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Abstract—Human action recognition in video is highly chal-
lenging due to the substantial variations in motion performance,
recording settings and inter-personal differences. Most current
research focuses on the extraction of effective features and the
design of suitable classifiers. Conversely, in this paper we tackle
this problem by a dissimilarity-based approach where classifica-
tion is performed in terms of minimum distance from templates.
To measure the dissimilarity between any two action instances,
we propose leveraging the Pair Hidden Markov Support Vector
Machine (PHMM-SSVM) that was recently proposed for tasks of
video alignment. The main advantages of PHMM-SSVM are its
ability to learn optimal alignment models from training sets of
manually-aligned action pairs and provide alignment scores that
can be used for action classication. The experimental results over
two popular action datasets show that the proposed approach has
been capable of achieving an accuracy higher than many existing
methods and comparable to a state-of-the-art algorithm.

Index terms— DAGSVM, k-nearest neighbours, sequence
alignment, action recognition, PHMM-SSVM.

I. INTRODUCTION AND RELATED WORK

The rapid growth in the availability of human action videos
is pushing the need for tools that can automatically classify
actions in applications such as sport video analysis, automatic
surveillance, social media tagging and others. The field of
automatic action recognition is geared towards the design of
more effective features and classifiers [1]. However, accurate
action recognition remains challenging to date due to the
many degrees of variations under which human actions can
be performed and recorded.

The goal of this paper is to explore action recognition by a
dissimilarity-based approach where classification is performed
in terms of minimum distance from pre-classified templates.
Our motivation comes from the studies on dissimilarity-based
classification that have all reported remarkable accuracy [2],
[3], [4], [5], [6]. Dissimilarity-based classification does not
represent each object by a conventional feature vector: rather,
it provides a distance function that can quantify the dissimilar-
ity between any given object pair. Once the distance function is
chosen, classification can be provided in either of two ways:
a) by directly using a minimum-distance classifier (e.g., k-
nearest neighbours), or b) by using the distances between the

Fig. 1: Left: Example of frame-by-frame distances. Right:
Example of dynamic time warping.

object and a given set of template samples as a distance-based
feature vector for the object. In the first case, the object is
assigned to the most frequent class amongst the k closest
samples of a training set. In the second case, the distances
between the object and the templates form a feature vector
in their own right, and can be used in conjunction with
any conventional classifier (SVM, deep neural networks etc).
Dissimilarity-based classification has proved very successful
for the classification of non-vector objects such as graphs and
strings [2], [3], [4] and seems promising also for the classifi-
cation of complex sequential data such as human actions.

The crux of dissimilarity-based classification is the choice
of an effective distance function. In the case of action videos,
a basic idea could be to measure the distance between any
two given videos simply as the sum of the distances be-
tween their frame pairs in appearance order. However, such
a distance is too crude since it does not take into account
local misalignments (see the left diagram in Fig. 1). For this
reason, alignment algorithms such as dynamic time warping
(DTW) [7], canonical time warping (CTW) [8], [9] and many
others have been used to more suitably measure the distance
between two videos. These algorithms are generally more
effective since they compensate for temporal distortions (see
the right diagram in Fig. 1). However, they are typically based
on fixed cost models and they are difficult to adapt to specific
applications.

Amongst alignment models, the recently-proposed Pair Hid-
den Markov Support Vector Machine [10] (acronymised as
PHMM-SSVM from the combination of pair hidden Markov
model and structural SVM), is a more sophisticated alignment



