
Evaluation of GPU/CPU Co-Processing Models for
JPEG 2000 Packetization

Volker Bruns, Miguel Á. Martínez-del-Amor, Heiko Sparenberg
Moving Picture Technologies

Fraunhofer Institute for Integrated Circuits IIS
Erlangen, Germany

Abstract—With the bottom-line goal of increasing the
throughput of a GPU-accelerated JPEG 2000 encoder, this paper
evaluates whether the post-compression rate control and
packetization routines should be carried out on the CPU or on
the GPU. Three co-processing models that differ in how the
workload is split among the CPU and GPU are introduced. Both
routines are discussed and algorithms for executing them in
parallel are presented. Experimental results for compressing a
detail-rich UHD sequence to 4 bits/sample indicate speed-ups of
200x for the rate control and 100x for the packetization
compared to the single-threaded implementation in the
commercial Kakadu library. These two routines executed on the
CPU take 4x as long as all remaining coding steps on the GPU
and therefore present a bottleneck. Even if the CPU bottleneck
could be avoided with multi-threading, it is still beneficial to
execute all coding steps on the GPU as this minimizes the
required device-to-host transfer and thereby speeds up the
critical path from 17.2 fps to 19.5 fps for 4 bits/sample and to
22.4 fps for 0.16 bits/sample.

Keywords—JPEG 2000; PCRD-Opt.; Packetization; GPGPU

I. INTRODUCTION

JPEG 2000 is a still-image compression scheme
standardized jointly by ISO and ITU [1]. It was selected by the
Society of Motion Picture & Television Engineers (SMPTE) to
be employed in both the Digital Cinema Package (DCP)
format [2] and, more recently, in the mezzanine Interoperable
Master Format (IMF) [3]. While cinema servers are equipped
with FPGA-based hardware decoders, mastering stations and
transcoders employed throughout the post-production
workflow are more often software-based. The high
computational complexity of JPEG 2000 is a challenge and can
stand in the way of real-time processing. Therefore, much work
has been invested into accelerating JPEG 2000 coders. One
strategy has been to utilize graphics processing units (GPUs)
which today have thousands of processing cores. The focus
was spent mostly on both the Discrete Wavelet Transform
(DWT) and the Embedded Block Coder with Optimized
Truncation (EBCOT). Only little focus, however, has been
devoted to executing the Post-Compression Rate-Distortion
Optimization (PCRD-Opt.) [4] and packetization on a GPU.
However, once all other coding blocks have been optimized,
these operations can take up a significant portion of the overall
coding time on a CPU, especially at high bit rates.

Figure 1 shows three possible co-processing models that
differ in the points at which to switch the execution back from

the GPU to the CPU. The research questions posed in this
paper are: how can the PCRD-Opt. and packetization routines
be efficiently computed on a GPU? Which co-processing
model is the fastest?

II. STATE OF THE ART

Considerable research has been devoted to re-formulating
the individual JPEG 2000 coding-blocks for an execution on a
GPU. Even before CUDA or OpenCL were released, Tenllado
et al presented how to implement 2D DWTs efficiently on
GPUs [5]. More recently it was shown how to leverage
CUDA’s register-shuffling intrinsics in a parallel DWT
implementation [6]. The EBCOT algorithm poses a greater
challenge as it does not inherently expose finely grained
parallelism. A sample-parallel context modelling algorithm
was presented by [7] and later in [8] and [9]. In [10] the authors
evaluated if the selective arithmetic bypassing mode can yield
a significant speed-up on a GPU. A CUDA-based open source
encoder was released by the University Stuttgart, where
PCRD-Opt. and packetization are executed on the CPU [11].
GPU-specifics implementation optimizations for the MQ-coder
were presented in [13]. Aside from research related to parallel
architectures, another related field is that of alternate rate-
control algorithms, especially since the standard leaves some
room for implementations here. Many algorithms have the goal
of estimating prior to compression which passes will end up
getting truncated. An excellent overview is given in [12]. In
this paper, the PCRD-Opt.-based rate control is used. It was
first proposed by Taubman in [4] and adopted as an example
into the standard.

