
HAL Id: hal-00549232
https://hal.science/hal-00549232

Submitted on 21 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing the Free Distance of Error-Correcting
Variable-Length Codes

Amadou Diallo, Claudio Weidmann, Michel Kieffer

To cite this version:
Amadou Diallo, Claudio Weidmann, Michel Kieffer. Optimizing the Free Distance of Error-Correcting
Variable-Length Codes. International Workshop on Multimedia Signal Processing, Oct 2010, Saint
Malo, France. pp.4. �hal-00549232�

https://hal.science/hal-00549232
https://hal.archives-ouvertes.fr

Optimizing the Free Distance of
Error-Correcting Variable-Length Codes

Amadou Diallo 1, Claudio Weidmann 2, Michel Kieffer 1,3

1 L2S - CNRS - SUPELEC - Univ Paris-Sud

3 rue Joliot-Curie, 91192 Gif-sur-Yvette cedex, France
amadou.diallo@lss.supelec.fr

kieffer@lss.supelec.fr

2 INTHFT, Vienna University of Technology, 1040 Vienna, Austria.
claudio.weidmann@ieee.org

3 on sabbatical leave at LTCI - CNRS - Telecom ParisTech 75013 Paris, France.

Abstract—This paper considers the optimization of Error-
Correcting Variable-Length Codes (EC-VLC), which are a class
of joint-source channel codes. The aim is to find a prefix-free
codebook with the largest possible free distance for a given set of
codeword lengths, ℓ = (ℓ1, ℓ2, . . . , ℓM). The proposed approach
consists in ordering all possible codebooks associated to ℓ on a
tree, and then to apply an efficient branch-and-prune algorithm
to find a codebook with maximal free distance. Three methods for
building the tree of codebooks are presented and their efficiency
is compared.

I. INTRODUCTION

The transmission of multimedia contents over an error-prone

channel with scarce bandwidth usually requires lossless or

lossy compression of the content to remove redundancy. The

introduction of structured redundancy via a channel code is

also required to improve the robustness of the compressed

stream to transmission errors, which are unavoidable when

considering transmission over a wireless channel. This scheme

is well known as separated (tandem) scheme and is motivated

by Shannon’s separation principle [1], [2], which states that

source and channel coding may be optimized separately,

without loss in optimality compared to a joint design. Nev-

ertheless, this result has been obtained under the hypothesis

of a stationary channel, with well-known characteristics at the

transmitter and receiver, which is seldom the case in wireless

communication systems.

These limitations have motivated the development of joint

source-channel (JSC) coding techniques, which aim at de-

signing low-complexity codes simultaneously providing data

compression and error correction capabilities. The hope is to

get joint codes outperforming separate codes when the length

of the codes is constrained, see [3].

Compression efficiency is measured by the ratio of the

average code length to the source entropy [2], while the error-

correction performance may be predicted with an union bound

MMSP’10, October 4-6, 2010, Saint-Malo, France. 978-1-

4244-8112-5/10/$26.00 c©2010 IEEE

using the distance properties of the code, i.e., its free distance

and distance spectrum, see [4].

JSC coding using error-correcting arithmetic coding (EC-

AC) was introduced in [5]. First techniques for optimizing the

free distance of EC-AC are presented in [6], whereas a global

optimization of the free distance using a tree data structure and

an efficient branch-and-prune algorithm is reported in [7]. The

present work aims to apply the ideas of [7] to the optimization

of error-correcting variable-length codes (EC-VLC).

Early work on JSC coding using EC-VLCs includes [8]. In

[9], two methods of constructing EC-VLCs with a desired free

distance are proposed, namely the “code anti-code” construc-

tion and a heuristic construction algorithm. The main problem

of these methods is that the obtained codeword lengths are not

matched to the source statistics. In addition, if the smallest

codeword length is less than the desired free distance, then no

EC-VLC is found.

In this paper, we propose an alternative approach for build-

ing EC-VLCs with large free distance. For a given set of

codeword lengths, ℓ = (ℓ1, ℓ2, . . . , ℓM), which satisfies Kraft’s

inequality
∑M

i=1 2−ℓ1 ≤ 1, and where we assume w.l.o.g.

