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Abstract—With the bottom-line goal of increasing the 
throughput of a GPU-accelerated JPEG 2000 encoder, this paper 
evaluates whether the post-compression rate control and 
packetization routines should be carried out on the CPU or on 
the GPU. Three co-processing models that differ in how the 
workload is split among the CPU and GPU are introduced. Both 
routines are discussed and algorithms for executing them in 
parallel are presented. Experimental results for compressing a 
detail-rich UHD sequence to 4 bits/sample indicate speed-ups of 
200x for the rate control and 100x for the packetization 
compared to the single-threaded implementation in the 
commercial Kakadu library. These two routines executed on the 
CPU take 4x as long as all remaining coding steps on the GPU 
and therefore present a bottleneck. Even if the CPU bottleneck 
could be avoided with multi-threading, it is still beneficial to 
execute all coding steps on the GPU as this minimizes the 
required device-to-host transfer and thereby speeds up the 
critical path from 17.2 fps to 19.5 fps for 4 bits/sample and to 
22.4 fps for 0.16 bits/sample. 
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I. INTRODUCTION

JPEG 2000 is a still-image compression scheme 
standardized jointly by ISO and ITU [1]. It was selected by the 
Society of Motion Picture & Television Engineers (SMPTE) to 
be employed in both the Digital Cinema Package (DCP) 
format [2] and, more recently, in the mezzanine Interoperable 
Master Format (IMF) [3]. While cinema servers are equipped 
with FPGA-based hardware decoders, mastering stations and 
transcoders employed throughout the post-production 
workflow are more often software-based. The high 
computational complexity of JPEG 2000 is a challenge and can 
stand in the way of real-time processing. Therefore, much work 
has been invested into accelerating JPEG 2000 coders. One 
strategy has been to utilize graphics processing units (GPUs) 
which today have thousands of processing cores. The focus 
was spent mostly on both the Discrete Wavelet Transform 
(DWT) and the Embedded Block Coder with Optimized 
Truncation (EBCOT). Only little focus, however, has been 
devoted to executing the Post-Compression Rate-Distortion 
Optimization (PCRD-Opt.) [4] and packetization on a GPU. 
However, once all other coding blocks have been optimized, 
these operations can take up a significant portion of the overall 
coding time on a CPU, especially at high bit rates.  

Figure 1 shows three possible co-processing models that 
differ in the points at which to switch the execution back from 

the GPU to the CPU. The research questions posed in this 
paper are: how can the PCRD-Opt. and packetization routines 
be efficiently computed on a GPU? Which co-processing 
model is the fastest?  

II. STATE OF THE ART

Considerable research has been devoted to re-formulating 
the individual JPEG 2000 coding-blocks for an execution on a 
GPU. Even before CUDA or OpenCL were released, Tenllado 
et al presented how to implement 2D DWTs efficiently on 
GPUs [5]. More recently it was shown how to leverage 
CUDA’s register-shuffling intrinsics in a parallel DWT 
implementation [6]. The EBCOT algorithm poses a greater 
challenge as it does not inherently expose finely grained 
parallelism. A sample-parallel context modelling algorithm 
was presented by [7] and later in [8] and [9]. In [10] the authors 
evaluated if the selective arithmetic bypassing mode can yield 
a significant speed-up on a GPU. A CUDA-based open source 
encoder was released by the University Stuttgart, where 
PCRD-Opt. and packetization are executed on the CPU [11]. 
GPU-specifics implementation optimizations for the MQ-coder 
were presented in [13]. Aside from research related to parallel 
architectures, another related field is that of alternate rate-
control algorithms, especially since the standard leaves some 
room for implementations here. Many algorithms have the goal 
of estimating prior to compression which passes will end up 
getting truncated. An excellent overview is given in [12]. In 
this paper, the PCRD-Opt.-based rate control is used. It was 
first proposed by Taubman in [4] and adopted as an example 
into the standard.  

