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Abstract—We propose a compression framework for four-
channel images, composed of color (RGB) and near-infrared
(NIR) channels, which exploits the correlation between thevisible
and the NIR information. The high-frequency components of both
visible and NIR scene representations are strongly correlated.
By encoding only the DCT components that differ above a
chosen threshold, we significantly improve compression ratios
for a given quality level. To evaluate our proposed method, we
compare our results with standard JPEG compression, as well
as PCA-based approaches that are often employed to compress
multispectral images. Our experiments show that applying our
proposed method yields the same quality at a lower bit-rate,
compared to conventional JPEG and PCA-based algorithms.

I. I NTRODUCTION

Silicon-based camera sensors exhibit significant sensitivity
beyond the visible spectrum (400-700 nm). They are able
to capture wavelengths up to 1100 nm. Near-infrared (NIR)
is the part of the radiation spectrum that ranges from 700
to 1100 nm. Even though this radiation can be captured by
silicon, it is usually considered noise and is discarded by fixing
a filter (hot-mirror) in front of the sensor. However, retaining
instead of eliminating NIR information improves certain tasks
in digital photography and computer vision, such as image
enhancement [1], scene categorization [2], and illumination
estimation [3]. Luet al. in [4] propose a color filter array
(CFA) design that can be employed to simultaneously capture
NIR information in addition to red, green, and blue (RGB)
channels in the visible part of the spectrum on a single sensor.

Compared to conventional color imaging, these emerging
applications and this acquisition approach produce larger
amounts of data to be transmitted, processed, and stored effi-
ciently. Although many multispectral compression algorithms
have been proposed [5], [6], [7], [8], to the best of our
knowledge, the compression of RGB and NIR has not been
specifically addressed so far. Therefore we propose a novel
framework for RGB+NIR (RGBN) image compression.

There exist several compression algorithms for three-
channel RGB images. Currently, one of the vastly employed
lossy compression methods is the JPEG standard [9]. This
method compresses images by quantizing the Discrete Cosine
Transform (DCT) coefficients, and it yields acceptedly good
results for visible images. The color images are first trans-
formed into the YCbCr color space. The luminance component

Fig. 1. Top row: Color (RGB) images. Bottom row: Near-infrared (NIR)
images of the same scene. While the image intensities between the two scene
representations differ, we can immediately notice that theimages are from
the same scene due to the similar edge information.

(Y) is compressed with a quality better than the chrominance
components, as the human visual system is less sensitive to
high-frequency loss in chromatic components. In the case of
four-channel (RGBN) images, JPEG can be used to compress
RGB channels, and it can also be generalized to compress
the fourth channel (N) (i.e., NIR as a one-channel gray-scale
image is treated like Y in YCbCr and is encoded in the same
way).

JPEG 2000 [10] differs from JPEG in the transform domain
employed. Instead of DCT, multi-level discrete wavelet coeffi-
cients are computed for each channel. JPEG 2000 outperforms
JPEG in terms of quality at very low bit-rates. Nevertheless,
we chose to use JPEG instead of JPEG 2000 for two reasons.
First, we are interested mostly in moderate compression, as
used in most photographic applications. Second, most cameras
still allow only JPEG compression due to the higher computa-
tional complexity that JPEG 2000 encoding entails. However,
the proposed framework could easily be applied in the wavelet
domain.

Another approach to compressing RGBN four-channel im-
ages is to employ a multispectral compression framework.
Pennebakeret al. [11] and Abouslemanet al. [7] propose
to extend two-dimensional JPEG or JPEG 2000 into a three-
dimensional version for multispectral compression. Fowler and
Rucker [5] argue against the performance of these compression



Fig. 2. An example of high frequency information of two different patches in the N (near-infrared) and the Y (luminance) channels. The squares with similar
information in both channels have a green border and those with dissimilar information have a red border. The top row shows the squares in the spatial
domain, and the bottom row the corresponding DCT coefficients.

approaches, because such methods do not take the specific
characteristics of such data into account. To explore this
potential, [5], [6] and [12] employ a two-stage process. First,
the spectral correlation is removed, then the spatial correlation
is exploited. In the first stage, a number of transforms are used
to de-correlate the spectral data. Principal Component Analysis
(PCA) [13] and Vector Quantization (VQ) [8] are the most
commonly used methods in multispectral compression. One
of the drawbacks of using a single transform matrix computed
for a given database is that the compression performance
depends on how well the database represents the world and
how close the test image is to the database. For the second
stage, in the spatial dimension, blocks of the transformed
bands can be compressed by using a variety of well-known
image compression methods such as DCT and discrete wavelet
transform (DWT) quantization [5].