ℓi ≤ ℓi+1, the proposed algorithms aim to design a prefix-

free codebook with maximal free distance.

Our approach consists in ordering all possible codebooks

associated to ℓ in a tree such that leaves correspond to EC-

VLC codebooks, and (internal) parent nodes correspond to

partially defined codebooks, from which child nodes may be

obtained by specific rules. By construction, the free distance

of a parent node will be an upper bound on the free distances

of its child nodes, so that we may apply an efficient branch-

and-prune algorithm to explore only a part of the tree, thus

reducing the time needed to find the best EC-VLC [7]. Three

methods to structure the search tree are proposed. The first

method, construction by codewords, adds one codeword at

time to a parent node to obtain a child node. It is described

in Section III-B. The second method, construction by bit

planes, is described in Section III-C. It successively determines

bitplanes, i.e., chooses the first bits of all codewords, then

the second bits, and so on. The third method separates the

structure of a prefix-free code tree from the actual labeling

with 0 and 1, by first enumerating canonical trees representing

tree isomorphism classes, see Section III-D.

Before detailing these construction methods, Section II

details some properties of EC-VLCs and recalls the basis of the

tools used to compute the free distance. Experimental results

are provided in Section IV, before drawing some conclusions.

II. COMPUTING THE FREE DISTANCE OF AN EC-VLC

In this section, we briefly recall EC-VLCs and show how

their free distance can be computed. Consider a memoryless

source X with alphabet X = {a1, a2, . . . , aM} and associated

probabilities p = (p1, p2, . . . , pM). To each symbol ai in

X , one associates a codeword ci in a set of codewords

C = {c1, c2, . . . , cM}. The length in bits of ci is ℓi, i =
1, . . . ,M . The codebook C is prefix-free iff the codeword

lengths ℓ = (ℓ1, ℓ2, . . . , ℓM) satisfy Kraft’s inequality

M
∑

i=1

2−ℓ1 ≤ 1, (1)

see [2]. Henceforth we assume (1) is satisfied and call ℓ a

Kraft vector.

The performance of an EC-VLC is determined by its redun-

dancy and its error correcting capability. The redundancy Rc

is the difference between the average codeword length ℓav =
∑M

i=1 piℓi and the source entropy Hc = −
∑M

i=1 pi log2 pi.

Thus

Rc = ℓav − Hc =
M
∑

i=1

piℓi +
M
∑

i=1

pi log2 pi. (2)

The error correcting capability is primarily characterized

by the free distance dfree (a finer characterization is possible

through the distance spectrum). To evaluate the distance

properties of an EC-VLC, a graphical representation of the

code is better suited than a list of codewords. The code C can

be represented as a directed graph Γ(S, T), where S is a set of

states (vertices) and T is a set of transitions (directed edges).

Each transition is labeled with an input symbol in X and a

sequence of output bits. Γ is also called a finite-state encoder

(FSE). In the simple case of an EC-VLC, S contains a single

state s0, from/to which all transitions leave/lead, so T has M
transitions associated to the elements of X . Each transition ui

has an input label I(ui) = ai, an output label O(ui) = ci and

an associated probability P (ui) = pi. Hence

T = {ui = ai/ci : 1 6 i 6 M} . (3)

Fig. 1(a) shows the FSE associated to a source X with alphabet

X3 = {a1 = a, a2 = b, a3 = c} encoded using the codebook

C3 = {c1 = 0, c2 = 10, c3 = 111}.