III. REVIEW OF JPEG 2000
Figure 2 shows a JPEG 2000 encoder’s coding stages and 

data structures. After the color- and wavelet-transforms have 
been applied, each subband is first quantized and then split into 
non-overlapping code-blocks. Groups of spatially 
corresponding code-blocks from all subbands within a 
resolution level are grouped into Precincts. The most 
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predominant profiles employed in digital media production, the 
DCI-, Broadcast- and IMF-profiles [1][2], all define a code-
block size of 32x32 samples and precinct size of 8x8 blocks 
(4x4 in the smallest resolution level). In EBCOT’s first tier, 
each code-block is compressed independently into an 
embedded bit stream using a bit plane-wise scan pattern and a 
context adaptive binary arithmetic coder. To offer a finely 
grained bit stream embeddedness on a fractional bit plane 
level, each plane is further scanned in three passes: the first 
pass includes those samples that are not yet significant 
(magnitude of zero in decoder’s point of view), but are likely 
to turn significant in this bit plane, because they have 
neighbors that are already significant and neighboring values in 
a subband tend to have similar magnitudes. The second pass 
refines those samples that have already turned significant in a 
previous bit plane. The last pass codes all remaining samples.  

A. Post Compression Rate Control
In lossy coding, a maximum data rate defined as a property

of the JPEG 2000 profile must not be exceeded. If the 
simulated code-stream is initially too large after block coding, 
EBCOT’s second tier truncates the code-blocks’ bit streams 
with the additional goal of retaining optimal quality. The 
standard proposes the PCRD-Opt. algorithm, which relies on 
the block encoder to produce a set of truncation points - one 
after each pass - along with an estimate of each point’s slope 
on the code-block’s rate-distortion plot as side information. It 
is then an optimization problem to find the set of truncation 
points  - one for every block’s bit stream j - that yields the 
lowest overall distortion while still staying within the available 
data rate budget. The algorithm is explained in detail in the 
standard [1] and the original publication [4]. To give a brief 
overview here, it can be shown that only the truncation points 
that lie on the convex hull of their block’s rate distortion plot 
are viable candidates and so all potential points for a single 
code-block have strictly decreasing slopes. It follows that a set 
of truncation points  can be constructed by defining a slope 
threshold  and then selecting, for each code-block, the 
truncation point that has a slope closest to, but not below the 
threshold. A bisection search will gradually lead to the best 
available slope threshold . It starts off by probing a threshold 
half way between the minimum and maximum possible slopes. 
The bit stream lengths and number of included passes for each 
code-block can be computed based on the current set of 
truncation points. Then the packet headers, tile-part headers 

and main headers are simulated and their lengths summed up to 
give the total codestream size. As long as this computed size 
exceeds (or is too far below) the specified budget, the 
procedure is repeated with a lower (higher) slope threshold.   

B. Packetization
Structurally, a JPEG 2000 codestream consists of a set of

markers that can be categorized into a main header and tile 
parts. A tile part is a sub-portion of the compressed image and 
its content depends on the progression order. When the major 
progression order is by color channel, each tile-part 
corresponds to a color channel. The main header comprises 
global properties and coding options required to decode and 
interpret the image. Tile-part headers contain further properties 
that can vary by tile-part, such as the bit depth. They are 
followed by the tile-part body, which is comprised of a set of 
packets. Each packet contains the compressed code-blocks 
from one particular precinct in one quality layer. Since the use 
of quality layers is prohibited in the DCI-, Broadcast- and 
IMF-profiles, we assume there is only a single quality layer 
going forward. Each packet header contains the code blocks’ 
number of skipped all-zero bit planes, pass count and segment 
lengths. Since these values are likely to be similar for the code-
blocks in one precinct, they are compressed with tag tree and 
comma codes. For improved random access, the tile-parts’ 
lengths can be stated in the main header1. This is mandatory in 
the DCI-, Broadcast- and IMF-profiles.  

