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Abstract—This contribution introduces a novel signal extrapo-
lation algorithm and its application to image error concealment.
The signal extrapolation is carried out by iteratively generating a
model of the signal suffering from distortion. Thereby, the model
results from a weighted superposition of two-dimensional basis
functions whereas in every iteration step a set of these is selected
and the approximation residual is projected onto the subspace
they span. The algorithm is an improvement to the Frequency
Selective Extrapolation that has proven to be an effective method
for concealing lost or distorted image regions. Compared to this
algorithm, the novel algorithm is able to reduce the processing
time by a factor larger than three, by still preserving the very
high extrapolation quality.

I. INTRODUCTION

Signal extrapolation is an important signal processing task

and is often used in image and video processing. Thereby a

signal gets extended from a limited number of known samples

into areas where no knowledge of the signal is existent. A

problem, signal extrapolation is applied to quite often, is the

concealment of losses during image and video communication.

In the case that transmission errors occur while transmitting

the bit stream of a coded image or a video sequence, the

received signal cannot be decoded correctly and several areas

of the image or the sequence get distorted or lost. In order

to conceal these errors or losses, the signal can be extra-

polated from neighboring, correctly received areas into the

area where the distortion occurred. Besides error concealment

signal extrapolation can also be used e. g. for prediction

in video coding. Thereby, the block actually being coded

is predicted from already transmitted macroblocks, so only

the prediction error has to be transmitted. Thus, the amount

of data to be transported directly depends on the prediction

and therewith the extrapolation quality. Subsequently, a novel

signal extrapolation algorithm will be presented at the example

of spatial error concealment.

For the problem of spatial error concealment a wide range

of extrapolation algorithms exist. Without claiming to be a

complete list, some widely known algorithms should be men-

tioned. There are e. g. the maximally smooth image recovery

from Wang et al. [1], the DCT-based interpolation proposed by

Alkachouh and Bellanger [2], the utilization of projection onto

convex sets introduced by Sun and Kwok [3], the sequential

error concealment from Li and Orchard [4] or the error

concealment by directional interpolation proposed by Zhao et

al. [5]. Another, very effective error concealment algorithm

is the Frequency Selective Extrapolation (FSE) which was

originally presented in [6], and its enhancement presented in

[7] respectively. This algorithm iteratively generates a model

of the signal, emanating from a weighted superposition of two-

dimensional basis functions. The model is generated in order

to approximate the signal in the undistorted areas. Since the

model is defined over the lost areas as well, the signal gets

extrapolated into these areas. This algorithm is well suited for

extrapolating smooth as well as noise like signals and edges

and it outperforms most other error concealment algorithms. It

has however a shortcoming: the algorithm is computationally

very expensive. Since in every iteration step only one basis

function is added to the model, many iterations are necessary

for generating the model.

To cope with this, we want to propose a novel extrapola-

tion algorithm, the Multiple Selection Extrapolation (MuSE).

MuSE is an enhancement to FSE and is able to generate the

model more efficiently. This is done by selecting several basis

functions to be added to the model in one iteration step and

by using an advanced update of the signal model. In doing

so, the computational cost for the individual iteration steps

is slightly increased whereas the overall number of iterations

and therewith the overall computational cost is considerably

reduced. Besides the reduced computational cost, the novel

algorithm can be adjusted more easily to different problems

by being able to satisfy runtime or quality constraints.

In the next section, the FSE is briefly surveyed in order to

introduce the extrapolation scenario and the original algorithm.

Afterwards, the novel MuSE is presented in detail and the

advantages over FSE are carried out.

II. FREQUENCY SELECTIVE EXTRAPOLATION

Frequency Selective Extrapolation (FSE) is an iterative

signal extrapolation algorithm. Without loss of generality, here

an extrapolation scenario as shown in Fig. 1 is assumed. We

regard the data area L of size M × N samples with spatial

coordinates m and n. Area L consists of two sub-areas, the

loss area B and the support area A. We further regard the

signal f [m,n]. It is defined over the complete area L, but

its magnitude is only accessible over the support area A as

the signal information is lost in area B. FSE now aims at

extrapolating the signal from area A into area B. For this,

FSE generates the parametric model g [m,n] that is defined

over the complete area L and therewith continues the signal
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Fig. 1. Loss scenario used for signal extrapolation. The data area L used
for two-dimensional extrapolation consists of the loss area B to be estimated
and the known surrounding support area A.

into area B. The parametric model

g [m,n] =
∑

∀k∈K

ckϕk [m,n] (1)

emerges from a weighted superposition of mutually orthogonal

two-dimensional basis functions depicted by ϕk [m,n]. The set

K covers the indices of all basis functions used for the model

generation. The weighting factors are depicted by ck and are

called expansion coefficients.