III. REVIEW OF JPEG 2000
Figure 2 shows a JPEG 2000 encoder’s coding stages and

data structures. After the color- and wavelet-transforms have
been applied, each subband is first quantized and then split into
non-overlapping code-blocks. Groups of spatially
corresponding code-blocks from all subbands within a
resolution level are grouped into Precincts. The most

Bitplane
Coding

GPU

PCRD-
Opt. Packetization

CPU

Fig. 1. GPU/CPU Co-Processing models for JPEG 2000 packetization

predominant profiles employed in digital media production, the
DCI-, Broadcast- and IMF-profiles [1][2], all define a code-
block size of 32x32 samples and precinct size of 8x8 blocks
(4x4 in the smallest resolution level). In EBCOT’s first tier,
each code-block is compressed independently into an
embedded bit stream using a bit plane-wise scan pattern and a
context adaptive binary arithmetic coder. To offer a finely
grained bit stream embeddedness on a fractional bit plane
level, each plane is further scanned in three passes: the first
pass includes those samples that are not yet significant
(magnitude of zero in decoder’s point of view), but are likely
to turn significant in this bit plane, because they have
neighbors that are already significant and neighboring values in
a subband tend to have similar magnitudes. The second pass
refines those samples that have already turned significant in a
previous bit plane. The last pass codes all remaining samples.

A. Post Compression Rate Control
In lossy coding, a maximum data rate defined as a property

of the JPEG 2000 profile must not be exceeded. If the
simulated code-stream is initially too large after block coding,
EBCOT’s second tier truncates the code-blocks’ bit streams
with the additional goal of retaining optimal quality. The
standard proposes the PCRD-Opt. algorithm, which relies on
the block encoder to produce a set of truncation points - one
after each pass - along with an estimate of each point’s slope
on the code-block’s rate-distortion plot as side information. It
is then an optimization problem to find the set of truncation
points - one for every block’s bit stream j - that yields the
lowest overall distortion while still staying within the available
data rate budget. The algorithm is explained in detail in the
standard [1] and the original publication [4]. To give a brief
overview here, it can be shown that only the truncation points
that lie on the convex hull of their block’s rate distortion plot
are viable candidates and so all potential points for a single
code-block have strictly decreasing slopes. It follows that a set
of truncation points can be constructed by defining a slope
threshold and then selecting, for each code-block, the
truncation point that has a slope closest to, but not below the
threshold. A bisection search will gradually lead to the best
available slope threshold . It starts off by probing a threshold
half way between the minimum and maximum possible slopes.
The bit stream lengths and number of included passes for each
code-block can be computed based on the current set of
truncation points. Then the packet headers, tile-part headers

and main headers are simulated and their lengths summed up to
give the total codestream size. As long as this computed size
exceeds (or is too far below) the specified budget, the
procedure is repeated with a lower (higher) slope threshold.

B. Packetization
Structurally, a JPEG 2000 codestream consists of a set of

markers that can be categorized into a main header and tile
parts. A tile part is a sub-portion of the compressed image and
its content depends on the progression order. When the major
progression order is by color channel, each tile-part
corresponds to a color channel. The main header comprises
global properties and coding options required to decode and
interpret the image. Tile-part headers contain further properties
that can vary by tile-part, such as the bit depth. They are
followed by the tile-part body, which is comprised of a set of
packets. Each packet contains the compressed code-blocks
from one particular precinct in one quality layer. Since the use
of quality layers is prohibited in the DCI-, Broadcast- and
IMF-profiles, we assume there is only a single quality layer
going forward. Each packet header contains the code blocks’
number of skipped all-zero bit planes, pass count and segment
lengths. Since these values are likely to be similar for the code-
blocks in one precinct, they are compressed with tag tree and
comma codes. For improved random access, the tile-parts’
lengths can be stated in the main header1. This is mandatory in
the DCI-, Broadcast- and IMF-profiles.

IV. GENERAL PURPOSE COMPUTING ON GPUS

This section tries to give a very brief introduction into the
concepts of GPU programming. A high-end GPU today has
hundreds of cores and its architecture is designed to run
thousands of lightweight threads. Tasks that can be broken
down into many parallel sub-tasks are best suited to be
computed on a GPU. A program consists of functions that are
executed on the device (GPU) or on the host (CPU). A function
that is run on the GPU is denoted as a kernel in this text. Input
data to a kernel first needs to transferred into device memory
and the results need to be transferred back into host memory.
Memory transfers, kernels and host functions can be run in
parallel. Popular toolkits are OpenCL [14], NVIDIA CUDA
[15], Apple Metal [16] and OpenMP [17].