IV. GENERAL PURPOSE COMPUTING ON GPUS

This section tries to give a very brief introduction into the 
concepts of GPU programming. A high-end GPU today has 
hundreds of cores and its architecture is designed to run 
thousands of lightweight threads. Tasks that can be broken 
down into many parallel sub-tasks are best suited to be 
computed on a GPU. A program consists of functions that are 
executed on the device (GPU) or on the host (CPU). A function 
that is run on the GPU is denoted as a kernel in this text. Input 
data to a kernel first needs to transferred into device memory 
and the results need to be transferred back into host memory. 
Memory transfers, kernels and host functions can be run in 
parallel. Popular toolkits are OpenCL [14], NVIDIA CUDA 
[15], Apple Metal [16] and OpenMP [17]. 

V. PROPOSED GPU/CPU CO-PROCESSING MODELS

CPU-only - After the code-blocks’ bit streams have been 
produced on the GPU the final PCRD-Opt. and packetization 
routines are executed by the CPU. From here on, this model is 
denoted as CPU-only. Since the GPU and CPU can operate in 
parallel, the packetization of frame N on the CPU are 
overlapped with the compression of frame N+1 on the GPU. 
However, a packetization on the CPU entails that the required 
data needs to be transferred into the host memory first. Since 
the bit streams’ lengths are not known ahead of time, they need 
to be produced into dedicated fixed-size slots of a large-enough 
memory block, so that bit streams are eventually interspersed 
with unused gaps. Either the gaps are included in the memory 
transfer or the bit streams need to be compacted first. 
Additionally, a set of per-code-block metadata is required for 

1in the Tile-Part Length in Main Header (TLM)-marker  
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the packet header construction: the number of all-zero-bit 
planes, number of passes, pass lengths and pass slopes. Given 
that a UHD image without chroma-subsampling comprises 
around twenty thousand code-blocks and assuming up to 15 
magnitude bit planes per block and two bytes per metadata 
value, this amounts to ~3.5 MB per image, which is often more 
than the compressed code-stream itself. 

Hybrid – As part of the bisection search for the optimal 
slope threshold the entire codestream creation is simulated 
multiple times. By far the most computationally demanding 
sub-routine involved in this process is the packet header 
construction. In the Hybrid co-processing model, this search 
including the codestream simulation is executed on the GPU, 
and only the final packetization is left for the CPU. The pass 
lengths and slopes then do not have to be transferred, but 
instead only the total lengths of the truncated bit streams.  

GPU-only – in this model, all processing steps are carried 
out on the GPU. A positive side effect is that the device-to-host 
transfer is decreased to the bare minimum: only the final 
codestream needs to be transferred, no additional per-code-
block metadata.  

VI. PCRD-OPT. ON THE GPU
 In order to gain from a parallel architecture, the PCRD-Opt. 
algorithm is redefined to exploit two levels of parallelism. 
Figure 3 (a) shows the rate-distortion plot of a single code-
block. The truncation points are laid out on a convex curve. 
Instead of probing only one slope threshold at a time, multiple 
slopes (dashed lines) that are equally spaced apart in the 
current search window are probed in parallel. Iteratively, the 
search window is narrowed until a slope threshold is found that 
yields a codestream size sufficiently close to the specified 
maximum size. A natural choice for the number of 
simultaneously probed thresholds is the GPU architecture’s 
SIMD-group size LSIMD. Tests with a detail-rich UHD sequence 
showed that for 32 parallel probes, two iterations are usually 

sufficient to get within 5% of the desired codestream size. 
When probing only one threshold at a time it requires nine 
iterations to get within 5% and sixteen iterations to get as close 
as possible.  

 The second level of parallelism is to process code-blocks 
and packets in parallel. Figure 3 (b) shows how the overall 
codestream size is calculated in a two-level reduction. A first 
kernel 1) computes per code-block and probed slope threshold 
the number of passes and truncated bit stream length. To do 
that it counts the passes up to the truncation point and sums up 
their compressed lengths. Subsequently, a second kernel 2) 
with one thread per packet and threshold computes the packet 
lengths by accumulating the bit stream lengths of all code-
blocks contained in that packet (up to 192) and adding to that 
the length of the simulated packet header. Finally, packet sizes 
are accumulated by color channel since for DCI-profiles the 
maximum size per channel is also constrained. The fixed 
overhead for the tile-part headers also counts towards the per-
channel limit and needs to be accounted for. Finally, the total 
codestream size is the sum of all channels plus the fixed 
overhead of the main header. 