The actual model generation is conducted in such a way that

the generated model approximates f [m,n] in the support area

A. Since the basis functions are defined over complete L, the

signal gets extrapolated into area B. As mentioned above, FSE

is an iterative algorithm, whereas in every iteration step one

basis function is selected to be added to the model generated

so far. Thus, the model in the ν-th iteration step is

g(ν) [m,n] = g(ν−1) [m,n] + ĉ(ν)u · ϕu [m,n] (2)

with u being the index of the selected basis function and ĉ
(ν)
u

being the update of the corresponding expansion coefficient

in this iteration step. The initial model g(0) [m,n] is set to 0.

In the ν-th iteration step the approximation error r(ν) [m,n]
between f [m,n] and g(ν) [m,n] can be calculated according

to

r(ν)[m,n]=

{
r(ν−1)[m,n]− ĉ

(ν)
u ϕu[m,n] , ∀ (m,n) ∈ A

0 , ∀ (m,n) ∈ B
(3)

since the error can only be evaluated over the support area.

For determining the basis function to be added to the

model in a certain iteration step, a weighted projection of

r(ν−1) [m,n] onto all basis functions is performed. This yields

the projection coefficients

p
(ν)
k =

∑

(m,n)∈L

r(ν−1) [m,n] · ϕk [m,n] · w [m,n]

∑

(m,n)∈L

ϕ2
k [m,n] · w [m,n]

(4)

resulting from the weighted projection of r(ν−1) [m,n] onto

the k-th basis function. The weighting function

w [m,n] =

{
ρ [m,n] , ∀ (m,n) ∈ A
0 , ∀ (m,n) ∈ B

(5)

is used to mask area B, since there the weighted scalar product

between r(ν−1) [m,n] and ϕk [m,n] cannot be evaluated. In

addition to this, the arbitrary function ρ [m,n] controls the

influence samples have on the model generation, depending

on their position. So samples close to B can e. g. get a higher

impact on the model generation than the ones farther away.

After all p
(ν)
k have been calculated, the basis function to

be added to the model in this iteration step is determined.

There, the one is chosen that minimizes the distance between

r(ν−1) [m,n] and the projection onto the basis function. This

is also the basis function that maximizes the decrement of

the weighted approximation error energy. The index u can be

determined according to

u = argmin
k

∑

(m,n)∈L

(
r(ν−1) [m,n]−p

(ν)
k ϕk [m,n]

)2
w [m,n]

= argmax
k

p
(ν)2

k ·
∑

(m,n)∈L

ϕ2
k [m,n]w [m,n] . (6)

After having determined the basis function to be added, the

corresponding expansion coefficient ĉ
(ν)
u has to be estimated.

Therefore, the fast orthogonality deficiency compensation,

proposed in [7], is applied. The orthogonality deficiency

results from the circumstance that even though the basis

functions are orthogonal with respect to area L, they are not

orthogonal anymore, when evaluated over the support area A

only. Thus, the projection coefficient p
(ν)
u contains portions

from basis functions unlike ϕu [m,n]. But, as we want to

estimate the portion of ϕu [m,n] in r(ν−1) [m,n] the effect

of the orthogonality deficiency has to be compensated. For

this purpose ĉ
(ν)
u is estimated as a fraction of p

(ν)
u according

to

ĉ(ν)u = γ · p(ν)u . (7)

The factor γ is from the range between 0 and 1 and guarantees

that a basis function is not overemphasized in the model. In

the case that the portion of the basis function ϕu [m,n] is not

covered completely, the same basis function can get selected

in a later iteration step again. For a detailed discussion of the

orthogonality deficiency problem, please refer to [8], [7].

To finish an iteration step, the model gets updated according

to (2). The above described iteration steps are repeated, until a

predefined number of iterations is reached. Finally, the samples

of g [m,n] corresponding to area B can be used as estimate

for the original signal in this area and can be used to conceal

the lost block.

III. MULTIPLE SELECTION EXTRAPOLATION

In general, the generation of the model based on the cor-

rectly received adjacent samples can be regarded as overdeter-

mined problem, since there are more basis functions available

than the support area A has samples. For solving this problem

and for estimating the original distribution of basis functions,

FSE exploits the sparsity of natural signals. As has been shown

in [9] many natural signals have a sparse representation when

regarded with respect to some basis or dictionary. For this

reason, the idea of FSE is to determine the strongest present

basis function in every iteration step and add this one to the

model generated so far. So, inherently a sparse model of the

signal is generated.