algorithm that has proved capable of remarkable accuracy,
outperforming established algorithms such as DTW [7] and
CTW [8], [9] on alignment metrics. PHMM-SSVM provides
major advantages over conventional alignment approaches: 1)
an ability to learn an optimal cost model from any set of
manually-aligned video pairs; 2) a maximum-margin objective
that has a strong reputation for empirical accuracy; 3) the
possibility to choose arbitrary loss functions for tuning the
model to specific type of data; and 4) a customisable kernel
distance between frame pairs for implementing nonlinear cost
models (function K in Equation 1). In this paper, we exper-
iment with both classification approaches (minimum-distance
classification and distance-based feature vectors) using the
PHMM-SSVM as the underlying distance. As minimum-
distance classifier, we have adopted the k-nearest neighbour
classifier (k-NN) [11]. To curb its computational complexity,
we have applied a prototype selection technique that selects
a number of template samples, or “prototypes”, from each
class to abate the overall number of comparisons. For the
second approach, we have computed the distances between
each input sequence and the prototypes of every class, and
used it as feature vector with a multiclass SVM classifier. We
have tested the proposed approach in a set of experiments on
action recognition over the popular KTH [12] and Olympic
Sport [13] datasets. The experimental results show that the
proposed approach has been able to outperform many existing
approaches in terms of classification accuracy and to rank
closely to the state of the art.

II. THE PHMM-SSVM DISTANCE

Given the frame sequences of two videos, s =
{s1, ..., si, ..., sLs

} and t = {t1, ..., tj , ..., tLt
}, an “alignment

path”, y, is a sequence of symbols that pairs frames from
s and t. The symbols are of three types: M (“match”), S
(“insert a gap on sequence s”), and T (“insert a gap on
sequence t”), with the following meaning: assuming that i and
j are current indices over sequences s and t, respectively, 1)
symbol M pairs frames si and tj , and then increments both
indices; 2) symbol S pairs no frames and only increments
index j; and, likewise, 3) symbol T pairs no frames and only
increments index i. To illustrate the alignment, Fig. 3 shows
a diagram with two input sequences and an alignment path,
including matched frames and inserted gaps; Fig. 2 shows
actual examples of alignments for actions from the Olympic
Sports dataset.

The PHMM-SSVM model [10] is a probabilistic model
that defines a joint probability, p(s, t, y), for sequences s, t
and their alignment path, y. This joint probability is chosen
from the class of the exponential family of distributions,
p(s, t, y) ∝ exp(w>ψ(s, t, y)), where w notes a parameter
vector and ψ a suitable feature function. With this parametriza-
tion, a PHMM-SSVM can be trained by leveraging maximum-
margin approaches that have gained a strong reputation for
accuracy [14].

Like in a conventional hidden Markov model, the joint
probability of a PHMM-SSVM conveniently factorises into

a set of transition and emission probabilities (Fig. 3 shows
the model as a graphical model). Accordingly, parameter
vector w divides in two parts: transition parameters, wtr,
and emission parameters, wem. The overall scoring function,
F (s, t) = w>ψ(s, t, y), is written as:

w>ψ(s, t, y) =

|y|∑
k=1

wtr
yk−1,yk

+ wem>K(si − tj)I[yk = M ]

wtr
0,∗ = 0; I[yk = M ] : i++, j++;

I[yk = S] : j++; I[yk = T ] : i++
(1)

where I is the indicator function and indices i and j, initially
set to 1, are post-incremented according to the value of label
yk. Function K is a generic, nonlinear kernel function which
accounts for the dissimilarity between any two frames of s
and t.

Once a model and two input sequences are given, the
optimal alignment ȳ = argmaxy w

>ψ(s, t, y) can be com-
puted by an efficient dynamic programming algorithm of linear
complexity akin to the Viterbi algorithm [15]. In the follwoing,
we use the score of this optimal path as the inverse distance
between the two input sequences. For training the PHMM-
SSVM model, we have used structural SVM [14] over a set
of manually-aligned video pairs (further details can be found
in [10]).

III. PROTOTYPE SELECTION WITH PHMM-SSVM

The main drawback of nonparametric dissimilarity-based
classifiers such as k-NN is their computational complexity at
run time: in principle, each test sample should be compared
with every sample in the training set. While mitigation tech-
niques such as the use of the triangle inequality and k-d trees
can be exploited, the problem remains intrinsically complex,
especially for large datasets. An alternative to the full run-
time search is offered by prototype selection: in this case, the
training set is replaced by a subset of representative prototypes,
making the search substantially faster. In addition to reducing
the run-time complexity, prototype selection typically achieves
a comparable or even higher classification accuracy than the
full search thanks to the removal of noisy and redundant
samples [16]. The selection of the best prototypes can be per-
formed according to a number of different criteria, including
uniform distribution, centrality in the class, and others [3].
For this work, we have decided to adopt KCentres that selects
prototypes that well reflect the sample distribution inside each
class [17]. For each class, KCentres chooses L prototypes
with these steps: 1) randomly pick an initial set of prototypes,
P = {p1, ...pL}; 2) partition all the class’ samples into L
subsets, J1 = {p1} , ..., JL = {pL}, based on their closest
prototype; 3) for each Jl, l = 1, 2, ..., L, find its most central
element (the element whose maximum distance to all other
elements is minimum); 4) replace the prototypes in P with
the most central elements. Eventually, iterate steps 2-4 until
convergence or a maximum number of iterations is reached.



