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Abstract—With the development of artificial intelligence, 
more and more multimedia applications for various tasks have 
emerged in our daily life. Meanwhile, as one of the main 
information sources of the applications, a huge amount of video 
data has been being generated by portable or mounted cameras 
in daily basis for varying purposes including surveillance, in 
which case we may need computers to “watch” videos to save 
labor cost. However, most video coding standards are designed 
for the highest human perceptual quality given a bit rate by 
minimizing a fidelity cost function (e.g., mean squared error, 
MSE), assuming the content will be consumed by human beings. 
In view of the above considerations, this paper proposes a new 
rate-analytical-distortion optimization method (RADO) for 
video analysis. Specifically, we consider moving object 
detection as the analysis task. Accordingly, we develop a novel 
rate analytical distortion (RAD) model for video coding, where 
the analytical distortion is related to the object detection 
performance expressed in terms of F-measure. As shown in the 
experimental results, the performance of the video analysis task 
can be significantly improved (up to 40% reduction of 
analytical distortion) with a slight bit rate increase. 

Keywords—Video coding, video analysis, rate-analytical-
distortion optimization, HEVC. 

I. INTRODUCTION 
Recent advances in computer vision and the increasing 

availability of portable or installed cameras have enabled 
new emerging multimedia applications. In many application 
scenarios, especially for surveillance, computers have to 
deal with various analysis tasks, such as object detection, 
tracking and recognition. Consequently, computer is the first 
or maybe the only “audience” in these scenarios. At the 
same time, the considerable amount of generated videos also 
need to be compressed due to cost-effective storage and 
bandwidth limitation. 

Video coding has been studied for decades, mainly 
concentrating on issues related to high coding efficiency. 
Most of the widely deployed video coding standards, such as 
H.264/AVC and HEVC (High Efficiency Video Coding) are 
designed for human visual properties by maximizing a 

fidelity function (e.g. peak signal to noise ratio, PSNR) at a 
given bit rate, with human beings as the target audience. 
Besides, there are many developed rate-distortion 
optimization (RDO) schemes for HEVC standard [1]-[4]. 
However, applying the traditional RDO scheme during video 
compression may be suboptimal when the video is intended 
for machine analysis. The critical issue is that compression 
distortions may bring a negative impact on the video 
analysis performance.  

In this context, recently research work focuses on feature-
preserving coding, where only feature descriptors are 
transmitted to the server [5]. As only feature descriptors are 
transmitted, the video cannot be watched at the server side. 
Consequently, it is inapplicable in some scenarios (e.g. 
video surveillance) where it is necessary to visualize the 
video content. In contrast, some research work focuses on 
feature-preserving video coding. Baroffio et al [6] proposed 
a coding architecture designed for local features (e.g. SIFT, 
SURF) extracted from video sequences. The local feature 
descriptors were encoded by intra and inter-frame coding 
modes respectively. The final coding mode was determined 
by comparing the costs of intra-frame versus inter-frame 
coding. In their later work [7], the coding architecture was 
applied to code binary local features. In order to decrease 
the adverse effect of video compression on feature-matching 
performance, Chao and Steinbach [8] proposed a novel 
framework, in which keypoints extracted from a video were 
encoded and transmitted along with the compressed video to 
the server. However, this framework needs more bits since 
the keypoints are transmitted as side information. 

Few studies have addressed video coding for video 
analysis tasks. Korshunov et al. [9] proposed a formal rate-
accuracy optimization framework, where the encoding 
parameters in distributed video surveillance systems could 
be determined given a target bit rate or accuracy. Effrosyni 
and Pascal [10] proposed a supervised dimensionality 
reduction scheme which provides a tradeoff between 
compression and discriminant feature extraction. Liao et al. 
[11] proposed an analysis-oriented ROI based coding 
approach to reduce the effect of video compression on the 



 

performance of video analysis. However, the approach in 
[11, 12] needs the prior knowledge of interest objects to 
detect ROI, which cannot always be obtained in practice. 