As has been shown in earlier publications like [6] and [7]

this approach is very effective at generating the model. The

only shortcoming of FSE is the large number of iterations

needed for generating the model and with that its high com-

putational cost. This is due to the fact that in every iteration

step only one basis function is selected and added to the

model. At this stage, the Multiple Selection Extrapolation

(MuSE) comes into play. In many cases, not only one basis

function is dominant in the approximation error signal, but

several ones, instead. In the case, that several different basis

functions might produce similar decrements of the weighted

approximation error energy the successive selection used by

FSE only is suboptimal. This is due to the fact that the basis

functions are not orthogonal when evaluated with respect to

area A. By only selecting one basis function in an iteration

step, as FSE does, the portions the other basis functions have

from the approximation error get modified. For this reason, the

same basis functions often have to be selected several times

for removing them from the approximation error. To cope

with this weakness, the novel Multiple Selection Extrapolation

can select several basis functions in one iteration step and

the model update is performed for all these basis functions

simultaneously.

Although the idea of iteratively generating a model of the

signal is the same, the individual iteration steps differ between

MuSE and FSE due to the possibility of multiple selections.

Hence the model update has to be modified to

g(ν) [m,n] = g(ν−1) [m,n] +
∑

∀u∈G(ν)

ĉ(ν)u · ϕu [m,n] , (8)

where G
(ν) contains the indices of all the basis functions that

are added to the model in the ν-th iteration step. The update

step of the approximation error r(ν) [m,n] is performed in the

same manner:

r(ν) [m,n] ={
r(ν−1) [m,n]−

∑

∀u∈G(ν)

ĉ(ν)u · ϕu [m,n] , ∀ (m,n) ∈ A

0 , ∀ (m,n) ∈ B
(9)

To select the basis functions to be added in the ν-th iteration

step, again the approximation error r(ν−1) [m,n] is projected

onto all basis functions, leading to the projection coefficients

as shown in (4). Afterwards, for every basis function, the

hypothetical decrement ∆Ē
(ν)
k of the weighted approximation

error energy, that would be gained if this certain basis function

is selected only alone, is computed:

∆Ē
(ν)
k = γ2 · p

(ν)2

k

∑

(m,n)∈L

ϕ2
k [m,n] · w [m,n] (10)

Therewith, the basis functions that can produce a large

decrement of the weighted approximation error energy can

be identified. For determining the set G(ν), the indices of the

basis functions that alone could lead to a decrement larger than

the energy fraction threshold τ times the maximal possible

decrement are selected. In addition to that, in order to avoid a

too large subspace, the set further is restricted to contain only

NBF indices at maximum. These are the ones that correspond

to the largest NBF energy decrements. So, G(ν) can be written

as:
G

(ν) =

{
k | ∆Ē

(ν)
k > τ max

k̃

∆Ē
(ν)

k̃
∧

∆Ē
(ν)
k ≥ Sd

({
∆Ē

(ν)

k̃

}
, NBF

)}
. (11)

Here the function Sd

({
∆Ē

(ν)

k̃

}
, NBF

)
returns the NBF-th

element from the decreasing ordered sequence of all the

possible approximation error decrements. The restriction of the

dimensionality of the subspace is important for keeping the

model update efficiently computable. When regarding noise

like signals, the number of basis functions satisfying the first

condition of (11) becomes very large. Thus, the subsequent

computations would get computationally expensive if no upper

bound for the number of basis functions is applied.

After the set of basis functions has been determined for this

iteration step, the approximation error r(ν−1) [m,n] from the

previous iteration step is projected onto the subspace spanned

by the selected basis functions. For determining the new

projection coefficients p̃
(ν)
u , ∀u ∈ G

(ν) the squared weighted

distance

d(ν)
2

=
∑

(m,n)∈L


r(ν−1) [m,n]−

∑

u∈G(ν)

p̃(ν)u ϕu [m,n]




2

w [m,n]

(12)

between r(ν−1) [m,n] and the the weighted projection onto the

subspace is minimized. This is obtained by setting the partial

derivatives of d(ν)
2

with respect to all p̃
(ν)
u , ∀u ∈ G

(ν) to zero:

∂d(ν)
2

∂p̃
(ν)
u

!
= 0 , ∀u ∈ G

(ν) (13)