VII. PACKETIZATION ON THE GPU
The codestream anatomy can be described by a table of 

cells, C, where each cell  represents a section of the final 
codestream that is constructed independently, a being the 
corresponding type abbreviation and i the occurrence of that 
type. Table I lists all cell types.  

TABLE I. CODESTREAM ANATOMY CELL TYPES 

Type Abbr. Occurrences Length 

Main Header MH 1 fixed

Tile Part Length TLM 1 fixed
Start of Tile and  
Start of Data SOT NTP fixed 

Packet Header PH Npackets dynamic 
Packet Body  
Code-Block PB Ncode-blocks dynamic 

End of Codestream EOC 1 fixed

The codestream anatomy stays constant for an entire image 
sequence2 and serves as a convenient indirection in order to 
hide the progression order from the GPU-kernels. The 
construction of each codestream then comprises three phases 
(as depicted in figure 4): 

1. Populate a table L[ ] with the cells’ exact sizes in
bytes

2. Prefix-Sum over the cell lengths L[ ] in order to
obtain a table [ ] containing the cells‘ offsets in the
final codestream

3. Construct the cells’ contents and write them to the
appropriate positions, obtaining the final codestream in
GPU memory

2 JPEG 2000 is a still image format, but this paper focuses on movies  
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Given the number of tile-parts, NTP, number of packets, 
Npackets

,, and the number of code-blocks, Ncode-blocks, the number 
of cells, CN, is then 

 CN = 1(CMH) + 1(CTLM) + NTP + Npackets
 + Ncode-blocks + 1(CEOC) 

In the first phase, a table L[ ], containing the lengths in 
bytes of each cell, is populated. L[CMH] comprises the 
combined lengths of the main header markers 3 . Instead of 
transferring all required information to the GPU and 
assembling the main header there, the Kakadu library [21] was 
used to build this cell. As long as the comments do not change, 
this cell’s size remains fixed for an entire image sequence. The 
size of L[CTLM] depends only on NTP and the precision chosen 
to store the tile-parts’ lengths and tile-part indices. All these 
variables stay constant for an entire image sequence, and thus 
L[CTLM] remains fixed. The SOT and SOD markers have a 
fixed size per specification.  

Let bj denote the embedded bit stream for code-block Bj 
and  the prefix of bj up to and including pass z.  defines 
the slope for pass z of code-block Bj, and  the length of . 
All L[  ] can be filled with the lengths  for all code-blocks 
Bj that belong to precinct p. Thread coordinates can be 
conveniently mapped to cells  via a look-up-table with 
Ncode-blocks entries. The mapping of code-blocks to precincts can 
be established by a combination of three look-up tables: let 

 denote the number of code-blocks (in rows y and columns 
x), in precinct p and Bp the position of the precinct’s first 
code-block x=0, y=0, in a list of all code-blocks sorted by 
packet membership . The code-blocks belonging to precinct b 
are then [ Bp], …, [ Bp +  - 1].  

All L[  ] can be computed by simulating the header 
construction. In fact, the packet headers have already been 
simulated during the last PCRD-Opt. iteration, so an 
implementation can choose to store the packet header sizes and 
reuse the set for the selected slope threshold  here.  

3 SOC, SIZ, COD, QCD and COM 

Once all cells in the table L[ ] have been filled, the cells’ 
offset in bytes, [ ], in the final codestream can be computed 
by executing a device-wide exclusive prefix-sum [18]  

[Ci]  = ExclusivePrefixSum (L[ ]) 

Parallel implementations are available through toolboxes like 
thrust or cub [19][20]. The final codestream size (excluding the 
length of the two-byte EOC-marker), Lcodestream, can now be 
looked up in the last element of the table :   

Lcodestream = [ ]+ L[ ] 

 In the third phase, the codestream cells are filled with data. 
A memory block in GPU memory of size Lcodestream  needs to be 
reserved, so that the individual cells can be directly written to 
their final locations. All cells except those of type CMH and 
CEOC are filled on the GPU. The authors opted to split the tasks 
into four kernels – one for each of the remaining cell types. 
They can operate in parallel.  