In this paper, we develop a new rate-analytical-distortion 
optimization (RADO) method for video analysis, where the 
term “analytical distortion” represents the difference of the 
video analysis algorithms’ performance when the video 
quality degrades. Meanwhile, we introduce an analytical 
distortion prediction (ADP) model which uses the 
compression distortion to estimate the analytical distortion. 
Specifically, we choose to focus on one fundamental video 
analysis task, moving object detection and accordingly 
develop a novel rate analytical distortion (RAD) model. It is 
worthy to note that our proposed coding method is fully 
standard compatible and the encoded bit-stream can be 
decoded by any HEVC decoder. 

The remainder of this paper is organized as follows. 
Section II presents our proposed RADO method and the 
corresponding coding framework. Section III presents the 
ADP model and parameter acquisition. Section IV 
experimentally evaluates the proposed method. Section V 
concludes the paper. 

II. PROPOSED CODING METHOD FOR VIDEO ANALYSIS 
In this section, we introduce our proposed coding method 

for video analysis. Specifically, we build up an analytical 
inconsistency model to represent the difference of video 
analysis performance when the video quality degrades, 
partly inspired by the work in [9]. We use the term 
“analytical distortion” hereafter to denote the difference of 
video analysis performance. 

A. Analytical Inconsistency Model 
Inspired by the fact that the video analysis algorithm’s 

performance may decline after a lossy video compression, 
we design an analytical inconsistency model to represent 
how the analysis algorithm behaves when the video quality 
degrades. Clearly, many evaluation criterions exist for 
different kinds of video analysis tasks. Even for a specific 
task, several evaluation metrics may be used to assess the 
performance. However, it is unmanageable to simply adopt 
all the evaluation metrics in the analytical inconsistency 
model, since the dimension of the model will be extremely 
high. In order to avoid this drawback, only one metric is 
chosen for each kind of video analysis task. Therefore, given 
a video analysis task T and the corresponding evaluation 
metric M, the analytical inconsistency model can be defined 
as ( , )AD D T M∆ , where D∆  can be obtained as 

o cD D D∆ = −                                  (1) 

In (1), oD  and cD denote the analysis results of the 
original video and the compressed video respectively.  
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Fig. 1 Illustration for the analytical distortion acquisition procedure. 

Fig. 1 illustrates how the analytical distortion can be 
obtained by (1). In this paper, we do not aim at studying the 
performance of a video analysis algorithm itself. Rather, we 
are more specifically concerned with how the analysis 
algorithm behaves when the video quality is degraded. 

B. Rate Analytical Distortion Optimization 
Video compression is a well-studied problem and is 

commonly formulated and optimized by the trade-off 
between the entropy of the discretized representation (rate) 
and the error arising from the quantization (distortion). In 
this context, many RDO techniques [13, 14] have been 
developed for modern video compression schemes. 
Typically, the objective of RDO is to minimize distortion D 
at a given rate R, under the available bit rate budget 
constraint TR , which can be formulated as 

min  { }    . . TD s t R R≤ .                            (2) 

To solve this constrained optimization problem, the 
Lagrangian multiplier method [15] is widely employed by 
converting it to an unconstrained form as 

min  { },  where J J D Rλ= + ,                      (3) 

where J is the Lagrangian cost function, and λ  is the 
Lagrangian multiplier. According to the work in [16], λ  in 
(3) can be calculated by 

2dD c q
dR

λ = − = ⋅ ,                                (4) 



 

where c is a constant and q denotes the quantization step-
size. Notably, distortion D in (2) is designed as a human 
perceptual related cost function PD in pixel domain, such as 
MSE, PSNR or Sum of Absolute Difference (SAD).  