V. PROPOSED GPU/CPU CO-PROCESSING MODELS

CPU-only - After the code-blocks’ bit streams have been
produced on the GPU the final PCRD-Opt. and packetization
routines are executed by the CPU. From here on, this model is
denoted as CPU-only. Since the GPU and CPU can operate in
parallel, the packetization of frame N on the CPU are
overlapped with the compression of frame N+1 on the GPU.
However, a packetization on the CPU entails that the required
data needs to be transferred into the host memory first. Since
the bit streams’ lengths are not known ahead of time, they need
to be produced into dedicated fixed-size slots of a large-enough
memory block, so that bit streams are eventually interspersed
with unused gaps. Either the gaps are included in the memory
transfer or the bit streams need to be compacted first.
Additionally, a set of per-code-block metadata is required for

1in the Tile-Part Length in Main Header (TLM)-marker

B
G

LH HH

HL Block

Block

Block

Bloc k

Bloc k

Bloc k

Block

LSBs

Wavelet
Transform

Entropy Coding

Header

Packetization

Multi Component
Transform

R

V
U

Y

MSBs
Block 1

Rate Control

Packet PacketPacket

Block 2

Block 3

Block N

Focus of this Paper

Fig. 2. JPEG 2000 Encoder Overview

the packet header construction: the number of all-zero-bit
planes, number of passes, pass lengths and pass slopes. Given
that a UHD image without chroma-subsampling comprises
around twenty thousand code-blocks and assuming up to 15
magnitude bit planes per block and two bytes per metadata
value, this amounts to ~3.5 MB per image, which is often more
than the compressed code-stream itself.

Hybrid – As part of the bisection search for the optimal
slope threshold the entire codestream creation is simulated
multiple times. By far the most computationally demanding
sub-routine involved in this process is the packet header
construction. In the Hybrid co-processing model, this search
including the codestream simulation is executed on the GPU,
and only the final packetization is left for the CPU. The pass
lengths and slopes then do not have to be transferred, but
instead only the total lengths of the truncated bit streams.

GPU-only – in this model, all processing steps are carried
out on the GPU. A positive side effect is that the device-to-host
transfer is decreased to the bare minimum: only the final
codestream needs to be transferred, no additional per-code-
block metadata.

VI. PCRD-OPT. ON THE GPU
 In order to gain from a parallel architecture, the PCRD-Opt.
algorithm is redefined to exploit two levels of parallelism.
Figure 3 (a) shows the rate-distortion plot of a single code-
block. The truncation points are laid out on a convex curve.
Instead of probing only one slope threshold at a time, multiple
slopes (dashed lines) that are equally spaced apart in the
current search window are probed in parallel. Iteratively, the
search window is narrowed until a slope threshold is found that
yields a codestream size sufficiently close to the specified
maximum size. A natural choice for the number of
simultaneously probed thresholds is the GPU architecture’s
SIMD-group size LSIMD. Tests with a detail-rich UHD sequence
showed that for 32 parallel probes, two iterations are usually

sufficient to get within 5% of the desired codestream size.
When probing only one threshold at a time it requires nine
iterations to get within 5% and sixteen iterations to get as close
as possible.

 The second level of parallelism is to process code-blocks
and packets in parallel. Figure 3 (b) shows how the overall
codestream size is calculated in a two-level reduction. A first
kernel 1) computes per code-block and probed slope threshold
the number of passes and truncated bit stream length. To do
that it counts the passes up to the truncation point and sums up
their compressed lengths. Subsequently, a second kernel 2)
with one thread per packet and threshold computes the packet
lengths by accumulating the bit stream lengths of all code-
blocks contained in that packet (up to 192) and adding to that
the length of the simulated packet header. Finally, packet sizes
are accumulated by color channel since for DCI-profiles the
maximum size per channel is also constrained. The fixed
overhead for the tile-part headers also counts towards the per-
channel limit and needs to be accounted for. Finally, the total
codestream size is the sum of all channels plus the fixed
overhead of the main header.

VII. PACKETIZATION ON THE GPU
The codestream anatomy can be described by a table of

cells, C, where each cell represents a section of the final
codestream that is constructed independently, a being the
corresponding type abbreviation and i the occurrence of that
type. Table I lists all cell types.

