
Foveated Video Streaming for Cloud Gaming
Gazi Illahi, Matti Siekkinen

Dept. of Computer Science, School of Science
Aalto University, Finland

Email: {gazi.illahi,matti.siekkinen}@aalto.fi

Enrico Masala
Control and Computer Eng. Dept.

Politecnico di Torino, Italy
Email: enrico.masala@polito.it

Abstract—Good user experience with interactive cloud-based
multimedia applications, such as cloud gaming and cloud-
based VR, requires low end-to-end latency and large amounts
of downstream network bandwidth at the same time. In this
paper, we present a foveated video streaming system for cloud
gaming. The system adapts video stream quality by adjusting
the encoding parameters on the fly to match the player’s gaze
position. We conduct measurements with a prototype that we
developed for a cloud gaming system in conjunction with eye
tracker hardware. Evaluation results suggest that such foveated
streaming can reduce bandwidth requirements by even more than
50% depending on parametrization of the foveated video coding
and that it is feasible from the latency perspective.

I. INTRODUCTION

There is an increasing class of interactive applications that
require high-end graphics rendering. In some cases, remote
rendering of the graphics is convenient or even necessary due
to limited local computing resources. A good example is cloud
gaming in which the game logic is also executed remotely
and a thin client software simply forwards control commands,
such as key press events, to the remote server, and decodes a
video stream encoded and transmitted by the server [1]. Other
emerging examples are mobile Virtual Reality [2] and real-
time 360◦video [3].

It is clear that both low end-to-end latency from motion or
key press to photon and a high quality video stream are im-
perative for good user experience with these applications. For
this reason, they impose challenging bandwidth and latency
requirements on the network infrastructure and the problem
gets aggravated when they are used with wireless mobile
network connectivity. In this paper, we address the bandwidth
challenge by investigating the use of so called foveated video
streaming. Fovea is the part of a human eye responsible
for the sharp central vision and by foveated streaming we
mean that the quality or resolution of the video is adjusted
based on user’s gaze tracking information so that the region
around the center of the gaze position is encoded with high
quality or resolution and the peripheral regions with low
quality or resolution. As a result, significant bandwidth savings
can be achieved without noticeable degradation in quality of
experience.

Foveated image and video coding has been studied for a rel-
atively long time. However, it has only recently drawn renewed
interest because of affordable gaze tracking solutions, new
applications scenarios, and technological evolution, especially
in the networking domain, enabling low enough latency. Lately

several papers have been published on foveated streaming but
they have mainly focused on pre-encoded content and using
video tiling. Our objective in this paper is to explore the
feasibility of a real-time foveated streaming solution for cloud
gaming. The scheme we use is based on dynamic adjustment
of the quantization parameters of the video encoder and it
requires minimal amount of modifications to existing cloud
gaming software.

We have developed a prototype by integrating together an
off-the-shelf external eye tracking device with a state of the
art cloud gaming software. Our evaluation results suggest
that foveated streaming can potentially reduce bandwidth
consumption dramatically. The exact effect depends on how
the scheme is parametrized but does not seem to depend much
on the game type, even though we discover clear differences
in gaze movement patterns between the different games we
studied. Based on our own subjective experience as well as
some back of the envelope calculations of latency combined
with gaze data analysis from gaming sessions with different
games, we are rather optimistic that latency achievable with
current technology is short enough for good user experience.

II. BACKGROUND

A. Cloud Gaming

Fig. 1. Cloud gaming architecture [4].

Cloud gaming system consists of a thin client and a remote
server as illustrated by Figure 1 [4], [1]. The server is typically
a virtual machine residing in a cloud. The client software
forwards all control events from the user to the server which
runs the game as usual and renders all the graphics. The
cloud gaming software at the server side replays the user
controls locally and produces a video stream of the graphics
either by compressing video captured from the screen or
by obtaining the compressed video frames directly from the
graphics card. The client software decodes the video stream

ar
X

iv
:1

70
6.

04
80

4v
1

 [
cs

.M
M

]
 1

5
Ju

n
20

17

and displays it on screen. This approach does not require any
modifications to regular PC games to be run as cloud games
and allows graphically demanding games that require heavy
GPU processing to be played with low end client devices,
even mobile devices.