The CTLM cell contains the lengths, , of each tile part 
TPk. Similarly,  cells contain the length and index of their 
respective tile parts. The length of a tile part can be obtained 
from [ ]:   

The CPH cells contain the side information required by the 
decoder to correctly interpret the compressed code-blocks. The 
construction of tag-trees and comma-codes is analog to an 
implementation for a CPU. Since packet headers are always 
padded to byte boundaries, parallel threads will not write to the 
same byte address. Therefore it is not necessary to write out 
bits with the atomic-or intrinsic and initialize the target cell 
with zeros. Instead, the GPU implementation can collect 
emitted bits in an intermediate register in order to reduce 
expensive accesses to global memory. The kernel for filling 
CPH cells is almost identical to the simulation kernel used to 
compute L[CPH]. They only differ in that the latter merely 
counts emitted bits, while the former actually writes them to 
memory.   

Filling in the CPB cells is essentially a device-to-device 
copy operation as the individual bit streams bj are already 
located in device memory. However, they are interspersed with 
gaps and yet untruncated. The task at hand is to copy each bit 
stream’s prefix  for the previously determined slope 
threshold  into the corresponding cells . A naive approach 
would be to have one thread per code-block copying the bit 
stream prefix byte by byte. A faster, because more parallel, 
solution is to assign multiple threads to each code-block and 
have them copy the bit stream prefix chunk wise. Again, a 
good choice for the amount of threads per code-block is the 
architecture’s SIMD-group size LSIMD. Considering the size of a 
cache line Lcache-line, each thread should then copy N = Lcache-line 
/ LSIMD bytes per iteration until  bytes have been copied by 
the SIMD group j. The destination address in global memory is 
defined by the codestream offset and therefore alignment 
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constraints cannot be honored, but the source bit streams bj 
should be placed at addresses that are a multiple of Lcache-line.   

After all four kernels have finished populating their 
respective cells the codestream can be transferred into host 
memory where the remaining two cells CMH and CEOC can be 
filled.  

VIII. EXPERIMENTAL RESULTS

Figure 5 shows a comparison of the three evaluated co-
processing models. Since the GPU and CPU can work on 
different frames in parallel, their bars are laid out side-by-side. 
The GPU implementation uses the NVIDIA CUDA framework 
[15]. The CPU implementation, Kakadu v6.4, does not employ 
multi-threading for either PCRD-Opt. or packetization since its 
architecture is optimized for streamlined line-by-line encoding, 
where the image does not have to be entirely loaded into 
memory at any point [21]. For this discussion, we will assume 
the measured CPU-runtimes can be divided by the number of 
CPU cores without overhead. 

 In the low-bit rate scenario, Figure 5 (a), executing both 
PCRD-Opt. and packetization on the CPU does not present a 
bottleneck as the GPU-portion of the encoder always takes 
longer. However, executing all stages on the GPU leads to an 
overall acceleration from 59 ms (16.9 fps) to 44 ms (22.4 fps). 
This gain stems from two reasons: 1) in order to run PCRD-
Opt. on the CPU, the pass lengths and slopes of all code-blocks 
have to be transferred from the GPU to the CPU, which is no 
longer necessary in the GPU-only mode; and 2) the device-to-
host transfer of the compressed data is also faster, because the 
portions of the bit streams discarded by the rate control are not 
included anymore and the bit streams are arranged back to 
back without gaps.  