TABLE I. CODESTREAM ANATOMY CELL TYPES

Type Abbr. Occurrences Length

Main Header MH 1 fixed

Tile Part Length TLM 1 fixed
Start of Tile and
Start of Data SOT NTP fixed

Packet Header PH Npackets dynamic
Packet Body
Code-Block PB Ncode-blocks dynamic

End of Codestream EOC 1 fixed

The codestream anatomy stays constant for an entire image
sequence2 and serves as a convenient indirection in order to
hide the progression order from the GPU-kernels. The
construction of each codestream then comprises three phases
(as depicted in figure 4):

1. Populate a table L[] with the cells’ exact sizes in
bytes

2. Prefix-Sum over the cell lengths L[] in order to
obtain a table [] containing the cells‘ offsets in the
final codestream

3. Construct the cells’ contents and write them to the
appropriate positions, obtaining the final codestream in
GPU memory

2 JPEG 2000 is a still image format, but this paper focuses on movies

(a)

calculate packet
lengths

calculate code-
block contributions1)

Bloc k
1

λ1
...

Bloc k
2

λ1
...

...

λ1

...

Block

λ1
...

Packet
1

λ1

...

Packet
2

λ1

...

...

λ1

...

Packet
Npackets

λ1

...
λ LSIMD

Ncode-blocks
Y

λ1

...
λLSI MD

U

λ1

...
λLSI MD

V

λ1
...

λLSI MD

calculate
component lengths2) 3)

λ LSIMD
λLSIMD

λLSIMD
λ LSIMD

λ LSIMD
λLSIMD

(b)

Fig. 3 Block diagram for proposed PCRD-Opt. algorithm with two
dimensions of parallelism: (a) probe multiple slope thresholds in parallel and
(b) process code-blocks and packets in parallel in a two-level reduction

Given the number of tile-parts, NTP, number of packets,
Npackets

,, and the number of code-blocks, Ncode-blocks, the number
of cells, CN, is then

 CN = 1(CMH) + 1(CTLM) + NTP + Npackets
 + Ncode-blocks + 1(CEOC)

In the first phase, a table L[], containing the lengths in
bytes of each cell, is populated. L[CMH] comprises the
combined lengths of the main header markers 3 . Instead of
transferring all required information to the GPU and
assembling the main header there, the Kakadu library [21] was
used to build this cell. As long as the comments do not change,
this cell’s size remains fixed for an entire image sequence. The
size of L[CTLM] depends only on NTP and the precision chosen
to store the tile-parts’ lengths and tile-part indices. All these
variables stay constant for an entire image sequence, and thus
L[CTLM] remains fixed. The SOT and SOD markers have a
fixed size per specification.

Let bj denote the embedded bit stream for code-block Bj
and the prefix of bj up to and including pass z. defines
the slope for pass z of code-block Bj, and the length of .
All L[] can be filled with the lengths for all code-blocks
Bj that belong to precinct p. Thread coordinates can be
conveniently mapped to cells via a look-up-table with
Ncode-blocks entries. The mapping of code-blocks to precincts can
be established by a combination of three look-up tables: let

 denote the number of code-blocks (in rows y and columns
x), in precinct p and Bp the position of the precinct’s first
code-block x=0, y=0, in a list of all code-blocks sorted by
packet membership . The code-blocks belonging to precinct b
are then [Bp], …, [Bp + - 1].

All L[] can be computed by simulating the header
construction. In fact, the packet headers have already been
simulated during the last PCRD-Opt. iteration, so an
implementation can choose to store the packet header sizes and
reuse the set for the selected slope threshold here.

3 SOC, SIZ, COD, QCD and COM

Once all cells in the table L[] have been filled, the cells’
offset in bytes, [], in the final codestream can be computed
by executing a device-wide exclusive prefix-sum [18]

[Ci] = ExclusivePrefixSum (L[])

Parallel implementations are available through toolboxes like
thrust or cub [19][20]. The final codestream size (excluding the
length of the two-byte EOC-marker), Lcodestream, can now be
looked up in the last element of the table :

Lcodestream = []+ L[]

 In the third phase, the codestream cells are filled with data.
A memory block in GPU memory of size Lcodestream needs to be
reserved, so that the individual cells can be directly written to
their final locations. All cells except those of type CMH and
CEOC are filled on the GPU. The authors opted to split the tasks
into four kernels – one for each of the remaining cell types.
They can operate in parallel.