The whole process should be as invisible to the user as
possible, which means that the end-to-end latency, i.e. delay
from the moment user issues control input to the moment when
the user perceives the resulting action on display, should be
preferably shorter than 100 ms [4] and the available amount of
downstream bandwidth sufficiently high so that high quality
video stream can be delivered.

B. Foveated Video Coding

A good real-time streaming system requires an encoder that
can provide the best quality while fulfilling some constraints,
typically dictated by the available bandwidth. The usual way
that video streaming services cope with bandwidth constraints
today is to adapt the overall target video bitrate according
to measured or estimated amount of available bandwidth.
Foveated video coding can be viewed as a complementary
solution that reduces the overall bandwidth requirements by
allocating more bits to the region of the image currently
being actively observed by the user. Therefore, such a region
can have better quality with respect to other regions that are
currently less important for the observer.

The key parameter allowing to change the tradeoff between
compression and quality in video coding is the quantization
parameter (QP). Such a value determines how well details
are reconstructed after the quantization process. The lower the
value, the better the quality and vice versa. The QP value can
be adjusted for each single macroblock in which the image is
subdivided by the video encoder. Any video encoder provides
its own set of strategies to control such a value so that the
desired rate quality tradeoff can be achieved. Strategies may
vary from extremely simple ones, such as constant QP, to rate-
distortion optimized ones, where different values of the QP
and other coding parameters are explored during the encoding
process so that the best quality is achieved for the given rate
quality tradeoff.

In this work we employ the AVC standard [5] for video
encoding by using the x264 software implementation. Such
an encoder allows to use different strategies to control the
rate quality tradeoff. We focus on the so-called constant rate
factor (CRF), which is a variant of the constant QP encoding,
in which each frame is compressed by a different amount so
to achieve a certain level of perceived quality. The different
sensitivity of the human eye to details for still and moving
objects is exploited by the CRF scheme to save bits, i.e., drop
more details, depending on the amount of motion in the frame.
This is currently regarded as the best encoding mode for the
x264 software when only one pass encoding is possible, as for
the case of encoding for streaming with very low latency.

In order to achieve foveated video coding, we used the input
from the gaze tracking system to adjust the QP value computed
by the CRF algorithm so that quality is reduced to the areas

outside of user’s current gaze position by increasing the QP
for the remaining part of the frame. In practice, an offset has
been added to the QP value computed by the CRF algorithm
depending on the position of the macroblock with respect to
the gaze location. We describe the prototype implementation
in more detail in the next section.

III. CLOUD GAMING WITH FOVEATED STREAMING

A. Cloud Gaming Software

We use GamingAnywhere [6] as our cloud gaming platform.
GamingAnywhere is an open-source portable cloud gaming
software with extensible modular architecture, providing cloud
gaming client and server software for various operating sys-
tems. The cloud gaming prototype we have built comprises a
modified version of the server installed on a Linux machine
and a client installed on a Windows machine connected to each
other on a GbE local network. The GamingAnwhere server is
capable of capturing game video, streaming it to a client, and
relaying user control input to the game as received from the
client. The GamingAnywhere client captures user input and
sends it to the server and receives, decodes, and displays the
video stream sent back by the server.

In our prototype, we modify the server to receive gaze
location data from the client and use it for foveated encoding
of the video rendered by the game application. The server is
configured to use the x264 encoder with a preset CRF and
adaptive quantization enabled to allow usage of quantization
offsets on a per macroblock basis. A Tobii 4C [7] gaze tracker
is installed on the client machine and the client is configured
to transmit gaze location data of the user to the server as soon
as the gaze tracker provides it.

B. Gaze Tracker

The Tobii 4C eye tracker is a consumer grade eye tracking
device directed towards gaming and interactive applications. It
has an on board eye tracking ASIC and is capable of providing
individual eye, gaze, gaze fixation and head location data. We
install the Eye Tracker on the client machine and configure it
to output lightly filtered gaze data. The light filtering smoothes
out sudden eye movements, such as saccadic movements that
are very fast eye movements jumping around the target and
happen during certain phases of fixation, and noise based
on current and past data points as well as velocity of eye
movements [8]. The client transmits the gaze position data to
the server as soon as it is available from the gaze tracker. The
eye tracker is also capable of providing fixation information
but we decided to use the periodically sampled gaze data
because we do not know how Tobii computes fixations.

