isechon' set of results, W? r?e ot I_eFrgn €Mfa is designed for image based rendering (i.e. the cost func
system only the imageg0, 1,2, 4,6) of the Cones (i-e. tion minimizes blurring). Finally, in contrast to previouwsrk,

Fhe imag_es are not uniformly sampled). The nymber ,Of Iaye[ﬁe algorithm takes into account occlusions and autonitica
is adaptively changed based on the method in Section IV-B.

Figures 4(a-b) illustrate the layers and the rendered imagéavailable at: http://www.caip.rutgers.edu/riul/resgt@icode. htm.

VI. CONCLUSION
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Fig. 4. Adaptive layer extraction on tl@ones data set. Imagef, 1, 2, 4, 6) are fed to the rendering algorithm. (a-b) When renderingngaigee int; = 0.5,
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adapts the number of depth layers to extract based on tfg@ C. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and Reefiski,
scene itself and the spacing between the sample views. In

future work, we will extend these results to non-linear ceame g

movements and interpolating viewpoints that are not on the
camera path.
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