The CTLM cell contains the lengths, , of each tile part
TPk. Similarly, cells contain the length and index of their
respective tile parts. The length of a tile part can be obtained
from []:

The CPH cells contain the side information required by the
decoder to correctly interpret the compressed code-blocks. The
construction of tag-trees and comma-codes is analog to an
implementation for a CPU. Since packet headers are always
padded to byte boundaries, parallel threads will not write to the
same byte address. Therefore it is not necessary to write out
bits with the atomic-or intrinsic and initialize the target cell
with zeros. Instead, the GPU implementation can collect
emitted bits in an intermediate register in order to reduce
expensive accesses to global memory. The kernel for filling
CPH cells is almost identical to the simulation kernel used to
compute L[CPH]. They only differ in that the latter merely
counts emitted bits, while the former actually writes them to
memory.

Filling in the CPB cells is essentially a device-to-device
copy operation as the individual bit streams bj are already
located in device memory. However, they are interspersed with
gaps and yet untruncated. The task at hand is to copy each bit
stream’s prefix for the previously determined slope
threshold into the corresponding cells . A naive approach
would be to have one thread per code-block copying the bit
stream prefix byte by byte. A faster, because more parallel,
solution is to assign multiple threads to each code-block and
have them copy the bit stream prefix chunk wise. Again, a
good choice for the amount of threads per code-block is the
architecture’s SIMD-group size LSIMD. Considering the size of a
cache line Lcache-line, each thread should then copy N = Lcache-line
/ LSIMD bytes per iteration until bytes have been copied by
the SIMD group j. The destination address in global memory is
defined by the codestream offset and therefore alignment

Main
Header

121

TLM

24

SOT

14

Packet
Header

13

Block
LL

1130

Block
LL
891

SOT

14
..

SOT

14
....

EOC

2

Tile-Part 1 Tile-Part 2 Tile-Part 3

Packet

exclusive prefix sum scan

simulate packet
headers

simulate code-block
contributions

TLM marker
length

SOT marker
length

MH and EOC-
marker length

codestream

2)

1)

3)

Main
Header

0

TLM

121

SOT

145

Packet
Header

159

Block
LL
172

Block
LL

1302

SOT

...
..

SOT

...
....

EOC

...

construct packet
headers

copy code-block
contributions

fill TLM
marker

fill SOT
marker

fill MH and
EOC- marker

L[Ci
α]

Δ[Ci
α]

Fig. 4. Block diagram for proposed packetization algorithm

constraints cannot be honored, but the source bit streams bj
should be placed at addresses that are a multiple of Lcache-line.

After all four kernels have finished populating their
respective cells the codestream can be transferred into host
memory where the remaining two cells CMH and CEOC can be
filled.

VIII. EXPERIMENTAL RESULTS

Figure 5 shows a comparison of the three evaluated co-
processing models. Since the GPU and CPU can work on
different frames in parallel, their bars are laid out side-by-side.
The GPU implementation uses the NVIDIA CUDA framework
[15]. The CPU implementation, Kakadu v6.4, does not employ
multi-threading for either PCRD-Opt. or packetization since its
architecture is optimized for streamlined line-by-line encoding,
where the image does not have to be entirely loaded into
memory at any point [21]. For this discussion, we will assume
the measured CPU-runtimes can be divided by the number of
CPU cores without overhead.

 In the low-bit rate scenario, Figure 5 (a), executing both
PCRD-Opt. and packetization on the CPU does not present a
bottleneck as the GPU-portion of the encoder always takes
longer. However, executing all stages on the GPU leads to an
overall acceleration from 59 ms (16.9 fps) to 44 ms (22.4 fps).
This gain stems from two reasons: 1) in order to run PCRD-
Opt. on the CPU, the pass lengths and slopes of all code-blocks
have to be transferred from the GPU to the CPU, which is no
longer necessary in the GPU-only mode; and 2) the device-to-
host transfer of the compressed data is also faster, because the
portions of the bit streams discarded by the rate control are not
included anymore and the bit streams are arranged back to
back without gaps.