Fig. 2: Examples of PHMM-SSVM alignment from the Olympic Sport dataset. Top two rows: 14 matches and inserted gaps
for two paired “clean-and-jerk” sequences. Bottom two rows: 16 matches and inserted gaps for two paired “tennis-serve”
sequences (the gaps are inserted only on the second sequence because of its slower execution).
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Fig. 3: The PHMM-SSVM as a graphical model.

IV. CLASSIFICATION

For classification, we have used two different approaches:
1) minimum-distance classification with a k-NN classifier and
2) a distance-based feature vector with a DAGSVM classifier.
In the first approach, the k-NN classifier predicts the class of
a test sample by the majority class of its k nearest neighbours.
Despite its simplicity, the k-NN classifier has reported state-
of-the-art accuracy over a number of benchmarks [11]. Before
running k-NN, we have selected L prototypes per class and
replaced the training set with the prototypes. This reduction
abates the run time by the ratio between the size of these two
sets. However, the prediction of a k-NN classifier is ambiguous
whenever the majority class is at a parity. In this case, rather
than picking a class using an arbitrary criterion, we have
resorted to a “refinement classifier” to disambiguate the choice.
As refinement classifier, we have used a multiclass DAGSVM
with a standard bag-of-words (BoW) representation of the
video as input. This idea was inspired by [5], although our
implementation is simpler and faster. The overall classification
procedure is summarised in Algorithm 1.

In the second approach, we have first computed a feature
vector for each video consisting of the distances between
the video itself and all the prototypes from all classes.
Then, we have performed action classification using these
feature vectors and a multiclass DAGSVM classifier [18].
A DAGSVM classifier (reading as “directed acyclic graph”
SVM) is an improvement over the popular “one-vs-one”
and “one-vs-all” SVM [19] that, by design, is capable of
preventing classification parities. In one-vs-one and one-vs-all
SVM, mutliclass classification is performed as a set of binary

Algorithm 1: k-NN classification with the PHMM-SSVM
distance.
Input : Class set C = {c1, ..., cn};

Test set T = {t1, ..., tl};
Prototype set P = {P1, ..., Pn∗L}

1 Allocate l result sets r = (r1, . . . , rl)
2 foreach i ∈ 1 . . . l do
3 Compute the PHMM-SSVM distances between ti and

P : D(ti, P ) = {d(ti, P1), ..., d(ti, Pn∗L)}
4 if there is a majority class, c then
5 c− > ri
6 end
7 else
8 Apply DAGSVM with BoW(ti) to find class c
9 c− > ri

10 end
11 end

Output: result sets r

classifications that can often lead to classification ambiguities
(samples than are classified into more than one class, or none).
DAGSVM prevents these cases by organising the set of binary
classifications as a decision tree: in each node of the tree,
a single binary classification is performed to exclude one of
the classes in turn. When the sample eventually reaches a
leaf of the tree, its class assignment is unique. DAGSVM is
also efficient since it requires only M − 1 binary inferences
for classification over a set of M classes. As an example of
the feature vector, Table I shows the PHMM-SSVM distances
between a sample of the “walking” class in the KTH dataset
and 10 prototypes from each of the dataset’s 6 classes. To
further illustrate the alignment distance, Figure 4 shows the
PHMM-SSVM distances between every sample pair in the
same dataset (2,391 istances) as a grey-scale matrix. The
overall classification procedure is summarised in Algorithm 2.