A better-suited representation of C for distance evaluation is

the bit-clock FSE (B-FSE) in which each transition is labeled

with exactly one output bit and may have an empty input

label. Details on how B-FSE can be obtained from the FSE

are presented in [6]. Fig. 1(b) shows the B-FSE derived from

the FSE of Fig. 1(a).

s0

a/0

b/10

c/111

s0

a/0

b/1

c/1

s1

s2

s3
-/0

-/1

-/1

(a) (b)

Fig. 1. (a) Example of FSE associated to X3 and C3 and (b) its corresponding
bit-clock representation

Let σ(u) be the originating state of some transition u ∈ T
and τ(u) its target state. A path u = (u1 ◦ u2 ◦ · · · ◦ uk) ∈
T k on the graph is a concatenation of transitions that satisfy

σ(ui+1) = τ(ui) for 1 6 i < k (this corresponds to a walk

of length k on the encoder graph). By extension, we define

σ(u) = σ(u1) and τ(u) = τ(uk), as well as I(u) and O(u),
which are the concatenations of the input, respectively output,

labels of u. The probability of a path is P (u) =
∏k

i=1 P (ui).
Finally, ℓ(x) is the length (in symbols or bits) of the sequence

x.

The Hamming distance dH between two equal-length se-

quences x,y is equal to the Hamming weight wH, i.e., the

number of non-zero entries, of their elementwise difference,

dH(x,y) = wH(x−y). If two paths (u1,u2) ∈ T k1 × T k2

are such that ℓ(O(u1)) = ℓ(O(u2)), then we will write

dH(u1,u2) = dH(O(u1), O(u2)).
Definition 1: Let P be the set of all pairs of paths in

(

T k1 × T k2
)

16k1,k2<∞
diverging from s0 and converging for

the first time in s0 with the same length of output labels. Then

dfree is the minimum Hamming distance in P ,

dfree = min
(u1,u2)∈P

dH (u1,u2) . (4)

Definition 2: The distance spectrum [10] in the code do-

main can be represented with a generating function

G (D) =

∞
∑

d=dfree

AdD
d, (5)

where Ad is the average number of pairs of paths in P with

Hamming distance d. In [9], Ad is defined as :

Ad =
∑

(u1,u2)∈P
dH(u1,u2)=d

P (u1) (6)

In recent work [11], we introduced a Pairwise Distance

Graph (PDG), which is a modified and reduced product graph

of the B-FSE and tracks the Hamming distances in P . This

PDG is defined such that the free distance can be found by

applying Dijkstra’s algorithm [12].

The PDG is obtained as follows. Let Sb =
{si : 0 6 i < Mb} be the set of states of the B-FSE.

The product graph associated to Γb(Sb, Tb) is the directed

graph Γ2
b(Sb × Sb, Tb × Tb) with states si,j defined as

si,j = (si, sj) : 0 6 i 6 j < Mb. (7)

For any pair of transitions (u, v) in the original graph, Γ2
b

contains a directed edge e with

e = (u, v), (8)

σ(e) = sσ(u),σ(v) and τ(e) = sτ(u),τ(v). (9)

The weight of the edge e, wH(e) is defined as the Hamming

distance between the outputs of the two transitions u and v,

wH(e) = dH (u, v) . (10)

A directed path e in Γ2
b from the state si,j to the state sm,n,

is a sequence of edges e = (e1 ◦ e2 ◦ · · · ◦ eN) such that

σ(eµ+1) = τ(eµ) for 1 6 µ < N . The weight of this

directed path, wH(e) is

wH(e) =

N
∑

µ=1

wH(eµ). (11)

Form two sets of states, Sdiv and Sconv, in the product graph.

Sdiv is the set of states of Γ2
b in which the outgoing edges

consist of pairs of diverging transitions in T 2
b having the

same originating state in Sb and Sconv is the set of states of

Γ2
b in which the incoming edges consist of pairs of distinct

transitions in T 2
b converging in the same target state in Sb.

Sdiv =
{

si,i : ∃ u 6= v ∈ T 2
b and σ(u) = σ (v) = si

}

, (12)

Sconv =
{

si,i : ∃ u 6= v ∈ T 2
b and τ(u) = τ(v) = si

}

. (13)

s2, 3

s0, 1

soutsin
s0, 2

s0, 3s1, 2

0

1

1

s1, 30

0

1

0

1

0

1

0

1

1

0

1

Fig. 2. Pairwise distance graph derived from the B-FSE in Fig. 1(b)

By merging the states in Sdiv into a single state sin and

Sconv into a single state sout we obtain the PDG. Finding dfree

with this PDG is equivalent to finding a directed path from

sin to sout with minimal weight. This is known as the shortest

weighted path problem in graph theory and can be solved

efficiently using Dijkstra’s algorithm [12], since all weights are

non-negative. The PDG derived from the B-FSE in Fig. 1(b)

is represented in Fig. 2.

