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Abstract—Recently, wireless acoustic sensor networks
(WASNSs) have received significant attention from the research
community and a variety of methods have been proposed for
numerous applications, such as location estimation and speech
enhancement. The lack of publicly available datasets with signals
recorded in WASNS, presents difficulties in obtaining consistent
performance indicators across the different approaches. In this
paper, we present and release a dataset of real recorded signals
in an outdoor WASN comprised of four microphone arrays.
QOur dataset consists of several speakers recorded at various
locations within the WASN and can be used for benchmarking
purposes. We also present location estimation results using
our real recorded dataset. Our results can serve as a baseline
indicator of localization performance of single and multiple
sources in a real environment.

I. INTRODUCTION

In the last few decades, microphone arrays have received
significant attention from the audio signal processing commu-
nity. Their ability to perform signal enhancement based on
spatial features from the sound source locations have made
them the typical interface for robust signal acquisition in
adverse environments. Recently, a new paradigm has emerged
that further extends the abilities of traditional microphone
arrays. The research community started to investigate config-
urations where multiple microphone arrays are present in the
acoustic environment, forming a sensor network of acoustic
nodes which is often referred to as a wireless acoustic sensor
network (WASN) [1]. The nodes feature wireless communica-
tion capabilities in order to allow information exchange in the
network and have processing power in order to locally perform
operations on the captured signals.

Compared to traditional microphone arrays, WASNs can
provide improved sampling of the acoustic environment, since
the multiple acoustic nodes that are distributed over the moni-
tored area increase the probability of finding a microphone that
is close to the source of interest [1]. Their potential has been
explored with promising results in numerous applications, such
as DOA estimation [2], estimation of the exact location of the
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acoustic sources [3]-[7], wildlife monitoring [8], and speech
enhancement and beamforming [9]-[11].

However, so far, the evaluation of signal processing methods
tailored for WASNs has been based on simulations or on
real recorded signals which are rarely made publicly avail-
able. Moreover, the many parameters that can be configured
differently, such as the number of microphone arrays, the
geometry of each array and the array locations, makes it diffi-
cult to obtain a direct comparison between different methods
proposed in the literature. The availability of datasets with
signals recorded in WASNs would enable the comparison
and benchmarking between a variety of methods for DOA
estimation, location estimation, and signal enhancement in
WASN:S.

In this paper, we make an attempt to collect and release such
a dataset'. We consider an outdoor WASN cell comprised of
four circular microphone arrays and we record several speakers
at different spatial locations within the cell. Recently, we also
presented another small-scale dataset of real recordings [12] in
a two-node WASN where the nodes were circular microphone
arrays. The dataset consisted of speech recordings made by
two speakers at distinct locations when the microphone arrays
were placed very close to the walls of a room and its purpose
was to test localization performance in this challenging setup.
The current dataset differs in the sense that it is a more
general-purpose one, it consists of more speakers at more
locations, and it is recorded in a larger WASN comprised of
four nodes. We also present localization results on this dataset
for scenarios of single and multiple sources. For localization
we use our previously proposed method of [4], which infers the
locations of the sources based on direction of arrival (DOA)
estimates transmitted by the microphone arrays. Our results
can serve as a baseline indicator of performance for the task
of location estimation of acoustic sources.

II. THE DATASET
The dataset was recorded in an outdoor WASN square
cell of dimensions of 400 x 400 cm with 4 sensor nodes

IThe dataset and its complete documentation can be found at
https://github.com/spl-icsforth/OutdoorWASNRecordings
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Fig. 1. Layout of the recording setup, where A; to A4 are the microphone
arrays, and L1 to L7 are the locations of the speakers. The coordinates are
shown in cm.

that consist of uniform circular microphone arrays. Several
speakers were recorded in seven distinct locations within the
cell. Figure 1 depicts the recording configuration, i.e., the
sensors’ and speakers’ locations. The duration of the utterances
range from 8 to 12 seconds. The speakers read sentences
from a Greek newspaper. The sentences were recorded with
a microphone in a quiet office environment and then played
back through a loudspeaker which was placed at the seven
locations shown in Figure 1. The loudspeaker was pointed at
the sky in order to give the sources a directivity pattern as
close to omnidirectional as possible. Since the dataset was
recorded outdoors, the signals do not have many reflections.
However, they do suffer from various noise sources from
the environment such as wind, cars passing by, and bird
vocalizations.