 Figure 5 (b) shows the runtimes for the same test sequence,
when compressed less heavily. Without multi-threading, the
CPU-portion takes around four times as long as the GPU
portion and thus poses a bottleneck. In this scenario, a multi-
threaded CPU implementation running on at least four cores
would be required to remove the bottleneck. Though this was
neither examined nor the goal of this work, the parallel
algorithms presented in this paper should also be applicable to
a CPU implementation. However, the finely grained
parallelism should be grouped into coarser work units,
reducing the number of threads that need to be spawned to an
amount that is closer to the number of virtual CPU cores
present in modern CPUs.

 The GPU portion’s runtime in the Hybrid model stays
almost unchanged as the search for the best threshold takes
only 0.7 ms on the GPU compared to 146 ms on the CPU.
Creating the codestream entirely on the GPU takes only an
extra half a millisecond. Reducing the device-to-host data
transfers from 13.7 ms to 3.9 ms, the GPU-only model yields
an overall gain from 17.2 fps to 19.5 fps, assuming the CPU-
portion were sufficiently sped up by multi-threading. With
respect to the single-threaded implementation evaluated here,
the encoder’s throughput is increased from 5.3 fps to 19.5 fps.

IX. CONCLUSIONS

To answer the research questions, the PCRD-Opt.
algorithm can be efficiently executed on a GPU, where
parallelism in two dimensions can be exploited: (1) probe
multiple truncation point sets in parallel and (2) process code-
blocks and packets in parallel. At large bit rates, PCRD-Opt.
executed on a CPU by a single-threaded implementation was
shown to be the bottleneck in an otherwise entirely GPU-
optimized JPEG 2000 encoder. It runs about two orders of
magnitudes faster when run on a GPU.

Furthermore, a parallel table-driven algorithm for executing
the packetization on a GPU was presented. It runs 80x faster
compared to the single-threaded CPU implementation, but
more importantly it leads to an overall speed-up of the encoder,
because the amount of data that needs to be transferred into
host memory is minimized. Table 2 lists a condensed summary
of the findings.

TABLE II. COMPARISON OF RESULTS FOR CO-PROCESSING MODELS

Model Discussion

CPU-only

PCRD-Opt. requires multi-threading at high bit-rates or
else poses bottleneck. Packetization uncritical, when done
in parallel with GPU, but then leads to higher latency.

Hybrid

PCRD-Opt. 200x faster (4bits/sample). Discarded portions
of bitstream can be omitted from transfer, but requires that
bit streams are compacted first. Per-Code-Block metadata
still needs to be transferred for packetization on CPU.

GPU-only

Packetization 100x faster (4 bits/sample) on GPU.
Transfer is minimized to bare codestream, which leads to
overall speed-up. Lower latency, because no coding steps
executed on CPU anymore.

 In conclusion, creating the codestream entirely on the GPU
pays off. The time saved in the transfer outweighs the extra
time it takes to run the rate control and packetization on the

(a) (b)

Fig. 5. Encoder runtimes, for VQEG Crowd Run UHD sequence, left: 0.16 bits/sample (100 Mbit/s @ 24 fps), right: 4.2 bits/sample (2500 Mbit/s @ 24 fps),
DCI-compliant settings (except bit rate). GPU: GeForce 1080, CPU: Kakadu v6.4 single-threaded on Intel i7 3960X

0 50 100 150 200

GPU

CPU

GPU

CPU

GPU

G
PU

on
ly

H
yb

rid
CP

U
on

ly

ms

100
Mbit/s

ICT, DWT, EBCOT

D2H Bitstream

D2H EBCOT Metadata

PCRD-Opt.

Packetization

0 50 100 150 200

GPU

CPU

GPU

CPU

GPU

G
PU

on
ly

H
yb

rid
CP

U
on

ly

ms

2500
Mbit/s

ICT, DWT, EBCOT

D2H Bitstream

D2H EBCOT Metadata

PCRD-Opt.

Packetization

GPU. This effect weighs in more heavily when compressing
high-entropy images to low bit-rates, but could be alleviated by
anticipating which passes will end up getting discarded by the
rate control and not coding them in the first place.

 When compressing to high bit rates, on the other hand, it
was shown that rate control and packetization would need to be
multi-threaded when run on the CPU or otherwise the CPU
portion will present a bottleneck. Creating the codestream
entirely on the GPU has the positive side effect that the overall
runtime is decreased, albeit less significantly than at low bit
rates, since the gain of transferring only the already truncated
bit streams weighs in less heavily. Additionally, the latency is
reduced, because the GPU and CPU do not need to operate on
different frames in parallel anymore. Finally, the CPU is left
free to do other tasks.