Meanwhile, in some typical application scenarios such as 
face detection and recognition, the compressed video will 
not only be consumed by computers running video analysis 
algorithms, but also watched by human beings for some 
application-related purposes. Therefore, it is necessary to 
reduce the negative effect introduced by compression while 
maintaining video coding efficiency. For this purpose, we 
formulate the RADO problem by jointly minimizing the 
compression distortion PD in pixel domain and the analytical 
distortion AD  at a given rate. It can be written as 

min    . . P A TD D s t R Rα+ ≤ ,                        (5) 

where α is a weighting parameter. It is obvious that (5) is 
reduced to the traditional RDO formulation in (2) when α = 
0. To solve the constrained RADO problem in (5), the 
Lagrangian multiplier method is also employed by 
converting it to an unconstrained form, which can be written 
as 

min  { }, where new new P A newJ J D D Rα λ= + + .           (6) 

It is worthy to note that the Lagrangian multiplier newλ  in 
(6) is quite different that the λ  defined in (4). In order to 
distinguish the two different Lagrangian multipliers newλ  
and λ , the Lagrangian λ  in (4) will be denoted as HMλ  in 
the remaining of this paper. Besides, equation (4) is applied 
in the HEVC test model to calculate the Lagrangian 
multiplier HMλ . 

It is difficult to get the optimal solution in (6) without 
modeling the interaction between AD  and R. Therefore, we 
empirically design a derivable RAD model, which can be 
expressed as 

2
1 e AC DR C= ,                                  (7) 

where 1C  and 2C  are constant parameters (the derivation of 
this model will be further discussed in section III). Besides, 
according to (4), R is also differentiable with respect to PD . 
Consequently, the minimal cost newJ  is obtained when 

0new P A
new

J D D
R R R

α λ
∂ ∂ ∂

= + + =
∂ ∂ ∂

,                    (8) 

P A
new

D D
R R

λ α
∂ ∂

= − −
∂ ∂

.                            (9) 

Combining (4), equation (9) can be rewritten as 

A
new HM

D
R

λ λ α
∂

= −
∂

.                            (10) 

In conclusion, the new Lagrangian multiplier newλ  can be 
calculated by (10) for a given weighting parameterα . 

C. Proposed Coding Framework 
The analytical distortion AD is needed during the coding 

process in our proposed RADO approach. In general, the 
accurate AD can be obtained by two approaches: (i) 
integrating the analysis algorithm into video codec and (ii) 
running the analysis algorithm twice on the original video 
and the compressed version to compare the difference 
between the analysis results, as shown in Fig. 1. However, 
both approaches are very time consuming. To overcome this 
difficulty, we introduce an ADP model. Namely, the 
proposed coding framework consists of two steps: a training 
procedure and a coding procedure. 

 Training procedure: The purpose of the training 
procedure is to obtain the parameters of the RAD 
model and the ADP model. During the training 
procedure, a set of reference video sequences are 
selected and compressed by HEVC codec with 
different quantization parameter (QP) values. Next, we 
run the analysis algorithm on the reference video and 
the compressed versions. In this way, both the 
compression distortion PD (i.e. SAD) and the analytical 
distortion AD can be calculated. Finally, from the 
statistics, the ADP model can be constructed and the 
parameters of the RAD model can be estimated. 

 Coding procedure: In the coding procedure, each frame 
is encoded twice. Firstly, the frame is compressed 
using the traditional RDO method and then SAD can 
be calculated by comparison between the original and 
reconstructed frames. Secondly, given a video analysis 
task and the corresponding evaluation distortion AD  
can be predicted from SAD using the designed ADP 
model. Furthermore, according to the RAD model in 
(7), we can express the derivation of AD with respect to 
R. Then the new Lagrangian multiplier newλ can be 
calculated by (10) for a given α . Finally, the same 
frame is compressed a second time using our proposed 
RADO method. 

Note that, each frame needs to be compressed twice in our 
proposed framework, which will definitely increase the 
complexity of the encoder. However, if necessary, 
approached designed for estimating SAD before encoding [4] 
can be used to avoid the two pass encoding process. 



 

III. VIDEO CODING FOR MOVING OBJECT DETECTION 
To show the effectiveness of the proposed coding scheme, 

we consider a task of moving object detection. Indeed, 
moving object detection is a fundamental component in 
many application scenarios. For this purpose, we select the 
moving object detection algorithm in [17], and use F-
measure [18] as the evaluation metric. 