C. Encoder-Gaze Tracker Interfacing

The density of cone cells of the human eye is high at the
fovea and drops off rapidly farther from it [9]. Due to this, the
relative visual acuity of the human eye also drops dramatically
with the angular distance from the fovea. The fovea is believed
to occupy only 2o of the human visual field [10], as illustrated
by Figure 2a. The server in our prototype is configured to

-10 -5 0 5 10

Distance from fovea(Degree)

0

0.2

0.4

0.6

0.8

1

R
e
la

ti
v
e
 v

is
u
a
l
a
c
u
it
y

(a) Visual acuity of human eye

-1000 -500 0 500 1000

Distance from gaze location(pixels)

0

2

4

6

8

10

Q
O

FW/4

FW/8

FW/12

FW

(b) QO at different values of W

Fig. 2. Foveation and QO calculation. FW is the width of the output frame
in pixels

encode each frame with a quality that reflects the relative
visual acuity of the eye.

In the server, the module feeding video rendered by the
game logic to the encoder is configured to receive a gaze
location data stream from the client. The received gaze lo-
cation data is used to define the quantization parameters of
each macroblock of the game video frame currently being
encoded. The macroblocks being looked at by the player on
the client side, as indicated by the gaze location, are encoded
with the smallest quantization parameter values, while the
macroblocks away from the gaze location are encoded with
higher quantization parameter values. To this end, we use a QP
offset array to define values to be added to QP values decided
by the encoder’s own algorithms for each macroblock.

In a given video frame, the offset, denoted by QO(i, j),
for each macroblock indexed by i, j is computed using a two
dimensional Gaussian function according to (1).

QO(i, j) = QOmax

(
1− exp(

(i− x)2 + (j − y)2

2(W)2
)

)
(1)

In (1), QOmax is the maximum offset, i and j are indices of
the matrix of macroblocks comprising the frame, x and y are
the indices of the macroblock where the center of the gaze
is, and W controls the width of the foveal region. We define
foveal region as the region on the screen of the client machine
where the game video quality should be high. The parameters
QOmax and W are tunable and allow us to investigate and
evaluate the setup. The effect of W on (normalized) offsets
QO applied to macroblocks of a frame with respect to distance
from gaze location is illustrated in Figure 2b. The size of
the foveal region, that is the region which the human eyes
perceives with highest visual acuity, depends on the viewing
distance. The area becomes larger with increase in viewing
distance as the area covered by the angle occupied by fovea
in the human visual field increases with distance from the
fovea. It should be noted that W controls, rather than is equal
to, the width of the foveal region, since we calculate QO(i, j)
based on a Gaussian curve with smoothly increasing values
between 0 and QOmax rather than as a step function with
demarcated region of QO=0 and QO = QOmax. We believe
this follows the visual acuity of human eye more naturally
and also ameliorates, to some extent, any inaccuracy in gaze
tracking.

IV. EVALUATION

A. Measurement Setup

To investigate the effect of foveated video encoding, we
setup our cloud gaming system prototype and performed
measurements while playing four different kinds of games:
AssaultCube is a First Person Shooter (FPS) game, Trine 2 is
a side-scrolling adventure game, Little Racers STREET (we
abbreviate it as Little Racers) is a car racing game from bird’s-
eye perspective, and Formula Fusion is a futuristic anti-gravity
racing game with a viewpoint from behind the vehicle. The
client and server were deployed within the same GbE network
having negligible latency in order to avoid any network related
bias to the results.

For traffic measurements, we captured all traffic flowing
between the cloud gaming server and client using tcpdump
[11]. Throughput per second was extracted from the captured
data using Wireshark [12]. A set of measurements for a
game consisted of same gameplay over the same period of
time, effort being made to replicate the player actions in
each measurement as much as possible. The x264 encoder
is set with the following parameters based, in part, on the
recommendations in [6]:
--profile main --preset ultrafast
--tune zerolatency --crf 28 --ref 1
--me_method dia --me_range 16 --keyint
48 --intra-refresh --threads 4

B. Bandwidth Savings

We first study the potential of foveated streaming to reduce
the bandwidth requirements in cloud gaming. To this end, we
performed a series of measurements in which we either vary
the maximum offset QOmax or the W parameter that controls
the foveal region while keeping the other parameter constant.
The values of W are defined relative to the frame width of
output video (FW) in pixels. Defining W relative to FW
is a simple solution of providing screen size agnostic visual
quality. Furthermore, this solution scales well with the viewing
distance as typically the viewing distance increases with size
of the display screen, thereby increasing the width of the area
of high visual acuity.

