
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Toward Realtime Side Information
Decoding On Multi-Core Processors

Svetislav Momcilovic, Yige Wang, Shantanu Rane, Anthony Vetro

TR2010-100 December 2010

Abstract

Most distributed source coding schemes involve the application of a channel code to the sig-
nal and transmission of the resulting syndromes. For low complexity encoding with superior
compression performance, graph-based channel codes such as LDPC codes are used to generate
the syndromes. The encoder performs simple XOR operations, while the decoder uses belief
propagation (BP) decoding to recover the signal of interest using the syndromes and some cor-
related side information. We consider parallelization of BP decoding on general-purpose multi
core CPUs. The motivation is to make BP decoding fast enough for realtime applications. We
consider three different BP decoding algorithms: Sum-Product BP, Min-Sum BP and Algorithm
E. The speedup obtained by parallelizing these algorithms is examined along with the trade-
off against decoding performance Parallelization is achieved by dividing the received syndrome
vectors among different cores, and by using vector operations to simultaneously process multiple
check nodes in each core. While Min-Sum BP has intermediate decoding complexity, a ”vec-
torized” version of Min-Sum BP performs nearly as fast as the much simpler Algorithm E with
significantly fewer decoding errors. Our experiments indicates that, for the best compromise be-
tween speed and performance, the decoder should use Min-Sum BP when the side information
is of good quality and Sum-Product BP otherwise.

Multimedia Signal Processing Workshop

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2010
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Toward Realtime Side Information Decoding on
Multi-core Processors

Svetislav Momcilovic†, Yige Wang, Shantanu Rane, Anthony Vetro

Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA 02140, USA.

Abstract— Most distributed source coding schemes involve the
application of a channel code to the signal and transmission
of the resulting syndromes. For low-complexity encoding with
superior compression performance, graph-based channel codes
such as LDPC codes are used to generate the syndromes. The
encoder performs simple XOR operations, while the decoder uses
belief propagation (BP) decoding to recover the signal of interest
using the syndromes and some correlated side information. We
consider parallelization of BP decoding on general-purpose multi-
core CPUs. The motivation is to make BP decoding fast enough
for realtime applications. We consider three different BP decod-
ing algorithms: Sum-Product BP, Min-Sum BP and Algorithm
E. The speedup obtained by parallelizing these algorithms is
examined along with the tradeoff against decoding performance.
Parallelization is achieved by dividing the received syndrome
vectors among different cores, and by using vector operations
to simultaneously process multiple check nodes in each core.
While Min-Sum BP has intermediate decoding complexity, a
“vectorized” version of Min-Sum BP performs nearly as fast as
the much simpler Algorithm E with significantly fewer decoding
errors. Our experiments indicate that, for the best compromise
between speed and performance, the decoder should use Min-
Sum BP when the side information is of good quality and Sum-
Product BP otherwise.

I. INTRODUCTION

Distributed source coding is an attractive option for sensor
networks and surveillance systems in which image or video
is acquired and compressed using low-cost hardware. This
method of compression involves encoding the acquired signal
conditioned on some statistically correlated side information at
the decoder. For example, in the case of video signals, the side
information for the current video frame can be furnished by a
motion compensated version of the previous decoded frame.
Distributed source coding draws on information-theoretic re-
sults on lossless coding of correlated sources [1] and rate-
distortion tradeoffs for encoding of correlated sources [2].
Recent years have seen a revival in distributed source coding,
in particular distributed video coding [3] which has exploited
graph-based channel codes.

Nearly all implementations of distributed compression sys-
tems involve appropriately quantizing the signal of interest,
and then extracting parity or syndrome symbols from it by
applying a channel code. The syndromes constitute the com-
pressed bit stream which is transmitted to the decoding station
where, they are combined with the side information and fed
to a channel decoder. The channel decoder essentially treats

† S. Momcilovic is with INESC-ID TU Lisbon, Portugal. This work was
carried out when he was an intern at MERL.