The code optimization using the search tree relies on bounds

on the free distance of partially defined codebooks.

Definition 3: An EC-VLC is an incomplete codebook (IC)

if some codewords or parts of codewords are not deter-

mined. For X3, two examples are C1 = {0, 10, xxx} and

C1 = {0, 1x, 1xx}, where x stands for an undetermined

bit. A complete codebook (CC) is an EC-VLC in which all

codewords are determined. {0, 10, 110} is an example for X3.

Definition 4: An incomplete (complete) codebook C1 is

derived from an IC C0 (denoted C0 ⊂ C1) if it is obtained

by specifying some (all) undetermined bits in C0.

If two (incomplete) codebooks C0 and C1 satisfy C0 ⊂ C1,

then upper and lower bounds on the free distance of C1 can

be obtained directly from C0. For this end, the PDG of C0 is

constructed. To get an upper or a lower bound, the weights

of the transitions which contain an undetermined bit (x) are

replaced by 1 or 0, respectively, and then applying Dijkstra’s

algorithm.

III. STRUCTURING THE SEARCH SPACE

A. Trees of EC-VLCs

The approach in this work is to arrange all EC-VLCs for a

given Kraft vector ℓ = (ℓ1, ℓ2, . . . , ℓM) in a tree data struc-

ture, such that every leaf corresponds to a specific EC-VLC

codebook, and (internal) parent nodes correspond to partially

defined codebooks, from which children nodes (codebooks)

may be obtained by specific rules (to be described). This tree

data structure should not be mistaken with the tree representing

a prefix-free VLC. Then we explore this tree using an efficient

branch-and-prune algorithm to find one of the EC-VLCs with

the largest free distance. The key to efficient pruning is

the availability of an upper bound on the free distance of

partial codebooks that is monotonically nonincreasing when

traversing the tree from the root towards the leaves. At each

step of the algorithm, a list of nodes to be explored is sorted

according to the free distance bound and the node with the

largest upper bound is explored first. Thus partial codebooks

leading to potentially large free distance are examined first.

The pruning efficiency can be further improved by using

a lower bound on the free distance as a secondary sorting

criterion, i.e., for equal upper bound, the partial codebook

with the largest lower bound will be extended first (the sorting

criteria should not be inverted, since upper bounds turned out

to be much more discriminating for partial codebooks). The

same approach has been successfully used for the optimization

of error-correcting arithmetic coding [7].

For a given Kraft vector, there is a total of 2
∑ M

i=1 ℓi

codebooks, including such that are not uniquely decodable.

Here, we will only consider prefix-free codebooks and addi-

tionally use symmetry properties to discard some codebooks

known to have that same free distance than codebooks already

considered. Next we outline three methods for structuring trees

of EC-VLCs, i.e., for creating hierarchies of partial codebooks.

B. Construction by codewords

A straightforward method to structure the tree of EC-VLCs

is to add one codeword at a time, starting from an empty

codebook at the tree root, such that child nodes inherit the

partial codebook from their parent node and augment it by

one codeword. Thus the tree will have M levels.

Let us first introduce some notations. For any x ∈ N and

ℓ ∈ N such that ℓ ≥ ⌈log2(x + 1)⌉, Bℓ(x) is the binary

representation of x using ℓ bits. For instance, B3(1) = 001.