In this paper, we explore the potential of incorporating
the specific characteristics of the NIR representation and
their relations to the visible counterpart into the compression
framework. As the NIR and RGB images represent the same
scene, despite the many differences between them, there still
exist many similarities in edge information and image details
(see Figure 1 for illustration). Therefore, we propose an
efficient compression framework that exploits the correlation
and similarities and removes the redundancy between these
channels.

Due to the specific nature of our multispectral images
that are composed of three visible (RGB) channels and one
invisible (N), we use an existing method, JPEG, to compress
the RGB image. As a result, if only the visible information
is needed, it can be decompressed without any additional
computational overhead. If only the NIR image is desired, we
decompress Y and N. This is another advantage of our method

over PCA-based compressions where all four channels always
need to be decompressed.

In order to compress the N channel, we study the similarities
between this channel and Y. We analyze the NIR and lumi-
nance correlation in the DCT domain, and we detect highly
correlated patches in these channels. As the Y channel is
already coded by normal JPEG, we completely remove the
similar information in coding the N channel. When we re-
construct the N channel, the missing information is recovered
from the decompressed Y channel.

We compare the performance of our algorithm to the
results of conventional JPEG on four channels and PCA-based
multispectral compression. We observe that our proposed
framework achieves the same quality with a lower bit-rate. For
the same bit-rate, our proposed method yields an improvement
up to 5 dB in PSNR results compared to JPEG for NIR images.

In Section II, we study the correlation between the N and Y
channels. We describe our compression framework in Section
III. We compare our algorithm with PCA-based multispectral
compression and conventional JPEG and present the results in
Section IV. Section V concludes the article.

II. RGB+NIR IMAGE ATTRIBUTES

Studying RGB and NIR representations of different natural
scenes, we observe that although a large portion of blocks look
different in the NIR and RGB images, a significant amount of
these blocks contain similar details in the N channel as they
do in Y; and the main dissimilarity is the difference in their
average pixel intensities. For instance, the blocks markedwith
green borders in Figure 2 show very similar edges, whereas
the block in the N channel has pixel intensities different from
Y. As edges mainly contribute to high-frequency information,
the high-frequency coefficients of the Y channel are strongly



(a)
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Fig. 3. The block-diagram of our proposed compression framework.

correlated to those of N. The difference in DCT coefficients
is very small in the high-frequency part of the spectrum.

The second group of blocks are those that look significantly
different in N and Y channels. In these blocks, both texture
and pixel intensities differ in the visible image and the
NIR representation, due to different material and illuminant
characteristics in the different wavelength bands. An example
of this kind of image block and the difference between Y and
NIR coefficients in the DCT domain are shown in Figure 2 in
red.

III. PROPOSEDRGB+NIR COMPRESSIONSCHEME

Many transform-based compression algorithms [10], [9]
take advantage of the fact that natural images can be sparsely
represented in the frequency domain. In this paper, we follow
the same approach to efficiently code the frequency informa-
tion of RGB and NIR images.

In RGB image compression, the most commonly used color
encoding is YCbCr, where Y stands for luminance and Cb and
Cr for chrominance (blue-yellow and red-green, respectively).
The reason is that the spatial and chromatic information of
natural RGB images are well separated in the YCbCr space.
The different channels are de-correlated, and little spectral
redundancy exists between the different channels. Moreover,
the human visual system is much less sensitive to distortions
in high-frequency chromatic information, which allows us to
strongly compress the chrominance channels without affecting
image quality.

Considering the advantages of YCbCr, we first transform
the RGB image to YCbCr and then compress them according
to the JPEG standard. This approach includes computing the
representation ofN×N blocks in the DCT domain, quantizing
the DCT coefficients, and then applying an entropy coder to



the quantized coefficients. We use the 8-bit Huffman coding
to encode the data.

To exploit the spectral redundancy between the Y channel
and the NIR image, we consider the frequency information
of the NIR block and its visible counterpart. As can be seen
in Figure 2, many of the regions in these two representations
share almost the same “texture” information. Hence, we need
to code the texture information of these blocks only once and
then use it to reconstruct both representations.