978-1-4244-8112-5/10/$26.00 c⃝ 2010 IEEE

the side information as an error prone version of the signal
of interest and uses the received syndromes to correct the
errors, thereby recovering the signal of interest. This process,
encompassing the side information decoding as well as the
distortion introduced by quantization, is referred to as Wyner-
Ziv coding. In theory, any channel code can be used in this
way. In practice, however, graph-based channel codes such as
Low-density Parity Check (LDPC) codes or Turbo Codes are
preferred over hard-decision algebraic schemes such as Reed-
Solomon codes or BCH codes owing to very low encoding
complexity, and availability of soft-decision decoding algo-
rithms that achieve better channel coding performance. LDPC
encoding, for example, involves simple XOR operations, while
LDPC decoding involves running a Belief Propagation (BP)
algorithm to recover the signal of interest. An example of
a distributed video coding system using an LDPC code is
shown in Fig. 1. BP decoding is much more complex than
the operations at the encoder.

In this paper, we consider BP decoding on general-purpose
multi-core CPUs. The motivation is to make BP decoding
fast enough for realtime decoding of time-sensitive signals
such as surveillance videos. This is a practical requirement
that has remained relatively unexplored in the literature; the
emphasis has been on pure compression performance. In a
detailed evaluation of the DISCOVER codec [4] on a general
purpose dual core machine, the authors report that, to achieve
high reconstruction quality even for QCIF-sized video frames,
side information decoding of a single frame required 4-8
seconds depending upon the video content. By exploiting
parallelization on multi-core CPUs used on consumer-level
computers, we take a step toward real time decoding of Wyner-
Ziv coded signals. The techniques in this paper also apply
to the recent parallel implementations of BP on Graphics
Processing Units (GPUs) based on NVIDIA’s CUDA-based
parallel computing architecture [5], [6], [7].

LDPC codes were invented by Gallager in the 1960s [8],
but were ignored because of the limited processing capabilities
at the time. They were rediscovered by MacKay and Neal
[9] and since then, have received increased attention due to
their near-Shannon-limit error performance. For distributed
source coding, a class of rate-adaptive codes called LDPC
Accumulate (LDPCA) codes [10] have become very popular.
An LDPCA code is an LDPC code concatenated with an
accumulator. The accumulator allows syndromes to be trans-
mitted incrementally until decoding succeeds. For any set of
accumulated syndromes, the decoding procedure is the same as
that of a conventional LDPC code. In this paper, we focus on

...

sy
nd

ro
m

es

sy
nd

ro
m

es
Low-complexity encoder

DCT,
Quant
& get

bitplanes

bi
tp

la
ne

s

Combine
bitplanes,

get IDCT &
reconstruct

Input Frame

Decoded
Frame

DCT,
Quant
& get

bitplanes Previous decoded
frames

side info

sy
nd

ro
m

es

......
...

Side information decoder

Motion
compensation

Fig. 1. The main components of a distributed video coding system. Decoding
of only one bitplane is shown.

the LDPC decoding, keeping in mind that LDPCA decoding
would need repeated invocations of LDPC decoding.

The remainder of the paper is organized as follows. Sec-
tion II describes the three LDPC decoding algorithms evalu-
ated in this paper. In particular, the calculations performed at
the check nodes and variable nodes are described. Section III
describes how parallelization is achieved by dividing decoding
tasks among multiple processor cores and by incorporat-
ing vector instructions within each core. In Section IV, the
speedup obtained via parallelization of the three BP decoding
algorithms is discussed along with the tradeoff in decoding
performance.

II. LDPC DECODING ALGORITHMS

An (!,#) LDPC code is defined as the null space of
a sparse parity check matrix H!×" , where ! is the code
length, # is the code dimension, and $ ≥ ! − #. The
rate of the LDPC code, % = #/! . An LDPC code can also
be represented by a bipartite Tanner graph with two types
of nodes: variable nodes and check nodes. Each row in H
corresponds to a check node and each column corresponds to
a variable node; the 'th check node is connected to the (th

variable node if and only if H(', () = 1.
Assume that the vectors being encoded are binary. For

image and video applications, non-binary vectors constructed
from blocks of pixels are converted into binary and the
individual bitplanes are provided as inputs to the LDPC
encoder, as shown in Fig. 1. Encoding consists of calculating
the syndromes according to s = Hc where c is the input
binary sequence or bitplane and s is the syndrome vector.
If % < 1, the syndrome vector s represents a compressed
encoded version of the input vector c, and is transmitted to
the decoder.