Figure 3 shows the results for three games. The first thing
to note is that increasing the maximum QP offset dramatically
reduces the resulting bitrate. In contrast, decreasing the W
parameter value has much less pronounced effect. The reason
is that when W takes values of FW/8 and smaller, the
actual size of the foveal region becomes so small that the
number of macroblocks covering it in relation to the total
number of macroblocks of the frame is very small. Hence, the
additional bandwidth savings by further reducing the size of
that region are marginal. W = FW/8 seems to provide most
of the benefits and smaller foveal regions yield little additional
savings.

The second observation is that the differences between
the games are small when comparing the average or median
bitrates across the different parameter values. However, there

0 5 10 15 FW/4 FW/6 FW/8 FW/10 FW/12

 QO
max

,(W=FW/8) W,(QO
max

=10)

0

2

4

6

8

10
M

B
it

s
/s

e
c
o

n
d

Mean value of throughput

(a) AssaultCube

0 5 10 15 FW/4 FW/6 FW/8 FW/10 FW/12

 QO
max

,(W=FW/8) W,(QO
max

=10)

0

2

4

6

8

10

M
B

it
s
/s

e
c
o

n
d

Mean value of throughput

(b) Trine 2

0 5 10 15 FW/4 FW/6 FW/8 FW/10 FW/12

 QO
max

,(W=FW/8) W,(QO
max

=10)

0

2

4

6

8

10

M
B

it
s
/s

e
c
o

n
d

Mean value of throughput

(c) Little Racers STREET

Fig. 3. Measured video bitrates with different games and parametrization
of foveated streaming. FW is the width of the display in pixels. The box
comprises the inter-quartile range, the red line in the middle of the box is the
median, and the diamond denotes the mean.

are notable differences in bitrate variance. Trine 2 exhibits the
most and Little Racers the least variance. In the Little Racers
game, there is more or less constant motion but because of the
bird’s-eye view, there is overall less variation in the graphics.
The variance also persists with different parameter values. In
summary, while the parametrization has a substantial impact
on bandwidth savings, it seems to be game agnostic so that
the average bitrates are reduced by similar amounts regardless
of the game type.

The third observation is that while playing the games using
foveated encoding, we did not notice degradation in quality of
experience as long as QOmax and W were kept in a reasonable
range. Playing different games during our measurements, we
noticed that QOmax=10 and W= FW/8 provide a reasonably

(a) QOmax=0

(b) QOmax=10,W=FW /8

Fig. 4. Screen Captures of Trine2 with and without offsets. FW is the width
of the display in pixels

similar quality of experience compared to when using normal
encoding. Furthermore, we noticed quality of experience is
somewhat less affected in first person shooter games even
with QOmax=15 and W= FW/8. This may be due the fact
that in such games, the player’s gaze is focused on and
around the cross-hairs of the weapon which constitutes a small
area of the screen size (see Section IV-C). Figure 4 shows
screen captures of the game Trine2 on the cloud gaming
client while the player’s gaze is located approximately at the
running in-game avatar. From visual inspection the image
quality at QOmax=10, and W= FW/8, as one focuses on
the in game avatar, is nearly the same as that at QOmax=0.
This is somewhat expected as at a normal viewing distance
of 50cm (as used in the setup), the area of highest visual
acuity has a diameter of approximately 1.8cm. On a laptop
screen of width 30cm, this translates to approximately 1/16th
of the screen width. However, quality of experience is highly
subjective and a detailed inspection would include user studies
which is part of our future work.

C. Gaze Tracking and Latency

Figure 5 plots heatmaps of gaze tracking data collected
during 15 minute gameplay sessions for four different games.
The heatmaps were computed using bivariate Gaussian kernel
density estimation applied to gaze coordinates obtained from
the Tobii tracker. Occasional glances to peripheral regions are
usually so few that they do not show up in the heatmaps. All
the heatmaps reveal expectedly that the player mostly looks at
the center of the screen but the games differ from each other in

(a) AssaultCube
0

0.2

0.4

0.6

0.8

1

(b) Trine 2

(c) Little Racers STREET (d) Formula Fusion

Fig. 5. Gaze tracking heatmaps from 15 minute gameplay sessions. The
colour scale is normalized.

terms of the width of the region of player’s visual focus. The
FPS game AssaultCube keeps the player’s gaze focused on a
very small region in the center of the display corresponding to
the position of the cross hair and the center of what the game
character itself ”sees”. In contrast, Little Racers STREET, the
car game controlled from a bird’s-eye view, makes the player’s
gaze wander much more. Consequently, it depends on the
game type how challenging it is to provide seamless foveated
user experience.