A. Analytical Distortion Prediction 
In order to build the ADP model, we run some 

experiments on four reference video sequences (Video 1-4), 
including three indoor videos (Video 1-3) from PETS2006 
[19] and one outdoor video (Video 4) from CAVIAR [20]. 
The four reference video sequences are compressed using 
the HEVC reference software (HM 16.7) [21] under Low-
Delay P (LDP) configuration with QPs from 4 to 41. Thus, 
for each of the 4 original sequences, we get 38 compressed 
versions with different quality levels. The analytical 
distortion of one frame can be obtained by comparing the 
analysis algorithm performance between the reference video 
and its compressed version. Using F-measure, it can be 
expressed as 

1i
A iD F= − ,                                (11) 

where i
AD  represents the analytical distortion of the i-the 

frame in video sequence. Finally, the average analytical 
distortion S

AD  over the video sequence S can be denoted as 

1

1 N
S i
A A

i
D D

N =

= ∑ ,                              (12) 

where N is the total number of frames. In the ADP model 
and the RAD model, the analytical distortion is then 
represented as S

AD . 
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Fig. 2 Statistical results of S

AD  as a function of pSAD  

In order to reduce the influence of the spatial resolution 
and number of frames, we use SAD per pixel denoted as 

pSAD to represent compression distortion, which can be 
written as  

* *

S

p
SADSAD

N W H
= ,                      (13) 

where SSAD denotes SAD of the entire compressed video 
and N, W and H represent the total number of frames, frame 
width and frame height respectively. The statistical results 
are shown in Fig. 2. 

From Fig. 2, it can be seen that the average analytical 
distortion S

AD  increases linearly with the increase of pSAD . 
Consequently, we design the ADP model as a linearly model 

1 2
S
A pD P SAD P= ∗ + ,                          (14) 

where 1P  and 2P  are constant parameters that are obtained 
by linear regression in the training procedure. 

B. Rate Analytical Distortion Model 
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(a) Video 1                                  (b) Video 2 

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

DA
s

bp
p

 
0 0.02 0.04 0.06 0.08 0.1 0.12

0

0.5

1

1.5

2

DA
s

bp
p

 
(c) Video 3                                         (d) Video 4 

Fig. 3 Statistical results of the bit rate (bpp) as a function of S
AD  

Note that we choose bpp (bit per pixel) to denote the bit 
rate to reduce the influence of different frame rates and 
resolutions. From Fig. 3, it can be seen that the bit rate 
decreases exponentially with the increase of S

AD . This 
observation gives a proof of the validity of RAD model 
expressed in (7). Additionally, the parameters of RAD 
model are obtained by a regression process according to the 
statistical results in the training procedure. 

C. Weighting Parameter α Acquisition 
In order to explore the impact of the weighting 

parameter α on the proposed framework, a set of α values 
ranging from 0.1 to 0.9 are tested. Fig. 4(a) shows the 
experimental results when QP = 27. It can be seen that the 
average analytical distortion S

AD  tends to increase smoothly 
along with α . Therefore we set α to be 0.1 as an initial 
value in this paper. Meanwhile, Fig. 4(b) implies that the 
object area of one frame may have a strong impact on the 
frame level analytical distortion denoted as i

AD , since 
smaller object has less contribution to SAD of one frame. 



 

Fig. 5 illustrates the detection results. From Fig. 5, it can be 
seen that the total detected object area in Video 3 is smaller 
than that in Video 1.  
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Fig. 4 Impact of α on the proposed framework. (a) In order to show the 
results, α is enlarged 10 times in the figure and 4 sequences are 
compressed using same QP (27). (b) Compressed with the same α (0.1), 
the analytical distortion of 599-th frame i

AD  in Video 1 and Video 3 are 
shown under different QPs. 

 
Fig. 5 The first column shows the 599-th original frames in Video 1 and 
Video 3 respectively. The second column represents the detection results of 
the original frames and the third column denotes the detection results of 
their compressed versions (QP = 37). 

Inspired by the above observations, we calculate the 
variance of i

AD under different QPs and collect the total 
detected object area of each original frame. The results are 
shown in Fig. 6. In Fig. 6, the analytical distortion variance 
is much bigger when the object area is smaller, which 
implies that smaller object area should be compressed with 
higher quality to avoid a high fluctuation of analytical 
distortion. 
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Fig. 6 Analytical distortion variance vs. object area 

As a consequence, the weighting parameter α is updated 
according to the detected object area of each frame, which 
can be expressed as 

0.1 exp( )Area
W Hα ∗= ∗ ,                          (15) 

where W and H denote the frame width and frame height and 
Area represents the total detected object area of each frame. 
In the coding procedure, the total object area can be derived 
by a frame subtraction method [22]. 