V. EXPERIMENTS AND DISCUSSION

This section compares the performance of PHMM-SSVM
distance-based classification against state-of-the-art methods
over four experiments. To prepare the measurements for the
experiments, we have first extracted dense feature descriptors



Algorithm 2: DAGSVM classification with the PHMM-
SSVM-based feature vector.

Input : Class set C = {c1, ..., cn};
Test set T = {t1, ..., tl};
Prototype set P = {P1, ..., Pn∗L}

1 Allocate l result sets r = (r1, . . . , rl)
2 foreach i ∈ 1 . . . l in T do
3 Compute feature vector ti′ for ti:

ti
′ = {d(ti, P1), ..., d(ti, Pn∗L)}

4 Apply DAGSVM with ti′ to find class c
5 c− > ri
6 end

Output: result sets r

TABLE I: Example of PHMM-SSVM distances between a
walking sample in the KTH dataset and prototypes from the
various classes. Darker colours denote higher similarity.

from each frame of all the video sequences by using the STIP
extractor of [12]. We have then computed a bag-of-words with
1,000 bins for each frame using the VLFeat library [20]. After
that, we have trained a PHMM-SSVM distance model for
each class on manually-aligned sequence pairs (ground-truth
alignments) from that class. We have not trained cross-class
models, expecting that a trained class model would return the
highest scores for test sequences from the same class. For the
annotation of the ground-truth alignments, we have selected
and matched “key frames” (i.e., apexes of actions) from the
paired sequences. After the PHMM-SSVM training, prototype
selection has been performed on each class using the respective
PHMM-SSVM distance to select L sequences as prototypes.

The experiments have been carried out over the KTH [12]
and Olympic Sports [13] datasets. KTH is a video dataset of
6 action classes staged by 25 actors in various indoor and
outdoor scenarios for a total of 2,391 action instances. The
Olympic Sports dataset is a sport action dataset containing 16
action classes and a total of 800 action instances. This dataset
is more challenging than KTH since its samples are real videos
shot under a variety of viewing conditions and from different,
unknown cameras.

Fig. 4: The PHMM-SSVM distance matrix between action
instances in KTH dataset. Darker colours denote higher simi-
larity.

A. Results with the k-NN classifier on the KTH dataset

For this experiment, we have used the standard training and
test sets provided by the dataset’s authors. To train the PHMM-
SVMM models, we have selected 16 training sequences per
class and generated 120 (i.e., 16 ∗ 15/2) manually-aligned
pairs using 6 key frames for each sequence. The experiments
have been carried out with 1, 5, and 10 nearest neighbours
(1-NN, 5-NN and 10-NN) and the number of prototypes per
class, L, has been set to twice the number of the nearest
neighbours. Table II shows that the accuracy from 10-NN
has proved the highest, outperforming the results retrieved
from the literature (including the method from Niebles et
al. [13] by more than 23 percentage points). The lower
accuracy for classes “running” and “jogging” has been likely
due to their higher cross-similarity that has made it difficult
for PHMM-SVMM to yield reliable alignments. Conversely,
neatly characterised actions such as “boxing” and “waving”
have been recognised with 100% accuracy. Figure 4 clearly
shows some degree of confusion between classes “walking”,
“jogging” and “running”, which explains the lower accuracy
for these classes.

B. Results with the k-NN classifier on the Olympic Sports
dataset

For the second dataset, we have used the same training
and test splits of [13] and performed PHMM-SSVM training
with the same procedure of the first dataset. The experiments
have been carried out with 5-NN and 10-NN (1-NN did not
seem promising, given its limited performance on KTH and



Action 1-NN 5-NN 10-NN
walking 83.3% 97.9% 99.3%
running 72.2% 84.0% 86.8%
jogging 72.9% 86.1% 88.2%
waving 86.1% 100% 100%

clapping 85.4% 98.6% 98.6%
boxing 86.8% 99.3% 100%

Algorithm Avg.
Ours (10-NN) 95.5%

Niebles et al. [13] 71.9%
Laptev et al. [21] 91.8%
Wong et al. [22] 86.7%
Kim et al. [23] 95.3%

Wang et al. [24] 92.1%

TABLE II: Accuracy with the k-NN classifier on the KTH
dataset.