To initialize side information decoding, the variable nodes
in the LDPC code graph are populated with a hypothesis about
the bits to be recovered. This hypothesis is obtained using a
side information vector v which is correlated to the vector
c which is to be recovered. In the simplest case, a starting
hypothesis for c is the vector v itself. In general, the starting
hypothesis expresses the likelihood that the bit *# in the 'th

variable node has value 0 or 1.
The check nodes are associated with the bits from the

received syndrome vector s. Each check node specifies a
constraint equation satisfied by all the variable nodes con-
nected to it. In BP decoding, messages are passed between

the variable nodes and check nodes with the aim of enforcing
these constraints. The messages propagate the beliefs at a
given node to the other nodes connected to it. After a few
iterations of message passing, the variable nodes should satisfy
the constraints imposed by the check bits, in which case the
decoding is deemed to be successful.

BP decoding can be realized either via a fully paral-
lel flooding-type scheduling, or a fully serial shuffled-type
scheduling [11], or a partial parallel group-shuffled approach
[11]. Here, we focus on the fully parallel scheme in which
the flow of operations is as indicated in Fig. 2. We consider
3 decoding algorithms: Sum-Product BP, Min-Sum BP and
Algorithm E. The decoding operations for each of these three
algorithms are detailed below. As a setup step, using binary
phase shift keying (BPSK), the sequence to be encoded, i.e., c
is mapped into x according to +$ = 1− 2,$. The destination
observes a side information sequence y where -$ = 1−2*$ ∈
{−1, 1}. Denote the set of variable nodes connected to check
node (by & (() = {. : /%& = 1} and the set of check nodes
connected to variable node . as ℳ(.) = {(: /%& = 1}.
Denote using & (()∖. the set & (() with variable node .
excluded, and ℳ(.)∖(the set ℳ(.) with check node (
excluded. The following notation is used for the 'th iteration
of message passing:
0(#)
'$: message from check node 1 to variable node 2

*(#)'$: message from variable node 2 to check node 1
*(#)$: belief of variable node 2
0$: message from the side-information channel for variable
node 2

A. Sum-Product BP Decoding Operations

1) Initialization: Set ' = 1, and the maximum number
of iterations to IMAX. For 1 ≤ 2 ≤ ! , set 0$ =
ln (()!=1∣*!)

(()!=−1∣*!)
. For each 1, 2, set *(0)'$ = 0$.

2) Iterative decoding:
(a) Perform check node calculations, i.e., for 1 ≤ 1 ≤
$ and each 2 ∈ & (1),

0(#)
'$ = 2 tanh−1

⎛

⎝
∏

$′∈% (')∖$

tanh

(
*(#−1)
'$′

2

)⎞

⎠ (1)

For details about the derivation of the above formula,
the reader is referred to [12].
(b) Perform variable node calculations, i.e., for 1 ≤ 2 ≤
! and each 1 ∈ ℳ(2),

*(#)'$ = 0$ +
∑

'′∈ℳ($)∖'

0(#)
'′$ (2)

3) Hard decision and stopping criterion test:

∙ Set *(#)$ = 0$+
∑

'∈ℳ($) 0
(#)
'$. Create ĉ(#) = [,̂(#)$]

such that ,̂(#)$ = 1 if *(#)$ < 0, and ,̂(#)$ = 0
otherwise.

∙ If Hĉ(#) = s or if the number of iterations has
reached IMAX, stop decoding and go to Step 4.
Otherwise set ' := '+ 1 and go to Step 2.

4) Output ĉ(#) as the decoded codeword.

Start t=1
Get tth side info
and syndrome

vectors

iteration
counter

i = 1

check
node

operations

check
equations
satisfied?

variable
node

operations

maximum
iterations

done?

all
vectors

decoded?
Stop

t = t + 1

i = i + 1

y

y
n

nTo parallelize, use
vector instructions

within a core

To parallelize, divide
syndrome vectors

among cores

ny

Fig. 2. A flow diagram containing a high-level summary of the sequence of operations performed in BP decoding.

B. Min-Sum BP Decoding Operations

The Min-Sum algorithm [13] is a simplified version of Sum-
Product BP. All decoding steps are the same as those in Sum-
Product BP except the check node update in (1), which is now
approximated by

0(#)
'$ =

∏

$′∈% (')∖$

sgn(*(#−1)
'$′) ⋅ min

$′∈% (')∖$
∣*(#−1)

'$′ ∣ . (3)

As decoding primarily involves additions and comparisons,
Min-Sum BP is less complex than Sum-Product BP.