Consider some x, ℓ ≥ ⌈log2(x + 1)⌉ as just defined, and A, a

prefix-free codebook. We define by pref(A, x, ℓ) the function

which is zero if A ∪ {Bℓ(x)} is a prefix-free codebook, and

one otherwise. For example, A = {1, 01}. If x = 1 and ℓ = 3,

A∪ {Bℓ(x)} = {1, 01, 001}, then pref(A, 1, 3) = 0. If x = 3
and ℓ = 3, then A∪{Bℓ(x)} = {1, 01, 011} is not prefix, thus

pref(A, 3, 3) = 1. For any ℓ ∈ N, the set VA,ℓ contains all

integers x ∈ N which satisfy pref(A, x, ℓ) = 0:

VA,ℓ = {x ∈ N0 : pref(A, x, ℓ) = 0} (14)

Finally, vj
A,ℓ is the jth element of VA,ℓ.

ℓ1

ℓ2

A1 A2 Aν+1

A1,1 A1,2 A1,λ

0 1 ν

v1
A1,ℓ2

v2
A1,ℓ2

vλ
A1,ℓ2

Bℓ1
(0)

Bℓ1
(0)

Bℓ1
(1)

Bℓ1
(1)

Bℓ1
(ν)

Bℓ1
(ν)

Bℓ2
(v1

A1,ℓ2
) Bℓ2

(v2
A1,ℓ2

) Bℓ2
(vλ

A1,ℓ2
)

Fig. 3. Tree of EC-VLCs for the Kraft vector (ℓ1, ℓ2, . . . , ℓM)

Fig. 3 shows how all possible EC-VLCs corresponding to a

Kraft vector can be ordered in a tree data structure. Since ℓ1 is

the smallest length, the tree is initialized with 2ℓ1 codebooks

which consist of a single codeword Bℓ1(x) of length ℓ1 bits.

These binary representations are shown in Fig. 3 by Bℓ1(0) to

Bℓ1(ν), where ν = 2ℓ1−1. The obtained codebooks are named

A1 to Aν+1. Then, each codebook Ak, 1 6 k 6 ν + 1, is

extended with different possible binary sequences Bℓ2(v
j
Ak,ℓ2

).
In Fig. 3, for example, we suppose that VA1,ℓ2 has λ elements.

Then, there are λ possibilities to extend the codebook A1,

leading to λ new different codebooks denoted by A1,1 to

A1,λ. Then the obtained new codebooks are extended with

codewords with length ℓ2 and so on, until the codewords of

length ℓM are added. Hence, all EC-VLCs corresponding to

the Kraft vector ℓ are obtained as the leaves of the final tree.

Fig. 4 gives an example of a tree of EC-VLCs corresponding

to the Kraft vector ℓ = (1, 2, 3).
Inverting all bits of a EC-VLC does not change its dis-

tance properties. This symmetry property helps reducing the

complexity of the branch-and-prune search and divide by

two the time needed to find the best EC-VLC. To use this

property, one can initialize the tree of EC-VLCs with Bℓ1(0)
to Bℓ1(

ν+1
2 −1). In Fig. 4, only one part of the tree stemming

from A1 = {0} or A2 = {1} is needed to find the best free

distance.
Another useful symmetry property is that if the lengths ℓi

and ℓi+1 are equal, exchanging the codewords i and i+1 does

not change the average distance properties of the correspond-

ing EC-VLC. Hence we can impose a lexicographic order

0

0

10

0

11

0

10

110

0

10

111

0

11

100

0

11

101

l2

l3 l3

l1

1

00

010

1

00

011

1

01

000

1

01

001

1

1

00

1

01

l2

l3 l3

0 1

2 3

6 7 4 5

0 1

2 3 0 1

A1 A2

A1, 1 A1, 2 A2, 1 A2, 2

A1, 1, 1 A1, 1, 2 A1, 2, 1 A1, 2, 2 A2, 1, 1 A2, 1, 2 A2, 2, 1 A2, 2, 2

Fig. 4. Example of a tree of EC-VLCs for Kraft vector ℓ = (1, 2, 3)

in the construction of the codebooks. This may substantially

reduce the time needed to find the best EC-VLCs.