Sport
class

Ours Niebles et al.
[13]

Jain et al.
[25]5-NN 10-NN

high-jump 79.2% 82.5% 68.9% 84.9%
long-jump 82.7% 85.2% 74.8% 84.6%
triple-jump 83.5% 85.7% 52.3% 83.3%
pole-vault 84.3% 88.1% 82.0% 84.7%

vault 82.2% 86.5% 86.1% 82.6%
shot-put 69.3% 71.4% 62.1% 83.6%
snatch 82.8% 86.1% 69.2% 83.5%

clean-jerk 87.7% 90.1% 84.1% 86.6%
javelin-throw 82.6% 85.0% 74.6% 84.8%

hammer-throw 85.1% 87.5% 77.5% 86.4%
discus-throw 70.1% 73.3% 58.5% 86.7%

diving-platform 73.1% 78.9% 87.2% 86.5%
div. springboard 70.6% 74.3% 77.2% 86.4%

basketball 78.3% 81.6% 77.9% 88.6%
bowling 82.8% 86.2% 72.7% 88.3%

tennis-serve 77.2% 81.8% 49.1% 83.4%
Algorithm Avg.

Ours (10-NN) 82.8%
Niebles et al. [13] 72.1%

Jain et al. [25] 85.3%

TABLE III: Accuracy with the k-NN classifier on the Olympic
Sports dataset.

the more challenging videos). Table III shows that 10-NN
has, again, achieved higher accuracy than 5-NN. Its per-class
accuracies are comparable with those from a state-of-the-art
classifier (Jain et al. [25]): lower in 8 cases and on average, but
higher in another 8 cases. The lowest accuracies were obtained
for classes “discus-throw” and “shot-put” which were often
confused because of their similar appearance; class “shot-put”
is also very challenging in its own right because it is performed
in a variety of styles (rotational, backsliding etc). Similar
misclassifications have also occurred between classes ”diving-
platform” and ”diving-springboard”. Our approach has, again,
achieved the highest accuracies for distinctive actions such as
“clean-and-jerk” weightlifting and “pole-vault”. Overall, the
average accuracy of the proposed method has proved 10.7
percentage points higher than the baseline from Niebles et
al. [13] and has ranked closely to that of Jain et al. [25].

C. Results with the DAGSVM classifier on both datasets

For the experiments with the distance-based feature vector
and the DAGSVM classifier we have used similar settings as
with the k-NN classifier. For the KTH dataset, Table IV shows
that the accuracy with 10 prototypes has proved higher than the
results retrieved from the literature (including the method from
Niebles et al. [13] by approximately 24 percentage points),
and also slightly higher than with the k-NN approach (0.3
percentage points). However, the same classes (i.e., “running”,

Action 1 pr. 5 pr. 10 pr.
walking 81.3% 98.9% 99.3%
running 71.9% 86.2% 87.7%
jogging 72.3% 88.0% 89.1%
waving 87.4% 100% 100%

clapping 86.2% 98.6% 99.1%
boxing 87.2% 99.3% 100%

Algorithm Avg.
Ours (10 pr.) 95.8%

Niebles et al. [13] 71.9%
Laptev et al. [21] 91.8%
Wong et al. [22] 86.7%
Kim et al. [23] 95.3%

Wang et al. [24] 92.1%

TABLE IV: Accuracy with the DAGSVM classifier on the
KTH dataset.

Sport
class

Ours Niebles et al.
[13]

Jain et al.
[25]5 pr. 10 pr.

high-jump 77.8% 81.7% 68.9% 84.9%
long-jump 83.1% 85.6% 74.8% 84.6%
triple-jump 84.1% 86.1% 52.3% 83.3%
pole-vault 83.5% 86.6% 82.0% 84.7%

vault 82.6% 86.7% 86.1% 82.6%
shot-put 68.9% 74.1% 62.1% 83.6%
snatch 84.2% 86.4% 69.2% 83.5%

clean-jerk 88.3% 90.5% 84.1% 86.6%
javelin-throw 82.0% 85.1% 74.6% 84.8%

hammer-throw 86.6% 88.3% 77.5% 86.4%
discus-throw 70.5% 74.6% 58.5% 86.7%

diving-platform 71.8% 76.4% 87.2% 86.5%
div. springboard 70.1% 72.8% 77.2% 86.4%

basketball 80.4% 82.8% 77.9% 88.6%
bowling 86.4% 88.6% 72.7% 88.3%

tennis-serve 77.9% 83.2% 49.1% 83.4%
Algorithm Avg.