The partial derivatives with respect to p̃
(ν)
u lead to

∣∣G(ν)
∣∣

equations (|•| depicting the cardinality):

∂d(ν)
2

∂p̃
(ν)
u

=
∑

(m,n)∈L

(
2ϕu [m,n]

(
r(ν−1) [m,n]−

−
∑

u∈G(ν)

p̃(ν)u ϕu [m,n]

)
w [m,n]

)
, ∀u ∈ G

(ν). (14)

For a better differentiation between the summation index and

the index of the equations, the equation index u is replaced

by ũ. So, (13) and (14) can be rewritten and we get the

following system of
∣∣G(ν)

∣∣ equations that has to be solved

for determining the coefficients p̃
(ν)
u :

∑

(m,n)∈L

ϕũ [m,n] r(ν−1) [m,n]w [m,n] =

∑

u∈G(ν)

p̃(ν)u

∑

(m,n)∈L

ϕũ [m,n]ϕu [m,n]w [m,n] , ∀ũ ∈ G
(ν)

(15)

This quadratic linear system of equations can be solved

efficiently as the terms
∑

ϕũ [m,n]ϕu [m,n]w [m,n] form

a symmetric matrix and since the system is maximally of
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Fig. 2. Extrapolation quality over iterations for isolated block losses of size 16 × 16 samples with τ = 0.9 and NBF = 5. Left: test images “Lena”,
“Peppers” and “ Goldhill”. Right: test images “Baboon”, “Monarch” and “Tulips”.

size NBF . After all p̃
(ν)
u have been calculated the expansion

coefficient update can be derived according to

ĉ(ν)u = γ · p̃(ν)u , ∀u ∈ G
(ν). (16)

The factor γ again is used to prevent the model generation

for overemphasizing basis functions due to orthogonality

deficiency. After this, the model can be updated as shown

in (8). Analogous to FSE, these steps are repeated, until a

predefined number of iterations is reached. And again, the

samples of g [m,n] corresponding to area B are an estimate

for the original signal that has been lost due to the block loss.

IV. SIMULATION SETUP AND RESULTS

In order to demonstrate the abilities of Multiple Selection

Extrapolation (MuSE) compared to Frequency Selective Ex-

trapolation (FSE) the extrapolation results are evaluated for

concealing lost blocks in images. For this, isolated blocks of

size 16× 16 samples are cut out of the test images “Baboon”,

“Lena”, “Peppers”, “Goldhill”, “Monarch” and “Tulips” ac-

cording to the test pattern showed in Fig. 4 top. Then, these

blocks are extrapolated by MuSE and FSE and are compared

to the original blocks by calculating the PSNR. Without loss

of generality, only isolated block losses are regarded, since

the concealment procedure can easily be extended to more

complex loss patterns as well, as described in [6]. Thereby,

larger losses are divided into small blocks which are concealed

individually. In doing so, the already concealed blocks are

included into the support area of the unconcealed ones, but

get a lower weight in the weighting function for reducing error

propagation.

The extrapolation parameters, that are valid for both, MuSE

and FSE, are chosen according to [7]. So, the support area is a

frame of 16 samples around the the lost block. The weighting

function

ρ [m,n] = ρ̂

√
(m−

M−1
2 )

2
+(n−N−1

2 )
2

(17)

emanates from a radial symmetric isotropic model that causes

an exponentially decreasing weight with an increasing distance

from the center. Hence, samples far away from the lost block

only get a low weight and therewith only small influence on

the model generation. According to [7], the decay factor ρ̂ is

chosen to 0.8 and the orthogonality deficiency compensation

factor γ is set to 0.2. The set of used basis functions is the

set of the two-dimensional discrete Fourier transform. As has

been pointed out in earlier publications as e. g. [7], [6], [10]

this set of basis functions is especially suited for concealment

of losses in natural images since monotone as well as noise

like areas and edges can be reconstructed well. In addition

to that, by using this set of basis functions many of the

above outlined calculations can be performed efficiently in the

transform domain. For a detailed discussion of the frequency

domain implementation, please refer to [6]. Other sets of basis

functions as e. g. the one emanating from the Discrete Cosine

Transform can be used as well, but have shown a slightly lower

performance for error concealment compared to the Fourier

basis functions.

Since the projection on a complete subspace should only

be applied in the case that several basis functions could lead

to similar decrements of the weighted approximation error

energy, the energy fraction threshold τ is chosen to 0.9. In

order to keep the system of equations from (15) manageable

and to prevent the algorithm from selecting too many basis

functions in one iteration step, the maximum number NBF of

basis functions to be added in an iteration step is set to 5.