 Figure 5 (b) shows the runtimes for the same test sequence, 
when compressed less heavily. Without multi-threading, the 
CPU-portion takes around four times as long as the GPU 
portion and thus poses a bottleneck. In this scenario, a multi-
threaded CPU implementation running on at least four cores 
would be required to remove the bottleneck. Though this was 
neither examined nor the goal of this work, the parallel 
algorithms presented in this paper should also be applicable to 
a CPU implementation. However, the finely grained 
parallelism should be grouped into coarser work units, 
reducing the number of threads that need to be spawned to an 
amount that is closer to the number of virtual CPU cores 
present in modern CPUs.  

 The GPU portion’s runtime in the Hybrid model stays 
almost unchanged as the search for the best threshold takes 
only 0.7 ms on the GPU compared to 146 ms on the CPU. 
Creating the codestream entirely on the GPU takes only an 
extra half a millisecond. Reducing the device-to-host data 
transfers from 13.7 ms to 3.9 ms, the GPU-only model yields 
an overall gain from 17.2 fps to 19.5 fps, assuming the CPU-
portion were sufficiently sped up by multi-threading. With 
respect to the single-threaded implementation evaluated here, 
the encoder’s throughput is increased from 5.3 fps to 19.5 fps.  

IX. CONCLUSIONS

To answer the research questions, the PCRD-Opt. 
algorithm can be efficiently executed on a GPU, where 
parallelism in two dimensions can be exploited: (1) probe 
multiple truncation point sets in parallel and (2) process code-
blocks and packets in parallel. At large bit rates, PCRD-Opt. 
executed on a CPU by a single-threaded implementation was 
shown to be the bottleneck in an otherwise entirely GPU-
optimized JPEG 2000 encoder. It runs about two orders of 
magnitudes faster when run on a GPU.  

Furthermore, a parallel table-driven algorithm for executing 
the packetization on a GPU was presented. It runs 80x faster 
compared to the single-threaded CPU implementation, but 
more importantly it leads to an overall speed-up of the encoder, 
because the amount of data that needs to be transferred into 
host memory is minimized. Table 2 lists a condensed summary 
of the findings. 

TABLE II. COMPARISON OF RESULTS FOR CO-PROCESSING MODELS 

Model Discussion 

CPU-only 

PCRD-Opt. requires multi-threading at high bit-rates or 
else poses bottleneck. Packetization uncritical, when done 
in parallel with GPU, but then leads to higher latency. 

Hybrid 

PCRD-Opt. 200x faster (4bits/sample). Discarded portions 
of bitstream can be omitted from transfer, but requires that 
bit streams are compacted first. Per-Code-Block metadata 
still needs to be transferred for packetization on CPU. 

GPU-only 

Packetization 100x faster (4 bits/sample) on GPU. 
Transfer is minimized to bare codestream, which leads to 
overall speed-up. Lower latency, because no coding steps 
executed on CPU anymore. 

 In conclusion, creating the codestream entirely on the GPU 
pays off. The time saved in the transfer outweighs the extra 
time it takes to run the rate control and packetization on the 

   
(a) (b) 

Fig. 5. Encoder runtimes, for VQEG Crowd Run UHD sequence, left: 0.16 bits/sample (100 Mbit/s @ 24 fps), right: 4.2 bits/sample (2500 Mbit/s @ 24 fps), 
DCI-compliant settings (except bit rate). GPU: GeForce 1080, CPU: Kakadu v6.4 single-threaded on Intel i7 3960X
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GPU. This effect weighs in more heavily when compressing 
high-entropy images to low bit-rates, but could be alleviated by 
anticipating which passes will end up getting discarded by the 
rate control and not coding them in the first place.  

 When compressing to high bit rates, on the other hand, it 
was shown that rate control and packetization would need to be 
multi-threaded when run on the CPU or otherwise the CPU 
portion will present a bottleneck. Creating the codestream 
entirely on the GPU has the positive side effect that the overall 
runtime is decreased, albeit less significantly than at low bit 
rates, since the gain of transferring only the already truncated 
bit streams weighs in less heavily. Additionally, the latency is 
reduced, because the GPU and CPU do not need to operate on 
different frames in parallel anymore. Finally, the CPU is left 
free to do other tasks. 
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