The locations were measured as the z- and y-coordinates,
while the microphone arrays and the loudspeaker were placed
at approximately the same height. At each location, five dif-
ferent speakers (3 male, 2 female) where recorded, except for
location L1 and Lo where four speakers were recorded. Table I
reports the x- and y-coordinates of the speaker locations and
the speaker IDs that were recorded at each location.

The microphone arrays used for recording are of two
different types: two uniform circular arrays with 5 cm radius
and two uniform circular arrays with 3 cm radius. All the
arrays had 8 microphones. Table II summarizes the geometry
and locations of the microphone arrays that comprise the
WASN: Ay and A3 were comprised of analog Shure SM93
omnidirectional microphones. A, was connected to an M-
Audio M-Track Eight sound card and A3 was connected
to a TASCAM US-2000 sound card. A; and A4 contained
digital MEMS omnidirectional microphones [13]. They were
connected to the host PC using a USB cable thus not requiring
an external multichannel sound card. The analog microphone
arrays (Ao and Aj3) recorded signals at a sampling frequency

TABLE I
LOCATION COORDINATES AND IDS OF SPEAKERS THAT WERE RECORDED
AT EACH LOCATION

Location ID H (z,y) coordinates in cm. ‘ Speaker IDs (Bold=female)

Ly (50,50) So1, S03, S04, S05
Lo (100, 150) S02, S03, S04, S05
L3 (200, 200) S01, S02, S03, S04, SO5
Ly (150, 250) S01, S02, S03, S04, S05
Ls (200, 100) S01, S02, S03, S04, SO5
Le (300, 150) S01, S02, S03, S04, S05
L7 (200, 350) S01, S02, S03, S04, S05
TABLE I
MICROPHONE ARRAY DETAILS
coordinates mic.
Array || (z,y) in cm | radius type soundcard
Aq (200, 0) 3cm | MEMS integrated in array [13]
Az (400, 200) Scm | analog | M-Audio M-Track Eight
Az (200, 400) Scm | analog TASCAM US-2000
Ay (0,200) 3cm | MEMS | integrated in array [13]

of 44.1 kHz, while the digital ones (A; and A4) operated
at 48 kHz. Thus, after recording, the signals from arrays A;
and A, were downsampled to 44.1 kHz in order to keep the
sampling frequency constant at all nodes in the WASN.

Each microphone array was connected to a different PC and
provided sample-synchronized 8-channel signals. The channel
to microphone correspondence is shown in Figure 2 which
depicts the microphone placement of an array with respect
to its center. In order to make all arrays start recording at
the same time, we implemented a client-server approach: a
central node notifies the four PCs (clients) when to start
recording by sending a special packet through the network.
When this packet was received by the clients they started to
record the captured signals. At the start of each recording,
we played back a sinusoidal signal through the loudspeaker
that was used to further synchronize the signals among the
different arrays. During processing, the start of the sinusoidal
signal was detected by means of cross-correlation of the
recorded signals with the known sinusoidal pulse. Since the
duration of the pulse and the duration of the speakers’ signals
were fixed, utterances were then easily segmented. Thus, in
general, the signals between different arrays are expected to
be synchronized to within a few milliseconds.

III. LOCALIZATION METHOD

The method used to evaluate the localization performance
in this dataset was our previously proposed grid-based (GB)
method [4], which belongs to the class of localization ap-
proaches using direction of arrival (DOA) estimates from the
nodes. This framework assumes the availability of a central
processor that performs the localization task. Each microphone
array—whose location is known—estimates the DOAs of each
source it can detect at each time instant and transmits the DOA
estimates to the central processor that fuses them together



Fig. 2. Microphone array configuration and the coordinate system for DOA
estimation. The numbers in the blue circles denote the channel number of the
8-channel recording.

in order to infer the locations of the sources. Note that, this
approach results in reduced bandwidth usage as only the DOA
estimates need to be transmitted within the network. Moreover,
it does not require the arrays to be perfectly synchronized [3].
In this section, we briefly outline the grid-based method for a
single and multiple sources.