REFERENCES
[1] M. Boliek (Ed.), ”Information Technology - The JPEG2000 image

coding system: Part 1”, ISO/IEC 15444-1, 2016
[2] A. Bilgin, M.W. Marcellin, “JPEG2000 for Digital Cinema”, IEEE

International Symposium on Circuits and Systems, pp. 3878-3881, May
2006

[3] SMPTE ST 2067-21:2014. Interoperable Master Format – Application
#2 Extended

[4] D. Taubman, “High performance scalable image compression with
EBCOT”, IEEE Transactions on Image Processing, Vol. 9 No. 7, pp.
1151-1170, 2000

[5] C. Tenllado, J. Setoain, M. Prieto, L. Pinuel, F. Tirado, “Parallel
implementation of the 2D Discrete Wavelet Transform on Graphics
Processing Units: Filter-Bank versus Lifting.”, IEEE Transactions on
Parallel and Distributed Systems, Vol. 19, No. 3, pp. 299-310, March
2008

[6] P. Enfedaque, F. Auli-Llinas, J. C. Moure, “Implementatin of the DWT
in a GPU through a Register-based Strategy”, IEEE Transation on
parallel and distributed Systems, Vol. 26, No. 12, pp.3394-3406, 2015

[7] J. Matela, V. Rusnak and P. Holub, “GPU-Based Sample-Parallel
Context Modelling for EBCOT in JPEG2000,” 6th Doctoral Workshop

on Math. and Eng. Methods in Computer Science (MEMICS’10), pp.
77-84, 2010

[8] R. Le, I.R. Bahar and J.L. Mundy, “A novel parallel Tier-1 coder for
JPEG2000 using GPUs”, IEEE 9th Symposium on Application Specific
Processors, pp. 129-136, Jun 2011

[9] F. Wei, Q. Cui, Y. Li, “Fine-Granular Parallel EBCOT and Optimization
with CUDA for Digital Cinema Image Compression”, IEEE Int. Conf.
on Multimedia and Expo (ICME), Jul 2015

[10] V. Bruns and M. A. Martínez-del-Amor, “Sample-Parallel Execution of
EBCOT in Fast Mode”, 32nd Picture Coding Symposium, Nuremberg,
Dec. 2016

[11] A. Weiß, M. Heide, S. Papandreou, N. Fürst (2009, Sept 20), ”CUJ2K: a
JPEG2000 encoder in CUDA” [Online], Available:
http://sourceforge.net/projects/cuj2k/files/cuj2k-
documentation.pdf/download

[12] F. Auli-Llinas, “Model based JPEG 2000 Rate Control Methods”, Ph.D.
dissertation, Departament d’Enginyeria de la Informacio I de les
Comunicacions, Universitat Autonoma de Barcelona, Barcelona, Spain,
Oct 2006

[13] J. Matela, M. Srom, P. Holub, ”Low GPU Occupancy Approach to Fast
Arithmetic Coding in JPEG2000”, 7th Int. Doctoral Workshop on Math.
and Eng. Methods in Computer Science (MEMICS’11), Vol. 71, pp.
136-145, Oct. 2011

[14] Khronos Group (Aug 2009), OpenCL [Online], Available:
http://www.khronos.org/opencl

[15] NVIDIA (Jun 2007), CUDA [Online], Available:
http://www.nvidia.com/object/cuda_home_new.html

[16] Apple Inc. (Jun 2014), Metal [Online], Available:
https://developer.apple.com/metal

[17] OpenMP ARB (Oct 1997), OpenMP [Online], Available:
http://www.openmp.org

[18] G.E. Blelloch, “Scans as Primitive Parallel Operations”, IEEE
Transactions on Computers, Vol. 38, No. 11, pp. 1526-1538, Nov 1989

[19] J. Hoberock, N. Bell, Thrust (May 2009) - Parallel Algorithms Library
[Online], Available: https://thrust.github.io/

[20] D. Merrill, NVIDIA Research (2011), cub – CUDA Unbound [Online],
Available: https://nvlabs.github.io/cub/

[21] D. Taubman (2014), Kakadu Software [Online], Available:
http://kakadusoftware.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