C. Algorithm E Decoding Operations

Algorithm E was proposed and analyzed in [14], [15]. It
quantizes all the messages in Sum-Product BP to −1, 0, or
+1 and can be carried out as follows:

1) Initialization: Set ' = 1 and the maximum number of
iteration to 4MAX. For each 1, 2, set *(0)'$ = -$.

2) Iterative Decoding:
(a) Perform check node calculations as follows: For 1 ≤
1 ≤ $ and each 2 ∈ & (1),

0(#)
'$ =

∏

$′∈% (')∖$

*(#−1)
'$′

(b) Perform variable node calculations as follows: For
1 ≤ 2 ≤ ! and each 1 ∈ ℳ(2),

*(#)$' = sgn

⎛

⎝5(#) ⋅ -$ +
∑

'′∈ℳ($)∖'

0(#)
'′$

⎞

⎠

where sgn(+) takes values -1, 0 or +1 for + < 0, + = 0,
and + > 0 respectively, and 5(#) is a weight chosen to
optimize performance. For example, in [15], 5(1) = 2
and 5(#) = 1 for ' ≥ 2 is found to optimize the decoding
performance for a regular (3, 6) LDPC code.

3) Then, for the stopping criterion test, evaluate the variable
node beliefs as

*(#)$ = sgn

⎛

⎝5(#) ⋅ -$ +
∑

'′∈ℳ($)

0(#)
'′$

⎞

⎠

and proceed as in the Sum-Product BP algorithm
In terms of processing time per iteration, Algorithm E is

faster than Sum-Product BP and Min-Sum BP owing to its
simpler decoding operations. In the high signal-to-noise ratio
(SNR) regime, where the side information is accurate and
only a few bits are estimated in error, a even faster algorithm
called Active-Set Algorithm E, or “Fast Algorithm E” has been
proposed [16]. The rationale is that when SNR is large, most

messages converge quickly. Thus, it is not necessary to update
every variable/check node at each iteration. The decoder just
checks whether the messages entering a node are different
from their values in the previous iteration. If none of the
messages has changed, the node is not updated and overall
decoding time is reduced with no loss of performance.

III. IMPLEMENTATION ON MULTI-CORE CPUS

A. Processor-level Parallelization

To speed up the execution of BP decoding, two kinds of
parallelism are used. At the level of the processor cores, a
single program/multiple data (SPMD) approach is used. This
approach is useful in scenarios where the same set of instruc-
tions is executed in multiple iterations on different data. As
there are no data dependencies between the iterations, they can
be implemented independently and in any order on separate
processor cores. The parallelization of such loops requires
the creation of multiple threads and new thread contexts, by
means of replication of the variables, e.g., counters, that will be
private in each thread. All other variables are shared between
the threads, and may be accessed concurrently by multiple
threads. The creation of new thread contexts, and simultaneous
access of the same variables by different processor cores
results in a parallelization overhead. The speedup obtained
via parallel execution needs to be large enough to overcome
the effect of parallelization overhead.

In BP decoding, as shown in Fig. 2, there are loops at three
levels. The top-most loop is on the “block” level, where the
decoding algorithm is repeated for each received $ -length
block of syndromes. With the SPMD approach, this loop can
be executed in parallel by allocating the syndrome blocks to
the multiple cores, as there are no data dependencies between
blocks. The mid-level loop is on the iteration level, where
at each iteration, messages are exchanged between variable
nodes and check nodes. The exchanged messages are different
in each iteration and dependent on the messages from the
previous iteration. Therefore, they can not be executed in
any arbitrary order, and this loop cannot be parallelized via
the SPMD approach. The innermost-level consists of two
loops for computing the variable node messages and check
node messages. In these loops, the same calculations are
performed at each variable or check node, and with small
modifications, these loops can be executed in parallel using
the SPMD approach. The proposed scheme parallelizes the
check node loop rather than the variable node loop, because
check node processing was found experimentally to occupy
a larger fraction of the processing time. Vector instructions

Transpose

& Reoder X

X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

C
he

ck
 n

od
es

Variable nodes connected
to each check node

Check nodes
128 b

32-bit
message

128 b 128 b 128 b

Va
ria

bl
e

no
de

s
Fig. 3. Remapping the node indices to enable simultaneous processing of
multiple check nodes. In this example, each small square is a 32-bit message.

are used in order to achieve parallelization of the check node
calculations within a processor core. This is elaborated below.