Ours (10 pr.) 83.1%
Niebles et al. [13] 72.1%

Jain et al. [25] 85.3%

TABLE V: Accuracy with the DAGSVM classifier on the
Olympic Sports dataset.

“jogging”) have reported lower accuracy also with this classi-
fier. This clearly shows that the performance of the classifier is
closely tied to the discriminative capability of the underlying
PHMM-SSVM distance.

For the Olympic Sports dataset, the accuracies reported in
Table V seem interesting and generally comparable to those
of the k-NN classifier. The average accuracy is, again, slightly
higher (0.3 percentage points). The DAGSVM classifier has
also achieved higher scores than a state-of-the-art classifier
(Jain et al. [25]) in 9 cases (with class “bowling” in addition
to those from the previous experiment). The lowest accuracies
have again been for class pairs “discus-throw” and “shot-put”,
and “diving-platform” and “diving-springboard”, due to their
evident similarity. The proposed approach has again achieved
its highest accuracies for distinctive actions such as “clean-
and-jerk” weightlifting and “pole-vault”. Overall, the average
accuracy of the proposed method has proved 11 percentage
points higher than the baseline from Niebles et al. [13] and
has ranked closely to that of Jain et al. [25].

VI. CONCLUSION

In this paper, we have presented a novel dissimilarity-
based approach to action recognition in videos. The approach
leverages the recently-proposed PHMM-SVMM alignment
algorithm which, for every two given videos, provides an
alignment path and a similarity score. In our experiments, we



have used the PHMM-SSVM similarity score as an inverse
distance between the two input videos, and exploited it for
action classification. We have proposed two distance-based
methods for classification: 1) a k-NN classifier using the
PHMM-SSVM distance; 2) a DAGSVM classifier using a
PHMM-SSVM-based feature vector. Prior to applying the
classifiers, we have run a step of prototype selection to select
a set of prototypes for each class. For the k-NN classifier, we
have replaced the training set with the prototypes’ set to abate
the test-time computational complexity. For the DAGSVM
classifier, we have used the prototypes to obtain a distance-
based feature vector for each video. The experimental results
over two popular action video datasets - KTH and Olympic
Sports - have showed that:
• on the KTH dataset, the proposed approaches have

achieved an accuracy that is 24 percentage points higher
than the classifier from Niebles et al. [13] and higher than
the results compiled from the literature;

• on the Olympic Sports dataset, the proposed approaches
have achieved an accuracy that is 11 percentage points
higher than the classifier from Niebles et al. [13] and
close to that of a state-of-the-art approach [25].

A further analysis of the per-class accuracy has shown that
the proposed approach has tended to outperform the other
classifiers on actions with more pronounced temporal stages.
Given that the PHMM-SVMM distance is based on temporal
alignment, this result is encouraging and indicates that the
best application for the proposed approach are actions with
neatly-outlined stages. In the future, we plan to expand the
experiments by integrating the PHMM-SVMM distance with
other features and classifiers.

REFERENCES

[1] P. K. Turaga, R. Chellappa, V. S. Subrahmanian, and O. Udrea, “Machine
recognition of human activities: A survey.” IEEE Trans. Circuits Syst.
Video Techn., vol. 18, no. 11, pp. 1473–1488, 2008.

[2] E. Pekalska and R. P. W. Duin, The dissimilarity representation for
pattern recognition: foundations and applications. World Scientific
Pub Co Inc, 2005, vol. 64.

[3] K. Riesen, M. Neuhaus, and H. Bunke, “Graph embedding in vector
spaces by means of prototype selection,” in Proceedings of the 6th
IAPR-TC-15 international conference on Graph-based representations
in pattern recognition. Springer-Verlag, 2007, pp. 383–393.