IV.  EXPERIMENTAL RESULTS 

In this section, simulations are conducted to evaluate the 
performance of the proposed method in the HEVC reference 
software HM 16.7. Low-Delay P (LDP) configuration is 
tested. Four QP values (22, 27, 32, 37) are used and BD-rate 
saving (BDBR) is employed to measure the RD performance 
of the proposed method. The RAD curves of our proposed 
approach and HEVC on each video sequence are shown in 
Fig. 7. 

TABLE 1. PROPERTIES OF THE FOUR VIDEO SEQUENCES 

Sequence Resolution Frame Number Frame Rate 
Video 5 720x576 600 25 
Video 6 720x576 600 25 
Video 7 720x576 600 25 
Video 8 800x600 200 30 

In order to show the performance of our proposed method, 
another 4 test video sequences Video 5-8 are chosen, 
including 3 indoor videos from PETS2006, and 1 outdoor 
video from CAVIAR. Detailed properties of the four 
sequences are given in Table 1. 

0 500 1000 1500
0.03

0.04

0.05

0.06

0.07

0.08

Rate(kbps)

D
As

 

 

HEVC
Proposed Method

 
0 200 400 600 800

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Rate(kbps)

D
As

 

 

HEVC
Proposed Method

 
(a) Video 5                                       (b) Video 6 
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Fig. 7 Experimental results 

TABLE 2. LUMA BDBR UNDER LDP CONFIGURATION 

Video Sequence BDBR 
Video 5 0.5% 
Video 6 0.6% 
Video 7 1.1% 
Video 8 2.4% 
Average 0.9% 

As a first observation in Fig. 7, it can be seen that our 
proposed approach can reduce the analytical distortion 
effectively under low bit rate (QP = 37) while the coding 
efficiency decreases slightly in terms of BD-rate (BDBR). In 
the best scenario, up to 40% reduction in terms of average 



 

analytical distortion is achieved for QP 27 and 22 in Fig. 
7(c), since the object area in Video 7 is smaller than that in 
other video sequences. In contrast, the analytical distortion 
increases at low bit rate (QP = 32, 37) in Fig. 7(c), since the 
background has a great impact on SAD which results in a lot 
of false positives. Table. 2 shows the performance in terms 
of BDBR between our proposed approach and HEVC. We 
can see that the coding performance of our approach 
increases about 0.9% in average. The reason is that our 
proposed RADO method may change the mode decision for 
coding units and the best chosen mode is no longer optimal 
in terms of RD. The complexity comparison between HM 
16.7 and the proposed method are shown in Table 3 in terms 
of the encoding time. It can be seen that the encoding time 
of the proposed method is about 1.8 times compared with 
that of HEVC. 

TABLE 3. ENCODING TIME RATIO 

Sequence Encoding Time (sec.) Encoding 
Time Ratio HM Proposed 

Video 5 7919.043 14286.955 180.413% 
Video 6 7898.877 13849.762 175.338% 
Video 7 8141.746 14894.478 182.940% 
Video 8 1617.044 2865.203 177.188% 

V.  CONCLUSION 

In this paper, we attempt to design a new video coding 
mechanism for video analysis and propose a new rate-
distortion method. To illustrate the validation of our 
proposed method, we consider moving object detection as 
an example and propose a rate-analytical-distortion model 
for video coding. More specifically, the compression 
distortion is used to predict the analytical distortion. The 
experimental results show that our proposed model can 
effectively reduce the analytical distortion. However, our 
proposed method is a two-pass encoding method which 
increases the complexity. In our future work, we will aim at 
reducing the complexity by applying some SAD estimation 
approaches to avoid the two-pass encoding process. Besides, 
investigating a more adaption model to derive the weighting 
parameter α between the compression distortion and the 
analytical distortion is also an important aspect which will 
be addressed in the future. 
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