B. Parallelization via Vector Instructions

Vector instructions allow each processor core to process sev-
eral check nodes simultaneously, thereby reducing the process-
ing time per iteration. In order to exploit vector instructions
to the fullest, it is necessary that the calculation performed at
each check node is simple and similar to the calculations per-
formed at every other check node. Unfortunately, Sum-Product
BP evaluates the tanh(⋅) function via direct computation or
a table lookup, for which there is no efficient implementation
using vector instructions. Also, Fast Algorithm E processes
a node only if the messages entering it have changed since
the last iteration and this non-uniformity makes it unsuitable
for vector instructions. On the other hand, Min-Sum BP and
Algorithm E can both use vector instructions because, in these
algorithms, every check node is processed in nearly the same
way as every other check node. One interesting observation,
elaborated in Section IV is that, by using vector instructions
for Algorithm E, the speedup obtained is enough to rival the
speed of Fast Algorithm E.

To apply vector instructions, it is necessary to remap the
messages between the check nodes and variable nodes, as
shown in Fig. 3. In particular, it is necessary to arrange the
messages such that they occupy 7 -bit blocks, where 7 is
the size of the largest block on which additions and logical
operations can be performed. Thus, for a given data-type,

No. of calculations in parallel =
7

sizeof(datatype)

Fig. 3 shows the data organization in memory for the case
in which 7 = 128 and the messages are each 32 bits long,
allowing a block of 4 check nodes to be processed in parallel.
Each individual square contains a message from a variable
node to the appropriate check node. The transposition ensures
that messages related to a given check node are placed in
successive locations in memory. Reordering as shown in the
figure provides the most efficient way to process groups of
4 check nodes while inserting a minimum number of neutral
messages. For the chosen word size of 32 bits, these neutral
messages, marked “X” are placed to ensure that the number
of messages being processed is a multiple of 4. The value of
these neutral messages is set to zero for additions and to one
for multiplications so that they do not affect the calculations.

TABLE I

DIMENSIONS OF LDPC MATRICES

Matrix Size #edges rate
H! 5940×1020 32635 0.83
H" 5940×3000 32635 0.49
H# 5940×5340 32635 0.1

To implement parallel check node operations in the above
fashion for Min-Sum BP, the SSE1 Vector Instruction Set from
Intel is used. In Algorithm E, on the other hand, the check node
calculations involve messages that take values -1 or 0 or +1
and they are implemented entirely using logical operations on
,ℎ9:, i.e., 8-bit values. Thus, in the vector implementation of
Algorithm E, 16 check nodes can be processed simultaneously.

IV. EXPERIMENTAL RESULTS

All experiments were conducted on an Intel Core 2 Quad
CPU Q9650 running at 3 GHz with 4 GB of RAM. The
OpenMP Application Program Interface Version 3.0 [17] was
used to implement parallelization of various BP decoding
algorithms. This API provides C/C++ compiler directives and
library routines to support shared-memory parallelism. The
simulations were conducted on nine LDPC codes at various
rates; we report results on the three largest codes in this paper.
The parity check matrices are labeled H+, H, and H- , and
their dimensions are shown in Table I. These codes are all
derived from a single LDPCA code with 5940 variable nodes.
The code dimensions are motivated by a distributed video
compression application2. The syndrome vectors have to be
decoded with the help of side information, e.g., the previous
video frame or a motion compensated version of it.

Video studies have shown that a Laplacian model is close to
the observed dependency between the source bitplane and the
side information bitplane. In this work, we are interested pri-
marily in speedup from parallelization per iteration of LDPC
decoding, not in choosing the LDPC code with the smallest
number of check nodes or the LDPC code that converges in the
smallest number of iterations. Since the parallelization speedup
per iteration is independent of the channel model used, we
assume a much simpler Binary Symmetric Channel (BSC)
model between the source bitplane and the side information
bitplane. Thus, if the crossover probability of the BSC is too
large, the LDPC code will not be able to recover the source
bitplane from the side information bitplane even after the
maximum number of iterations, 4MAX, is reached. In all our
simulations, 4MAX = 100.