Figure 6 shows CDF plots of the durations of gaze moments
which we define as time periods during which the user’s gaze
does not cross the boundaries of a circular region having a
particular size. We observe that there is a very small fraction of
gaze moments that last for only one sampling interval (roughly
10 ms). They represent the most difficult scenarios for foveated
streaming because of the required latency and may correspond
to situations where the player’s gaze is rapidly moving across
the screen. Roughly 80-90% of the gaze moments last longer
than 100ms and 20-40% last longer than 1s. AssaultCube and
Formula Fusion tend to generate a larger fraction of long gaze
moments than the two other games, which agrees with the
gaze tracking heatmap results in Figure 5.

We also computed the rate of change of gaze during
gameplay by dividing the pixel-wise distance of subsequent
gaze data samples by the time difference of samples. The
CDF of the results is plotted in Figure 7. There is a notable
difference between the Little Racers game and the others so
that Little Racers exhibits clearly more rapid gaze shifts (note
the logarithmic scale). In general, we observe rarely values
beyond 1K px/s which correspond to gaze shifting from one
side of the screen to the other within a second1. The framerate
in our cloud gaming experiments was 40-45 fps. Hence, over

1We should keep in mind that the eye tracker device uses some filtering,
although ”light filtering”, which affects these results but we do not know
exactly how much and in which way.

gaze duration (s)
0.01 0.1 1 10 100

fra
ct

io
n

of
 g

az
e

m
om

en
ts

0

0.2

0.4

0.6

0.8

1

Trine 2
AssaultCube
Little Racers
Formula Fusion

(a) W = FW/8

gaze duration (s)
0.01 0.1 1 10 100

fra
ct

io
n

of
 g

az
e

m
om

en
ts

0

0.2

0.4

0.6

0.8

1

Trine 2
AssaultCube
Little Racers
Formula Fusion

(b) W = FW/4

Fig. 6. CDF plots of the duration of gaze moments with different sizes of
foveated regions.

90% of the time the gaze would shift less than 25 pixels in
between subsequent frames.

gaze change rate (pixels/s)
101 102 103 104 105

fra
ct

io
n

of
 g

az
e

sa
m

pl
es

0

0.2

0.4

0.6

0.8

1

Trine 2
AssaultCube
Little Racers
Formula Fusion

Fig. 7. CDF of rate of gaze shifting.

Several researchers, including us, have characterized laten-
cies in cloud gaming [13], [4]. Without going into details,
having a low latency network path (below 20-30 ms) between
the client and server, well provisioned server, and suitable
games, it is possible to achieve end-to-end (e2e) latency, i.e.,
delay from control action to photon, below 100 ms. Even some
mobile scenarios can yield below 100 ms e2e latency. The
Tobii gaze tracker has a sampling rate of 90Hz, hence it reports
gaze positions each 11 ms. To obtain an estimate of the e2e
latency for foveation in a cloud gaming setup, i.e. latency from
eye-movement to noticeable change on the display, we add
the Tobii sampling latency to the e2e cloud gaming latencies2.
Comparing the resulting 110 ms to Figure 6, the clear majority
of gaze moments should last much longer than the latency
of updating the foveated region in the video stream. Figure
7 further suggests that when playing Trine 2, AssaultCube,
or Formula Fusion, half of the time the gaze change rate is
less than 100 px/s, which means that the gaze shifts at most
11 pixels during the time it takes to turn gaze into foveated
video. This seems reasonable given that the effective values for
the W parameter, which determines the foveated region, are at

2More precisely, we replace the device-to-kernel part of the control input
delay (see measurements in [4] for mobile setups) with the gaze tracker’s
delay. However, that delay is negligible for external USB controllers, so we
end up just adding the Tobii delay.

least a hundred pixels. While these results are encouraging, we
acknowledge that detailed understanding of the impact of this
latency on user experience requires subjective studies, which
we leave for future work.