A. Grid-based method for a single-source

Let 6 denote the M x 1 vector of estimated DOAs from the
M nodes (i.e., microphone arrays) at a given time instant. The
method is based on constructing a grid with IV grid points over
the localization area. The resolution of the grid is determined
by the grid point spacing . For each grid point n, we calculate
Ym,n Which denotes the DOA of the n-th grid point with
respect to node m and is given by:

Ym,n = arctan Gy — dym qy’m, (D

ga:,n - qz,m

where arctan(-) denotes the four quadrant arctangent function
that returns an angle in the range of [0, 27), (gz.n, gy,n) are the
x- and y-coordinates of the n-th grid point and (g m, gy, m)
are the z- and y-coordinates of the m-th microphone array
which are assumed to be known. The location of the source
is estimated as the grid point n* whose DOAs most closely
match the estimated DOAs by solving:

M 2
n* = arg ngn Z {A(énu '(/)m,n)} ) (2)
m=1

where 6,,, denotes the DOA from the m-th microphone array
and A(-,-) denotes an angular distance function that returns
the difference between two angles in the range of [0, 7) [4].
In order to solve (2) efficiently without testing all possible
grid points and still attain a high resolution in the grid (small
grid point spacing) we employ an iterative approach which
starts with a coarse grid (i.e, low N and large grid point
spacing) over the localization area and once the best grid point
is found—according to (2)—a new grid centered on this grid
point is generated with a smaller spacing between the grid
points but also a smaller scope. Then, the best grid point in
this new grid is found and the procedure is repeated until

we reach the desired grid resolution. For more details on this
iterative procedure the reader is referred to [4].

B. Grid-based method for multiple sources

For multiple sources, each microphone array estimates
multiple DOAs (one for each detected source) and transmits
them to the central processor. A key problem when localizing
multiple sources using DOA estimates is that the central
processor that receives the multiple DOAs from the arrays
cannot know to which source they belong. Moreover, it is
possible that some arrays may not be able to detect all of
the sources, thus some DOA estimates from some arrays may
be missing. Such missed detections can occur for several
reasons, such as due to a challenging environment in terms
of reverberation and noise, or because some sources are close
together in terms of their angular separation with respect to
some arrays. In fact, our previous work on localization of
multiple sources using DOA estimates has shown that such
missed detections occur quite often [5].

To localize multiple sources, the grid-based method starts
by enumerating all possible unique combinations of DOA
estimates from the nodes and estimating an initial location
for each combination. Taking into account missed detections,
the number of unique combinations is given by:

S
Neoms = [ [ s 3)
s=1

where S is the total number of sources and C, denotes the
number of microphone arrays that detected s sources.

For each DOA combination, the initial location is estimated
by applying the single-source grid-based method to the DOAs
of the combination. Let j enumerate the combinations and let

9(3) denote the M x 1 vector of DOAs that belong to the j-th
combination and were used to estimate the j-th initial location
p(j ). Moreover, let HA,(,JL) denote the DOA of node m in the j-th
combination.

The grid-based method for multiple sources employs two
different approaches (Brute-force and Sequential) [4] that
test all initial location estimates and decide which of them
correspond to the final location estimates. The two approaches
exhibit quite similar performance with the Brute-force ap-
proach being much more computationally demanding. Thus
in this paper we use the Sequential approach which is much
more computationally efficient.

For each DOA combination, the Sequential approach com-
putes the residual:

M

=3 [4(09.606)] @

where 6,,,(p) is a function that computes the DOA with respect
to node m for location p and can be implemented based on (1).
The residual denotes the sum of squared distances between the
DOAs of combination j and the DOAs that correspond to the
estimated initial location that was found using the DOAs of
the j-th combination. The final location estimates are chosen



TABLE III
DOA OFFSETS THAT CORRECT UNINTENDED ORIENTATION ERRORS IN
THE POSITIONING OF THE MICROPHONE ARRAYS

Array ID H offset

Aq 10.02°
Ao 6.46°
As —1.11°
Ag 4.27°

as the locations that result from the DOA combinations with
the minimum residual. The reader is referred to [4] for more
implementation details of this approach.