First, consider the speedup obtained simply by dividing all
the received syndrome vectors among the available processor
cores. As shown in Fig. 4, the decoding time is the least
for Algorithm E and the highest for Sum-Product BP. These

1SSE = Streaming SIMD Extensions
2Consider a video frame of size 720×528 pixels. An 8×8 blockwise Dis-

crete Cosine Transform (DCT) is applied to the frame, each DCT coefficient is
separately quantized and the resulting bitplanes are input to the LDPC encoder.
For a single LDPC code to be applied to a particular DCT coefficient, the
number of variable nodes in the LDPC code must be 720×528

8×8 = 5940. There
is one LDPC code for every coded bitplane of each of the 64 DCT coefficients,
and each of these codes transmits a syndrome vector to the decoder.

1 core 2 cores 3 cores 4 cores
0

2

4

6

8

10

12

14

16

18
D

ec
od

in
g

Ti
m

e
(m

s)

S
um

 P
ro

du
ct

S
um

 P
ro

du
ct

S
um

 P
ro

du
ct

S
um

 P
ro

du
ct

M
in

S
um

M
in

S
um

M
in

S
um

M
in

S
um

LU
T

LU
T

LU
T

LU
TA

lg
E

A
lg

E

A
lg

E

A
lg

E

Sum-Prod
0

0.5

1

1.5

2

2.5

3

3.5

D
ec

od
in

g
S

pe
ed

up
 F

ac
to

r

1
co

re

1
co

re

1
co

re

1
co

re

2
co

re
s

2
co

re
s

2
co

re
s

2
co

re
s

3
co

re
s

3
co

re
s

3
co

re
s

3
co

re
s

4
co

re
s

4
co

re
s

4
co

re
s

4
co

re
s

LUT MinSum Alg E
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 S
pe

ed
up

Sum-Prod LUT MinSum Alg E

1
co

re
2

co
re

s
3

co
re

s
4

co
re

s

1
co

re
2

co
re

s
3

co
re

s
4

co
re

s

1
co

re
2

co
re

s
3

co
re

s
4

co
re

s

1
co

re
2

co
re

s
3

co
re

s
4

co
re

s

Fig. 4. As new cores are added, the speed of BP decoding increases, but parallelization overhead prevents a normalized speedup of one per core.

results are for the parity check matrix H- with a low BSC
crossover probability of 0.05. For each algorithm, the decoding
times are averaged over 1000 decodings, i.e., the code is run
1000 times with the same syndrome vectors but with side
information randomly perturbed according a BSC. The bar
labeled “LUT” refers to an implementation of Sum-Product
BP in which the tanh(⋅) function is read from a look-up table
with 32 bit precision. The LUT variant runs faster than Sum-
Product BP, which uses a C-math function to compute tanh(⋅)
but has worse performance than Sum-Product BP, i.e., a larger
number of uncorrected errors. The second bar graph plots the
decoding speedup factor ;(-) while the third graph plots the
normalized speedup ;̄(-). These factors are given by:

;(-) =
Decoding time with 1 core
Decoding time with - cores

, ;̄(-) =
;(-)

-

where - is the number of cores used in parallel. The results
show that, as more cores are added, the normalized speedup
reduces because of the parallelization overhead associated with
replicating thread contexts, and the contention that occurs
when two threads access the same portions of memory.

Now, we describe the benefits of using vector instructions
which speeds up the check node decoding operations within
each core, as explained in Section III-B. Note that, for a
fixed BP decoding algorithm, using vector instructions does
not change the number of iterations needed for convergence,
thus the coding performance of a BP decoding algorithm and
its “vectorized” version are identical; the latter version just
executes faster per iteration. As explained in Section III-B,
Min-Sum BP and Algorithm E can be profitably vectorized as
shown in Figs 5(a), (b) for the code matrices H+ and H, .