We assume that blocks with similar textures in N and Y
behave similarly in high-frequency bands. Let us refer to the
DCT coefficients of a given block as (BDCT|B ∈ {Y,N}). We
consider the firstL×L block of coefficients as low-frequency
(LB) and the rest are considered as high-frequency components
(HB). For each block, the energy of difference between N and
Y high-frequency components is computed as follows:

d =
V
∑

i=1

(HN(i)−HY(i))
2, (1)

whereV is the number of coefficients inHB.
For a given block, ifd is smaller than a predefined threshold

(θ), then this block is considered to contain the same texture in
Y and N (Figure 2, the green block). In this case, compressing
the high frequency of both N and Y leads to the transfer of
redundant information. Thus, we remove the high frequencies
and quantize only the low-frequency coefficients for N, while
we keep and quantize all DCT coefficients of the Y channel.
At the decoder, the missing high-frequency coefficients of
NIR is estimated using the corresponding information in the
luminance.

However, if the energy of difference (d) exceeds the thresh-
old, there is no redundancy between Y and N in that block
(Figure 2, the red block). Thus, all DCT coefficients for bothof
these channels have to be coded and stored. In all cases, DCT
coefficients are quantized and then coded using the Huffman
entropy coder.

The quantization table for an NIR block can be written as
follows:

Qn =

{

QL if d ≤ θ

QY if d > θ,
(2)

where QY is the quantization table proposed in the JPEG
standard for Y, andQL is the firstL×L sub-matrix ofQY . The
schematic of the proposed framework is illustrated in Figure 3.

The important parameter of our compression framework is
θ. The threshold defines how closeHN andHY need to be so
that we can consider the corresponding blocks to be similar.
Clearly, choosing a lower threshold means less blocks are
counted as similar in both N and Y channels. Thus, less high-
frequency information is removed from N, which results in
a lower compression ratio and higher reconstruction quality
of NIR. Hence, to achieve the best performance, we propose
to setθ as a function of the decompressed image quality. In
the next section, we explain how we deriveθ based on our
training set.

IV. EXPERIMENT

We use a dataset of 227 images [2]. Each image is composed
of four channels, R, G, B, and N. More details on capturing
RGBN images with current cameras can be found in [14].
Examples of the RGB and NIR channels are shown as pairs
in Figure 1.

We randomly separate our dataset into 5 sets of images, and
we define 5 sets of experiments accordingly. For each exper-
iment, one fold is used as the testing set and the remaining
images are used for training the model. We repeat this process
5 times and report the mean and standard deviation of the bit-
rate and peak signal to noise ratio (PSNR).

Our frequency-based (FB) method is applied to each fold
test set, where the parameters of the method are learned
from the corresponding training data. Like JPEG, the DCT
coefficient blocks are8× 8. For the N channel, the first2× 2
components are always coded and the rest of the energy in
the block is compared with the energy of the corresponding
components in the Y counterpart.

A. Parameter Study

To find the relation between the target quality and the best
value for θ, we start by forming pairs of Y and N blocks.
The difference between N and Y high-frequency coefficients
is first computed from the difference energy:

∆H = dmax− dmin, (3)

wheredmax is the highest anddmin is the lowest energy in the
dataset. The threshold is then obtained as follows:

θ(∆H) = α×∆H , (4)

whereα is the portion ofd for similar patches to∆H for all
patches in the training set.

We variedα in the above equation from 0.01 to 0.075. The
values obtained forθ are consistent in different folds. The
results of our framework for NIR images with a number of
thresholds are presented in Figure 4.

It can be observed that for large thresholds and bit-rates
higher than 0.2 bpp, as significant amount of information is
removed from NIR, our algorithm does not achieve a PSNR
larger than 36 dB. These results suggest that, for low bit-
rate compression, our algorithm performs best with larger
thresholds. However, if the goal is to compress images for high
quality, smaller thresholds achieve better results. Hence, we
propose to set the threshold inversely proportional to the target
bit-rate. For each bit-rate, we find the threshold that results in
the highest PSNR for our training set. The results obtained
with θ(∆H) suggest that an exponential curve represents this
relation well. Based on our training set, we obtain:

θ(BR) = a exp(b× BR), (5)

wherea = 992.3 andb = −8.5 and BR is the target bit-rate.