Fig. 2 shows the extrapolation results for the above men-

tioned test images with respect to the number of iterations by

using FSE and MuSE. Comparing the two graphs belonging

to one image, one can easily see that MuSE has a significantly

faster ascent of PSNR compared to FSE. So, fewer iterations

are needed to obtain a certain extrapolation quality. For small

numbers of iterations the gain of MuSE over FSE can be more

than 1 dB PSNR. For a large number of iterations the graphs

of MuSE and FSE converge and run into saturation reaching

approximately the same extrapolation quality. To quantify the

speed-up obtainable by MuSE, Table I shows the number of

iterations needed for reaching saturation quality by 0.25 dB for

MuSE and FSE. The offset of 0.25 dB is used since the actual

number of iterations needed for obtaining saturation cannot

be determined accurately as the curves become horizontal

there. Comparing the listed values, it becomes apparent, that



TABLE I
ITERATIONS NEEDED FOR OBTAINING SATURATION QUALITY BY 0.25 dB

FSE [6], [7] MuSE Ratio

“Baboon” 32 20 1.6

“Lena” 104 51 2.0

“Peppers” 130 50 2.6

“Goldhill” 98 45 2.2

“Monarch” 132 65 2.0

“Tulips” 129 42 3.1

the number of iterations can be reduced by a factor of up

to more than 3 for the chosen parameters. For small values

of NBF, this factor can be approximately adopted for the

reduction in processing time as well, since the modifications

of MuSE compared to FSE are computationally not very

expensive. During one iteration, the most expensive step is

the approximation error’s projection onto all the M times N

basis functions according to (4). There, for every projection

the weighted scalar product between the approximation error

and the basis function has to be evaluated. Compared to this,

the additional complexity of MuSE added by determining the

set G(ν) and by solving the small system of equations from

(15) is negligible. So, as the computationally most expensive

step has to be carried out for FSE as well as MuSE, the overall

computational cost per iteration is similar for both algorithms.

The above chosen values of τ and NBF fortunately are

uncritical and can be varied in a relatively wide range without

affecting the extrapolation quality. To prove this, Fig. 3 shows

the PSNR over iterations with different combinations of τ and

NBF for the test images “Peppers” and “Goldhill”. Although

the graphs are widened a little bit for small numbers of

iterations, they all show the same behavior and all lead to

a comparable saturation quality. By adjusting τ and NBF one

can also easily trade extrapolation quality against extrapolation

speed and tune the algorithm for the desired application.

Besides the objective extrapolation results, the visual ex-

trapolation quality is very important for error concealment. To

demonstrate this, Fig. 4 shows the results for concealment of

isolated block losses for the test images “Lena” and “Peppers”.

There, the concealment with FSE was carried out with 200
iterations and for MuSE 40 iterations were applied. Comparing

the mid and bottom row of the images, it becomes apparent,

that already a fifth of the iterations is needed to obtain the

same high visual extrapolation quality with MuSE compared

to FSE.

V. CONCLUSION

In the scope of this paper a novel extrapolation algorithm,

the Multiple Selection Extrapolation, was presented. This

algorithm is an improvement to the already efficient Frequency

Selective Extrapolation. Compared to this algorithm the Mul-

tiple Selection Extrapolation significantly reduces the overall

computational cost and the therewith the processing time for

extrapolation. At the same time, the very high subjective as

well as objective extrapolation quality is preserved. In addition

to this, the novel algorithm can effectively trade extrapolation

quality against extrapolation speed, in order to find the best
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Fig. 3. Extrapolation quality over iterations for isolated block losses of size
16× 16 samples with different values for τ and NBF.

compromise for a desired application. Furthermore, although

MuSE was outlined for spatial error concealment only, due to

its relationship to FSE the algorithm can be extended to three-

and four-dimensional data sets as well by using the concepts

presented in [10], [11]. Therewith, it can easily be applied to

error concealment in video and multiview sequences, making

full use of the there available data.
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Fig. 4. Visual results for test images “Lena” (left) and “Peppers” (right). Top: error pattern. Mid: error concealment by FSE ([6], [7]) with γ = 0.2, ρ̂ = 0.8

and 200 iterations. Bottom: error concealment by MuSE with γ = 0.2, ρ̂ = 0.8, τ = 0.9, NBF = 5 and 40 iterations.
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