IV. RESULTS AND DISCUSSION

We now present our localization results using our real
recorded dataset and our grid-based method for one, two, and
three simultaneously active sound sources.

A. DOA estimation

For DOA estimation we employ our previously proposed
method of [14]. We measure the DOA with respect to the
array center, as shown in Figure 2 for source s;. The method
requires the setting of a parameter related to the maximum
sources it can detect. Assuming that the number of sources is
known, we set the maximum number of sources to the true
number of sources for each scenario of one, two, and three
active sources. However, while overestimation of the number
of sources is avoided, some sources may not be detected. All
other parameters were set according to [14]. For processing,
we used a frame size of 2048 samples with 50% overlap, thus
providing DOA estimates every 23 ms. The DOA estimation
method requires one second of initialization. As a result, DOA
estimates—and thus location estimates—are provided after the
first second of each recording.

B. Calibration procedure

Since the orientation of the microphone arrays had some
unintended errors due to the positioning of the arrays in the
real setup, we perform a calibration procedure in order to
correct such errors in the DOA estimates. For calibration we
use location L3 which is equidistant from all arrays and thus
DOA estimation is expected to give similar performance for
all microphone arrays. For each array, we perform single-
source DOA estimation and we take the mean of the DOAs
estimated at each time instant. We subtract the mean estimate
from the true DOA in order to estimate an offset which
corresponds to the unintended DOA error that occurs from the
positioning of the array. The procedure was repeated using
the signals from four different speakers and a mean offset
was estimated from the offsets found from each individual
speaker. Very little deviation was observed in the offsets of
the individual speakers, with their difference being less than
half a degree. The offsets are given in Table III. To correct the
DOA estimates, we add the offset of each array to the final
DOA estimates obtained from our DOA estimation procedure.

14

12

10

)

RMSE (cm

L, L, L3 L, L5 L6 L

Location ID

Fig. 3. Location estimation error for each location of our dataset for a single
active sound source.

C. Location estimation

The localization area was defined as the square defined from
point (0, 0) to point (400, 400) (see Figure 1). For the iterative
grid-based method, the resolution of the grid is defined as the
spacing between two adjacent grid points. In the first iteration
the spacing was set to 50 cm, while in the final iteration
the spacing was 1 cm. To generate scenarios with multiple
sources, we added the microphone signals of different speakers
at different locations.

Based on the array locations, the DOA estimates of each
array can take values in specific ranges. For example, the
DOAs of A; must belong to the first and second quadrants.
However, because our DOA estimation method can estimate a
DOA in the entire range of [0, 27), we remove DOA estimates
that occur outside the valid range for each array.

As an error metric, we use the root mean square error
(RMSE) between the estimated and true source locations. For
multiple sources, we measure the error of each source from the
location estimate that is closest to the source. However, due
to missed detections there are cases where our method cannot
produce estimates for all the sources (e.g., when all arrays
detect one source in a two-sources scenario). In such cases,
we use the same location estimate to estimate the error for both
of the two sources, assuming that our method produced two
estimates at the same location. The same procedure is carried
out for the three-sources case: when our method produces two
location estimates we duplicate the location estimate that is
closest to the third undetected source, while when our method
produces one location estimate we use this estimate three times
to calculate the error of the three sources.

1) Single-source case: For the single source case, we tested
all seven locations and at each location we tested all available
speakers’ signals. Figure 3 depicts the RMSE for each location
over all time frames and all speakers at that location. It is clear
that our method can accurately localize one source with the
maximum error being approximately 14 cm for location L7,
and that the localization performance varies across different
locations. This result was also observed in our previous work
with another dataset [12], and highlights the necessity to
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Fig. 4. Location estimation error for each location pair of our dataset for two active sound sources

evaluate localization performance in different locations within
the cell. The overall RMSE for this single-source scenario,
which was computed using all time frames, all locations, and
all speakers, was measured to be 8.32 cm.