C. Construction by bitplanes

0

1

1

x

xx

0

10

110

0

10

111

0

11

100

0

11

101

1

00

010

1

00

011

1

01

000

1

01

001

A1
A2

A1, 1 A1, 2 A2, 1 A2, 2

A1, 1, 1 A1, 1, 2 A1, 2, 1 A1, 2, 2 A2, 1, 1 A2, 1, 2 A2, 2, 1 A2, 2, 2

1

0

0

x

xx

0

10

11x

0

11

10x

1

00

01x

1

01

00x

x

xx

xxxA

Fig. 5. Example of a tree of EC-VLCs obtained by bit plane construction
for Kraft vector ℓ = (1, 2, 3)

Instead of successively adding codewords, one may build a

codebook and thus obtain a tree of EC-VLCs by successively

determining bitplanes, i.e., by choosing the first bit for all

codewords, then choosing the second bit (where present), and

so on. In doing this, one must make sure that the suffixes of

the codewords with a common prefix satisfy Kraft’s inequality

for the overall code to remain prefix-free. If the codewords for

i ∈ I have a common prefix of length ℓ, then the condition is
∑

i∈I
2ℓ−ℓi 6 1.

Fig. 5 shows an example of generating a tree of EC-

VLCs by bitplanes. In this figure, the codewords of each

EC-VLC are ordered vertically. The tree is initialized with

all possible combinations of the first bit of each codeword

(by taking care that the EC-VLC remains prefix-free). The

symbol x represents the indeterminate bits of each codeword

at a given time. Then the tree is explored by adding all possible

combinations of the next bits. At each step, we check if the

suffixes of codewords having the same prefix satisfy Kraft’s

inequality.

D. Construction using canonical code trees

Any prefix-free EC-VLC can be represented by a labeled

binary code tree with leaves mapped to the M source letters,

such that the codeword for a letter can be read off as the

concatenation of the (binary) labels from the root to the

corresponding leaf. Clearly, if two codewords have a common

prefix this will affect the distance between sequences starting

with those words, regardless of the labels on this prefix. It can

be seen that the structure of the unlabeled code tree already

gives some information about the code, which can be used

to derive upper and lower bounds on the free distance. To

exploit this fact, we group the code trees into isomorphism

(equivalence) classes, which can be arranged on a search tree

(not to be confused with a code tree). Each isomorphism class

can then be explored in turn using variants of the two methods

outlined above.

Definition 5: Two binary trees are isomorphic if they can

be transformed into each other by transposing (flipping) the

children of internal nodes, including the root (i.e. all nodes

stay at the same level, only their horizontal position changes,

assuming the tree is drawn top-down from the root).

Fig. 6 shows an example of two isomorphic trees, while

Fig. 7 shows an example of two non-isomorphic trees.

R R

(a) (b)

Fig. 6. Two isomorphic trees

R R

(a) (b)

Fig. 7. Two non-isomorphic trees

An isomorphism class can be represented by an appropri-

ately defined canonical tree, so the main problem becomes

that of enumerating all canonical trees having a given Kraft

vector ℓ. Such enumerations are classic problems in graph

isomorphism; however, to the best of our knowledge, no

algorithm is directly (and efficiently) applicable to the case

when a Kraft vector is given. Thus we outline one below.

Let T a binary tree, left(T) its left subtree, right(T) its

right subtree (for compactness of notation, we identify the

tree with its root; left and right outgoing edges may be

thought as labeled 0 and 1, respectively). The function ℓ∗(T)
yields the Kraft vector in non-increasing order. For example,

say T has ℓ(T) = (1, 3, 3, 2). Then ℓ∗(T) = (3, 3, 2, 1).
Kraft(ℓ∗(T)) = Kraft(ℓ(T)) =

∑M
i=1 2−ℓi is the Kraft sum.

For example Kraft((2, 1)) = 0.75, Kraft((0)) = 1, where (0)
stands for a single leaf node.

Define the order ≺ as follows:

T1 ≺ T2 iff ℓ∗(T1)≺lex ℓ∗(T2), (15)

where ≺lex is the lexicographic order on integer vectors. E.g.

(1)≺lex(1), (3)≺lex(3, 2, 2), (0)≺lex(1), where (0) stands for

a single-node tree, and (∅) ≺lex (0), where (∅) stands for no

tree, i.e. an empty branch, which is “smaller” than anything.