Firstly, the coding performance of Sum-Product BP is the
best, followed by Min-Sum BP, followed by Algorithm E. This
is expected because the latter two algorithms are approxima-
tions of Sum-Product BP. Further, as the crossover probability
of the BSC between the source and side information bitplanes
increases, the probability of uncorrected errors increases until
it plateaus at 1, which means that there are undetected or
uncorrected errors in every decoded vector. As there are more
check nodes in H, than H+, the plateau occurs at a higher
crossover probability for the H, code. When the crossover
probability increases, more BP iterations are needed to recover
the encoded vector, so the decoding time increases until the
number of iterations maxes out at 100. A fact that is not

visible from these plots is that Sum-Product BP converges in
the fewest iterations but each iteration consumes more time.

Secondly, recall that Fast Algorithm E executes fewer
iterations by first checking whether a node needs updating. The
decoding time graphs show that, by using vector instructions in
the plain Algorithm E, the decoding speed approaches and, in
some cases, exceeds that of Fast Algorithm E. Note that, owing
to the conditional checks, Fast Algorithm E is not suitable for
implementation using vector instructions.

Thirdly, Min-Sum BP provides intermediate decoding per-
formance and decoding speed between Sum-Product BP and
Algorithm E. Interestingly however, with vector instructions,
the Min-Sum BP decoding time is nearly as small as that of Al-
gorithm E while retaining its superior decoding performance.
The reason for this is that, check node operations consume 55-
65% of the decoding time in Min-Sum BP, but only 35-45% of
the decoding time in Algorithm E. Since vectorization reduces
check node processing time, Min-Sum BP benefits more from
vectorization than Algorithm E. We conclude that Vector Min-
Sum BP is nearly always to be preferred over Algorithm E
for side information decoding. When the crossover probability
is low, e.g., while decoding the higher significant bitplanes
of image pixels, Vector Min-Sum BP is to be preferred over
Sum-Product BP because it gives the same performance in less
time. However, when the crossover probability increases, e.g.,
while decoding the middle bitplanes of image pixels, Sum-
Product BP gives significantly fewer decoding errors and must
be preferred over Min-Sum BP even though it is slower.

V. DISCUSSION

To see the decoding time results in the context of a video
viewing application, consider the following very rough calcu-
lation: Suppose that Min-Sum BP decoding is performed and
we can tolerate error-prone decoded blocks with probability
less than 0.01. From Fig. 5, this requirement is satisfied for
BSC crossover probability 0.05 for the code H, , for example.
The decoding time for vector Min-Sum BP at this probability
is 8.8 ms. With an 8 × 8 block DCT transform, there are 64
coefficients to be coded. However, not all bitplanes of each
DCT coefficient are significant. At 40 dB quality in natural
images, we found experimentally that, out of 64 × 8 = 512
bitplanes, it is necessary to code about 300 bitplanes. Thus,
300 Min-Sum BP decodings must be carried out per video
frame. For the code H, , this gives a total decoding time of

0.005 0.01 0.015 0.02 0.025

10
-2

10
-1

10
0

BSC crossover probability

R
es

id
ua

l b
lo

ck
 e

rro
r p

ro
ba

bi
lit

y

Sum-Product BP
MinSumBP
Alg E

0.01 0.015 0.02 0.025
0

10

20

30

40

50

60

70

BSC crossover probability

D
ec

od
in

g
Ti

m
e

(m
s)

Sum-Product BP
MinSumBP
Vector MinSumBP
Fast Alg E
Vector Alg E

(a) Parity Check Matrix H!, code rate 0.83

0.04 0.06 0.08 0.1 0.12

10
-2

10
-1

10
0

BSC crossover probability

R
es

id
ua

l b
lo

ck
 e

rro
r p

ro
ba

bi
lit

y
Sum-Product BP
MinSumBP
Alg E

0.02 0.04 0.06 0.08 0.1 0.12
0

10

20

30

40

50

60

70

80

BSC crossover probability

D
ec

od
in

g
Ti

m
e

Sum-Product BP
MinSumBP
Vector MinSumBP
Fast Alg E
Vector Alg E

(b) Parity Check Matrix H" , code rate 0.49

Fig. 5. A comparison of the speeds and performance of Sum-Product BP, Min-Sum BP and Algorithm E at various crossover probabilities.