V. RESULTS

To assess the performance of the proposed algorithm, we
present the results of two other methods. The first algorithm
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Fig. 4. PSNR results of our method (FBN) with different thresholds (θ(∆H ))
versus bit-rate for NIR images.

to which we compare our results is the conventional JPEG.
The RGB image is encoded with JPEG standard (JPEGRGB).
The N channel is also encoded with JPEG standard (JPEGN),
by using the same quantization table as the Y channel of the
RGB image.

Figure 5 lists the PSNR results of two methods for NIR im-
ages: JPEGN and our frequency-based (FBN). The results are
reported against various bit-rates from 0.075 bpp to 0.275 bpp.
We observe that for the same bit-rate, our proposed method
yields significantly better PSNR (up to 5 dB) compared to
JPEGN.

Moreover, we compare the performance of our pro-
posed method with a PCA-based compression (PCARGBN). In
PCARGBN, we first transform the data into the de-correlating
PCA space. The basis vectors of this space are computed
from the training data. Each of the transformed channels (see
Figure 6) obtained by the PCA is then encoded using the JPEG
standard.

The performance of our framework is compared with
PCARGBN, as well as JPEGRGBN, in Figure 7. This figure shows
the error of reconstruction for all four channels in our dataset.

Our algorithm significantly outperforms JPEGRGBN. It also
achieves significantly better results compared to the PCARGBN

method for compression ratios from 42 to 64 (bitrates from
0.5 to 0.75). This proves our hypothesis that there exist some
redundancies between NIR and RGB images, our framework
efficiently removes these redundancies and results in the same
PSNR with a lower bit-rate.

The improvement achieved by our method can be explained
by the amount of information that is correctly removed. In
our dataset, on average in (70%± 5) of the blocks, the high-
frequency of NIR information are removed.

Figure 8 shows two NIR scenes decompressed by FBRGBN,
JPEGRGBN, and PCARGBN. This figure also shows that we
achieve the same quality with lower bit-rates.
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Fig. 5. PSNR results of JPEGN and our method (FBN) versus bit-rate for
NIR images.

Fig. 6. PCA components of one image in our dataset.

VI. CONCLUSION

We present a framework for compressing four-channel mul-
tispectral images composed of RGB and NIR information. We
exploit the specific nature of our multispectral images: three
channels (RGB) represent the color image and one channel
(NIR) represents extra invisible spatial information. Theper-
formance of our method is compared to other multispectral
compression approaches that first remove spectral redundancy
by a PCA transform and then apply the spatial encoding in a
transform domain like DCT or DWT.

Our compression scheme first uses standard JPEG for

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

BR (bpp)

P
S

N
R

 

 

FB
RGBN

JPEG
RGBN

PCA
RGBN

Fig. 7. PSNR results of JPEGRGBN, our method (FBRGBN), and PCARGBN
versus bit-rate for four-channel (RGBN) images.



Fig. 8. NIR images decompressed by (from left to right) our method (FBRGBN), JPEGRGBN, and PCARGBN. The PSNR of all images are the same, while
their bit-rates are different. The PSNR is 32.43 dB and 33.21dB, respectively, for the first and second row.

compressing the three color channels, and then it exploits the
strong correlation between high-frequency information inthe
NIR (N) and the luminance (Y) channel, by removing the
spectral redundancy. Thus, one advantage of our approach is
that if only the color image is needed, it can be decompressed
using a standard JPEG decoder. If the NIR image is desired,
only the Y and the N channel need to be decompressed. This
is computationally more efficient than using PCA, where all
channels always have to be decompressed.

In our algorithm, to compress the N channel that represents
the NIR image, first the DCT coefficients of each block are
compared to their Y counterparts. In the case of sufficient
similarity, we encode only DCT coefficients that represent the
low-frequency NIR information. At the decoder, the missing
information for the N channel is replaced by the corresponding
information in Y. If the information is not similar enough, all
coefficients are encoded.

To decide whether or not, for a given block, the high-
frequency information of the NIR and Y channels are cor-
related enough, we set a threshold based on a training dataset.
We show that the threshold should be chosen to be inversely
proportional to the target bit-rate, and we present a mapping
function.

Our experiments show that the proposed compression
framework achieves lower bit-rates at the same PSNR for
medium and high compression ratios compared to both con-
ventional JPEG and a PCA-based compression method.
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[2] M. Brown and Süsstrunk, “Multispectral SIFT for scene category
recognition,” inCVPR, 2011.
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