V. RELATED WORK

Foveated video coding has been studied for over two
decades. Wang et al. [14] wrote a survey on the topic over
ten years ago but the techniques have not seen wide scale
deployments so far.

Recently, several papers have been published on foveated
streaming of precoded video and mostly based on video tiling.
D’Acunto et al. [15] developed a video tiling based solution
to allow zooming and navigation within a video streaming.
Their solution is based on the MPEG-DASH standard’s Spatial
Relationship Description (SRD) feature [16]. Zare et al. [17]
use HEVC compliant video tiling method for panoramic
video targeting specifically VR scenarios. Similarly, Qian et
al. [18] study how to selectively stream only the visible
parts of panoramic video for clients connected through a
mobile network. Ryoo et al. [10] developed a foveated video
streaming service based on pre-coding videos using a multi-
resolution approach. The gaze tracking of their system is based
on webcam input.

The two pieces of work most closely related to ours are
by Ahmadi et al. [19] and Mohammadi et al. [20], which
both focus on cloud gaming. Ahmadi et al. train a SVM-based
attention model offline with eye tracking database and use it
in video encoding. Mohammadi et al. propose to use live gaze
data like we do but, in contrast to our work, their solution relies
on object-based coding and requires modifications to the game
engine. Consequently, the solution cannot be applied to and
evaluated with off-the-shelf games.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed to combine foveated streaming
with cloud gaming. We developed a prototype system that
integrates foveated streaming with off-the-shelf gaze tracker
device into state of the art cloud gaming software. Our
evaluation results suggest that its potential to reduce bandwidth
consumption is significant, as expected. We also demonstrate
the impact of different parameter values on the bandwidth
consumption with different games and provide some evidence
on how to select parameter values. Back of the envelope
latency estimations based on related work and gaze tracker
specifications combined with gaze data analysis give us reason
to be relatively optimistic about the impact on user experience.

As future work, we are planning to examine the quality
of experience dimension in more depth through subjective
studies. We also intend to investigate the feasibility of mobile
cloud gaming with foveated streaming and the possibilities of
extending the work towards mobile Virtual Reality.

ACKNOWLEDGMENT

This work has been financially supported by the Academy
of Finland (grant numbers 278207 and 297892), Tekes - the

Finnish Funding Agency for Innovation, and the Nokia Center
for Advanced Research.

REFERENCES

[1] R. Shea, J. Liu, E. C.-H. Ngai, and Y. Cui, “Cloud gaming: architecture
and performance,” IEEE Network, vol. 27, no. 4, pp. 16–21, 2013.

[2] K. Boos, D. Chu, and E. Cuervo, “Flashback: Immersive virtual reality
on mobile devices via rendering memoization,” in Proceedings of the
14th Annual International Conference on Mobile Systems, Applications,
and Services, ser. MobiSys ’16. New York, NY, USA: ACM, 2016,
pp. 291–304.

[3] R. M. A. Silva, B. Feijó, P. B. Gomes, T. Frensh, and D. Monteiro, “Real
time 360° video stitching and streaming,” in ACM SIGGRAPH 2016
Posters, ser. SIGGRAPH ’16. New York, NY, USA: ACM, 2016, pp.
70:1–70:2.

[4] T. Kämäräinen, M. Siekkinen, A. Ylä-Jääski, W. Zhang, and
P. Hui, “A measurement study on achieving imperceptible latency
in mobile cloud gaming,” in To Appear in the Proceedings
of the ACM Multimedia Systems Conference, ser. MMSys ’17.
New York, NY, USA: ACM, 2017. [Online]. Available: https:
//users.aalto.fi/∼siekkine/pub/kamarainen17mmsys.pdf

[5] ITU-T Rec. H.264 & ISO/IEC 14496-10 AVC, “Advanced video coding
for generic audiovisual services,” ITU-T (2003), May 2003.

[6] C.-Y. Huang, C.-H. Hsu, Y.-C. Chang, and K.-T. Chen,
“GamingAnywhere: An open cloud gaming system,” in Proceedings
of the 4th ACM Multimedia Systems Conference, ser. MMSys ’13.
New York, NY, USA: ACM, 2013, pp. 36–47. [Online]. Available:
http://doi.acm.org/10.1145/2483977.2483981

[7] “Tobii https://tobiigaming.com/eye-tracker-4c/.”
[8] Tobii, “Developer’s Guide tobii EyeX SDK for C/C++,” 2015. [Online].