300× 0.0088 = 2.64 seconds. This implies that the decoding
speed is 0.38 frames/s for standard definition video, or 1.52
frames/s for CIF video, or 6.06 frames/s for QCIF video
on a general-purpose Quad Core machine. There are many
simplifying assumptions made above: Firstly, different code
matrices would be required for each bitplane. More reliable
bitplanes would decode faster than H, and less reliable bit-
planes would decode slower. Secondly, motion compensation
is needed to generate good side information and this incurs
additional delay. Nevertheless, it is encouraging to see that re-
altime Wyner-Ziv decoding is within reach on multicore CPUs
and certainly on massively parallel GPUs. Our current work
consists of combining parallelized BP decoding, parallelized
motion compensation and improved side information decoding
into a realtime distributed video decoder. In addition to side
information decoding, the benefits of parallelization and vector
instructions reported herein are expected to be useful in many
other applications that use BP decoding - disparity estimation
in multiview images/video, traditional digital communications,
and speech recognition to name a few.

REFERENCES

[1] D. Slepian and J. K. Wolf, “Noiseless Coding of Correlated Information
Sources,” IEEE Trans. Information Theory, pp. 471–480, July 1973.

[2] A. D. Wyner and J. Ziv, “The rate-distortion function for source coding
with side information at the decoder,” IEEE Trans. Information Theory,
vol. 22, pp. 1–10, Jan. 1976.

[3] B. Girod, A.Aaron, S. Rane, and D. Rebollo-Monedero, “Distributed
video coding,” Proceedings of the IEEE, Special Issue on Advances in
Video Coding and Delivery, vol. 93, no. 1, pp. 71–83, Jan. 2005.

[4] X. Artigas, J. Ascenso, M. Dalai, S. Klomp, D. Kubasov, and M. Ouaret,
“The DISCOVER codec: Architecture, techniques and evaluation,” in
Picture Coding Symposium, Lisbon, Portugal, Nov. 2007.

[5] S. Grauer-Gray, C. Kambhamettu, and K. Palaniappan, “GPU imple-
mentation of belief propagation using CUDA for cloud tracking and
reconstruction,” in 5th IAPR Workshop on Pattern Recognition in Remote
Sensing (PRRS), Tampa, FL, Dec. 2008.

[6] S. Wang, S. Cheng, and Q. Wu, “A parallel decoding algorithm of LDPC
codes using CUDA,” in Proc. Asilomar Conference on Signals, Systems,
and Computers, Pacific Grove, CA, Oct. 2008.

[7] A. D. Copeland, N. B. Chang, and S. Leung, “GPU accelerated decoding
of high performance error correcting codes,” in 2009 High Performance
Embedded Computing (HPEC), Lexington, MA, Sept. 2009.

[8] R. G. Gallager, “Low-density parity-check codes,” M.I.T. Press, 1963.
[9] D. J. MacKay and R. M. Neal, “Near Shannon-limit performance of low

density parity check codes,” Electronics Letters, vol. 32, pp. 1645–1646,
1996.

[10] D. Varodayan, A. Aaron, and B. Girod, “Rate-adaptive codes for
distributed source coding,” EURASIP Signal Processing Journal, vol. 86,
no. 11, pp. 3123–3130, Nov. 2006.

[11] J. Zhang and M. Fossorier, “Shuffled iterative decoding,” IEEE Trans-
actions on Communications, vol. 53, no. 2, pp. 209–213, 2005.

[12] F. R. Kschischang, B. J. Frey, and H. Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Trans. Information Theory, vol. 47, pp.
498–519, Feb. 2001.

[13] N. Wiberg, Codes and Decoding on General Graphs. Studies in Sci.
and Technol., Dissertation no. 440, Linköping, Sweden, 1996.

[14] M. Mitzenmacher, “A note on low density parity check codes for
erasures and errors,” in SRC Tech. Note 1998-017, COMPAQ, 1998.

[15] T. J. Richardson and R. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Trans. Information
Theory, vol. 47, pp. 599–618, Feb. 2001.

[16] Y. Wang, J. S. Yedidia, and S. C. Draper, “Multi-stage decoding of LDPC
codes,” in IEEE Int. Symp. Inform. Theory, June 2009, pp. 2151–2155.

[17] OpenMP Version 3.0 Application Program Interface. OpenMP Archi-
tecture Review Board, May 2008.

	Title Page
	Title Page
	page 2

	Toward Realtime Side Information Decoding On Multi-Core Processors
	page 2
	page 3
	page 4
	page 5
	page 6