Definition 6: A binary tree is canonical if it satisfies

left(Ti) ≺ right(Ti) at all its internal nodes Ti (i.e.

recursively from the root down).

A canonical tree may be represented by traversing

it in any well-defined order that visits each internal

node Ti once (preorder, inorder, postorder) and listing

(ℓ∗(left(Ti)), ℓ
∗(right(Ti))).

To obtain a list of all canonical trees, start with the ordered

Kraft vector ℓ∗ and split ℓ∗ − 1 (componentwise subtraction

as in Matlab, since we go one level down, we have to subtract

one from the lengths) into two parts ℓ∗1, ℓ∗2 (which are again

ordered) such that ℓ∗1 ≺lex ℓ∗2 and Kraft(ℓ∗i) 6 1 (i = 1, 2)

with one hitch: ℓ∗1 may be empty (no leaf), so we define

Kraft((∅)) = 1. Repeat recursively for ℓ∗1 (the left subtree)

and ℓ∗2 (right subtree).

[{1},{3,2}] [{},{3,2,1}] [{2},{3,1}] [{2,1},{3}]

[][],[]{}{0} {}{2,1} [][] []{}{0} {1}{2},

[][] []{} {0}{1},

R

[][] []{} {}{0},

[][] []{} {},

Fig. 8. Generating all canonical trees for ℓ = (2, 3, 4)

For example, consider the Kraft vector ℓ = (3, 2, 4). Fig. 8

shows how canonical trees may be obtained from ℓ. We have

ℓ∗−1 = (3, 2, 1). At the first level, represented by the node R,

we have four possible choices for (ℓ∗1, ℓ∗2): (ℓ∗1 = (∅), ℓ∗2 =
(3, 2, 1)), (ℓ∗1 = (1), ℓ∗2 = (3, 2)), (ℓ∗1 = (2), ℓ∗2 = (3, 1))
and (ℓ∗1 = (2, 1), ℓ∗2 = (3)). Each choice leads to one or

more possible canonical trees. At the second level, we have

several ways to split ℓ∗1 − 1 and ℓ∗2 − 1 for the pair (ℓ∗1 =
(1), ℓ∗2 = (3, 2)). We repeat this process for all internal nodes.

This leads to the first branch on the left of Fig. 8 which is the

first obtained canonical tree, represented by Fig. 6 (a).

As mentioned above, the structure of the (canonical) code

tree allows to already compute bounds on the free distance.

For example, the tree in Fig. 7 (a) contains two codewords of

length three, having two common prefix bits. Hence the free

distance of any code derived from this tree will be the upper

bounded by one. Algorithmically, this can be accomplished

by labeling the canonical tree with special labels. Start by

numbering the internal nodes. Then, label the left branch

leaving node i with “Li” and the right branch with “Ri.” Now,

when constructing the PDG for bounding dfree, we may exploit

the knowledge that dH(Li, Rj) = 1 if i = j, while for all other

distances, we insert either 0 or 1, depending on the type of

bound (lower, upper) we want to compute.

For a given Kraft vector ℓ, we first list all canonical trees

and compute an upper bound on the free distance for each tree

(this may also be done for partially known trees). The trees

with the largest upper bound will then be explored first, using

variations of the methods defined in Sections III-B and III-C.

IV. EXPERIMENTAL RESULTS

Experiments were run to display the time savings over an

exhaustive search gained by applying the branch-and-prune

algorithm on a search tree. The results shown in Table I

are for the Kraft vector ℓ = (3, 4, 5, 6), for which the

maximal free distance is dfree = 4. The three methods for

constructing this tree of EC-VLCs described in Sections III-B

(by codeword), III-C (by bitplane) and III-D (using canonical

trees) are compared. The row “# VLCs” shows the number of

intermediate EC-VLCs that were examined by the algorithm.

Clearly, the branch-and-prune algorithm is a promising method

to find a code with maximal dfree for a given Kraft vector.

The main benchmark is the number of intermediate EC-

VLCs that need to be examined, while the execution times are

only partially comparable, due to implementation differences.