Available: http://developer-files.tobii.com/wp-content/uploads/2016/03/
Developers-Guide-C-Cpp.pdf

[9] B. A. Wandell, “Foundations of vision.” [Online]. Available: https:
//foundationsofvision.stanford.edu/

[10] J. Ryoo, K. Yun, D. Samaras, S. R. Das, and G. Zelinsky, “Design
and evaluation of a foveated video streaming service for commodity
client devices,” in Proceedings of the 7th International Conference on
Multimedia Systems, ser. MMSys ’16. New York, NY, USA: ACM,
2016, pp. 6:1–6:11.

[11] “tcpdump: http://www.tcpdump.org/.”
[12] “Wireshark Project: https://www.wireshark.org/.”
[13] K.-T. Chen, Y.-C. Chang, H.-J. Hsu, D.-Y. Chen, C.-Y. Huang, and C.-

H. Hsu, “On the quality of service of cloud gaming systems,” IEEE
Transactions on Multimedia, vol. 16, no. 2, pp. 480–495, 2014.

[14] Z. Wang and A. C. Bovik, “Foveated image and video coding,” Digital
Video, Image Quality and Perceptual Coding, pp. 431–457, 2006.

[15] L. D’Acunto, J. van den Berg, E. Thomas, and O. Niamut, “Using MPEG
DASH SRD for zoomable and navigable video,” in Proceedings of the
7th International Conference on Multimedia Systems, ser. MMSys ’16.
New York, NY, USA: ACM, 2016, pp. 34:1–34:4.

[16] O. A. Niamut, E. Thomas, L. D’Acunto, C. Concolato, F. Denoual, and
S. Y. Lim, “MPEG DASH SRD: Spatial relationship description,” in
Proceedings of the 7th International Conference on Multimedia Systems,
ser. MMSys ’16. New York, NY, USA: ACM, 2016, pp. 5:1–5:8.

[17] A. Zare, A. Aminlou, M. M. Hannuksela, and M. Gabbouj, “HEVC-
compliant tile-based streaming of panoramic video for virtual reality
applications,” in Proceedings of the 2016 ACM on Multimedia Confer-
ence, ser. MM ’16. New York, NY, USA: ACM, 2016, pp. 601–605.

[18] F. Qian, L. Ji, B. Han, and V. Gopalakrishnan, “Optimizing 360 video
delivery over cellular networks,” in Proceedings of the 5th Workshop on
All Things Cellular: Operations, Applications and Challenges, ser. ATC
’16. New York, NY, USA: ACM, 2016, pp. 1–6.

[19] H. Ahmadi, S. Zad Tootaghaj, M. R. Hashemi, and S. Shirmohammadi,
“A game attention model for efficient bit rate allocation in cloud
gaming,” Multimedia Syst., vol. 20, no. 5, pp. 485–501, Oct. 2014.

[20] I. S. Mohammadi, M. R. Hashemi, and M. Ghanbari, “An object-
based framework for cloud gaming using player’s visual attention,” in
2015 IEEE International Conference on Multimedia Expo Workshops
(ICMEW), June 2015, pp. 1–6.

https://users.aalto.fi/~ siekkine/pub/kamarainen17mmsys.pdf
https://users.aalto.fi/~ siekkine/pub/kamarainen17mmsys.pdf
http://doi.acm.org/10.1145/2483977.2483981
http://developer-files.tobii.com/wp-content/uploads/2016/03/Developers-Guide-C-Cpp.pdf
http://developer-files.tobii.com/wp-content/uploads/2016/03/Developers-Guide-C-Cpp.pdf
https://foundationsofvision.stanford.edu/
https://foundationsofvision.stanford.edu/
http://www.tcpdump.org/

	I Introduction
	II Background
	II-A Cloud Gaming
	II-B Foveated Video Coding

	III Cloud Gaming with Foveated Streaming
	III-A Cloud Gaming Software
	III-B Gaze Tracker
	III-C Encoder-Gaze Tracker Interfacing

	IV Evaluation
	IV-A Measurement Setup
	IV-B Bandwidth Savings
	IV-C Gaze Tracking and Latency

	V Related Work
	VI Conclusions and Future Work
	References