[4] K. Riesen and H. Bunke, “Graph classification based on vector space
embedding,” International Journal of Pattern Recognition and Artificial
Intelligence, vol. 23, no. 6, p. 1053, 2009.

[5] H. Zhang, A. C. Berg, M. Maire, and J. Malik, “Svm-knn: Discriminative
nearest neighbor classification for visual category recognition,” in Pro-
ceedings of the 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition - Volume 2, ser. CVPR ’06. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 2126–2136.

[6] K. Q. Weinberger and L. K. Saul, “Distance metric learning for large
margin nearest neighbor classification,” J. Mach. Learn. Res., vol. 10,
pp. 207–244, jun 2009.

[7] L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition.
Englewood Cliffs, New Jersey: Prentice-Hall Signal Processing Series,
1993.

[8] F. Zhou and F. De la Torre, “Canonical time warping for alignment of
human behavior,” in Advances in Neural Information Processing Systems
Conference (NIPS), December 2009.

[9] ——, “Generalized canonical time warping,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 38, no. 2, pp. 279–294,
2016.

[10] Z. Wang and M. Piccardi, “A pair hidden Markov support vector machine
for alignment of human actions,” in IEEE International Conference on
Multimedia and Expo, ICME 2016, Seattle, WA, USA, July 11-15, 2016,
2016, pp. 1–6.

[11] P. Cunningham and S. J. Delany, “k-nearest neighbour classifiers,” 2007.
[12] C. Schuldt, I. Laptev, and B. Caputo, “Recognizing human actions: A

local SVM approach,” in Proceedings of the Pattern Recognition, 17th
International Conference on (ICPR’04) Volume 3 - Volume 03, ser. ICPR
’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 32–36.

[13] J. C. Niebles, C.-W. Chen, and L. Fei-Fei, “Modeling temporal structure
of decomposable motion segments for activity classification,” in Pro-
ceedings of the 11th European Conference on Computer Vision: Part II,
ser. ECCV’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 392–405.

[14] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large margin
methods for structured and interdependent output variables,” JMLR,
vol. 6, pp. 1453–1484, 2005.

[15] M. S. Ryan and G. R. Nudd, “The Viterbi algorithm,” Coventry, UK,
UK, Tech. Rep., 1993.

[16] S. Ougiaroglou, L. Karamitopoulos, C. Tatoglou, G. Evangelidis, and
D. A. Dervos, Applying Prototype Selection and Abstraction Algorithms
for Efficient Time-Series Classification”. Cham: Springer International
Publishing, 2015, pp. 333–348.

[17] E. Pekalska, R. P. W. Duin, and P. Paclı́k, “Prototype selection for
dissimilarity-based classifiers,” Pattern Recogn., vol. 39, no. 2, pp. 189–
208, feb 2006.

[18] J. C. Platt, N. Cristianini, and J. Shawe-Taylor, “Large margin dags for
multiclass classification,” in Advances in Neural Information Processing
Systems 12, S. A. Solla, T. K. Leen, and K. Müller, Eds. MIT Press,
2000, pp. 547–553.

[19] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 27:1–
27:27, 2011.

[20] A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library of
computer vision algorithms,” http://www.vlfeat.org, 2008.

[21] C. Schmid, B. Rozenfeld, M. Marszalek, and I. Laptev, “Learning real-
istic human actions from movies,” 2008 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1–8, 2008.

[22] T.-K. Kim, S.-F. Wong, and R. Cipolla, “Learning motion categories
using both semantic and structural information,” 2007 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1–6, 2007.

[23] ——, “Tensor canonical correlation analysis for action classification,”
in CVPR. IEEE Computer Society, 2007.

[24] H. Wang, M. M. Ullah, A. Klser, I. Laptev, and C. Schmid, “Evaluation
of local spatio-temporal features for action recognition,” in University
of Central Florida, U.S.A, 2009.

[25] A. Jain, A. Gupta, M. Rodriguez, and L. S. Davis, “Representing
videos using mid-level discriminative patches,” 2013 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2571–2578, 2013.