Indeed the complexity of computing (a bound on) dfree is the

number of states in the pairwise distance graph (PDG). In

our implementation, when bounding dfree of intermediate EC-

VLCs using bitplanes or canonical trees, the PDG is static

and has maximal number of states, whereas in the approach

by codewords, this number of states is dynamic and can be

as small as two. The rather disappointing performance of the

canonical trees method has two origins: on one hand, for

simplicity we chose to label the trees one bit at a time (i.e.

neither by codewords, nor by bitplanes), which likely increases

the number of trees that need to be examined. On the other,

TABLE I
COMPARISON BETWEEN EXHAUSTIVE SEARCH AND THREE

BRANCH-AND-PRUNE ALGORITHMS

Method Exhaustive Bitplane Canon. tree Codeword

VLCs 72800 4070 3286 1222
Time [s] 2477 222 118 16

listing all canonical trees on the first level of the (branch-and-

prune) optimization tree is suboptimal, because it does not

allow to prune incomplete canonical trees. Other experiments

showed that the bitplane and canonical tree methods are more

efficient for codes having many codewords of the same length.

V. CONCLUSION

In this paper, we propose three methods to build a tree

ordering all prefix-free EC-VLCs with a given Kraft vector

ℓ. First results show that using a branch-and-prune algorithm

on a tree built with one these methods yields fast algorithms

to optimize the free distance, when compared to an exhaustive

search algorithm. Qualitatively, we observed that the method

by codewords works better for Kraft vectors with distinct

lengths, while the bitplane and canonical tree approaches are

more efficient when many codeword lengths are equal.

ACKNOWLEDGMENTS

The authors would like to thank Pierre Duhamel for helpful

discussions and suggestions.

This work was partly supported by the European Com-

mission in the framework of the FP7 Network of Excel-

lence in Wireless COMmunications NEWCOM++ (contract

n. 216715).

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.

Tech. J., vol. 27, pp. 379–423 and 623–656, 1948.
[2] T. M. Cover and J. M. Thomas, Elements of Information Theory. New-

York: Wiley, 1991.
[3] Y. Zhong, F. Alajaji, and L. L. Campbell, “On the joint source-channel

coding error exponent for discrete memoryless systems,” IEEE Trans.

Inform. Theory, vol. 52, no. 4, pp. 1450–1468, 2006.
[4] A. J. Viterbi and J. Omura, Principles of Digital Communication and

Coding. New-York: McGraw-Hill, 1979.
[5] C. Boyd, J. Cleary, I. Irvine, I. Rinsma-Melchert, and I. Witten, “Inte-

grating error detection into arithmetic coding,” IEEE Trans. Commun.,
vol. 45, no. 1, pp. 1–3, 1997.

[6] S. Ben-Jamaa, C. Weidmann, and M. Kieffer, “Analytical tools for
optimizing the error correction performance of arithmetic codes,” IEEE

Trans. Commun., vol. 56, no. 9, pp. 1458–1468, September 2008.
[7] A. Diallo, C. Weidmann, and M. Kieffer, “Optimizing the search of

finite-state joint source-channel codes based on arithmetic coding,”
Eusipco, 2009.

[8] M. Bernard and B. Sharma, “Some combinatorial results on variable-
length error-correcting codes,” ARS Combinatoria, vol. 25B, pp. 181–
194, 1988.

[9] V. Buttigieg, “Variable-length error correcting codes,” PhD dissertation,
University of Manchester, Univ. Manchester, U.K., 1995.

[10] A. J. Viterbi, “Convolutional codes and their performance in commu-
nication systems,” IEEE Trans. Commun. Technol, vol. 19, no. 5, pp.
751–772, 1971.

[11] A. Diallo, C. Weidmann, and M. Kieffer, “Efficient computation and
optimization of the free distance of variable-length finite-state joint
source-channel codes,” Dec 2009, submitted to IEEE Trans. Commun.

[12] M. Gondran and M. Minoux, Graphs and algorithms. Chichester, UK:
Wiley, 1984.