2) Two-sources case: For our experiments with two
sources, we used speakers S03 and S04 and we tested all
possible combinations of location pairs. This results in 21
possible location pairs, where S03 was placed at the first
location and S04 was placed at the second location. For
example, for location pair L; & Lo, speaker SO3 was at
location L; and speaker S04 was at location Lo. Figure 4
shows the RMSE of the two sources for each location pair.
We again observe that the performance varies for each location
pair. This is due to the specific setup of the sources, which
affects the number of sources each microphone array is able
to detect. To quantify missed detections, we measured the
percentage of frames where each possible value of Cs (i.e, the
number of arrays that detected two sources) occurs. Overall,
by taking into account all location pairs, we observed that in
approximately 10% of the frames none of the arrays detected
two sources (i.e., Co = 0), in 15% of the frames Cy = 1,
in the majority of frames (approximately 48%) Cs = 2, in
26% of the frames Co = 3 and in only 1% of the frames
all arrays detected two sources (i.e., Co = 4). Taking into
account these numbers—which highlight how often missed
detections can occur in practice—our method can perform
quite accurate localization with the RMSE over all location
pairs being 34.84 cm.

Finally, Figure 5 presents heat maps of the location esti-
mates over all time frames of some representative location
pairs. We can observe that Figures 5a & 5b achieve accurate
localization, while performance is decreased in Figure Sc
where one source is estimated further away from the true
source. Finally, in Figures 5d & Se the location estimates start
to concentrate in the middle of the two sources. This occurs
because the sources are too close together in terms of their
angular separation with respect to almost all arrays and thus
the value of Cy is decreased. Note that in location pair Lg
& Ly, in all of the frames none of the arrays detected two
sources (i.e., Cy = 0).

TABLE IV
OVERALL LOCATION ERRORS FOR THE DATASET

| RMSE

8.32 cm
34.84 cm
55.36 cm

One source
Two Sources

Three Sources

3) Three-sources case: Similar to the two-sources case, for
our experiments with three sources, we used speakers S03,
S04, and SO1 and tested all possible combinations of three
sources locations (35 different combinations). Due to space
limitations, we report the location error in terms of RMSE over
all location combinations which was measured to be 55.36 cm.
As expected, in this three-sources scenario, missed detections
are very prominent: in approximately 58% of the frames none
of the arrays detected three sources (C3 = 0), in 33% of the
frames only one array detected three sources (C3 = 1) while
the value of C's was greater than one in only approximately 9%
of the frames. Similarly, in approximately 45% of the frames
only two arrays detected two sources, with the value of Cs
being greater than two in only 25% of the frames.

Figure 6 presents some heat maps of the location esti-
mates, using all time frames of some representative location
combinations for the three sources. We can observe quite
accurate localization for the first three location combinations
(Figures 6a—6¢). However performance degrades in Figure 6d
where one source has not been localized, and in Figure 6e,
where two sources have been detected as one. Note that in
these two last location combinations, in all time frames none
of the arrays detected three sources (i.e., C3 = 0). Finally, the
overall RMSE for the case of one, two, and three active sound
sources is summarized in Table IV.

V. CONCLUSION

In this paper, we presented a dataset of real recorded signals
in a wireless acoustic sensor network (WASN). The dataset
consists of various speakers recorded at several locations
within the WASN and is made publicly available in order to be
used for benchmarking purposes of various signal processing
methods, such as DOA estimation, location estimation, and
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Fig. 5. Heat maps of the location estimates for representative location pairs of two active sources. The blue x’s show the true sources’ locations, and the

green dots show the locations of the microphone arrays.
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Fig. 6. Heat maps of location estimates for representative location combinations of three active sources. The blue x’s show the true sources’ locations, and

the green dots show the locations of the microphone arrays.

speech enhancement in WASNs. We also presented results of
location estimation of single and multiple sources using our
previously proposed localization method which is based on
direction of arrival estimates transmitted from the microphone
arrays that comprise the WASN. Our results can serve as a
baseline indicator of localization performance in our recorded
dataset.
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