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Abstract—Direct observation to study biodiversity can be
time consuming, however, other methods often provide indirect
measurements and are possibly biased. To solve these problems,
images can be a useful tool and ecologists have started to
rely more and more on images as a source of data and on
automated image analysis. However, the existing methods mostly
perform image classification. In this paper we present an efficient
method based on object detection to access deeper information
the content of an image. Using high resolution images, we built
a pipeline to slice the original images, perform detections and
later refine these observations. We illustrate the interest of
this pipeline by using it on-field images taken in agroforestery
banana-coffee systems to study invertebrate communities around
the banana pests Cosmopolites sodidus and Metamasius sp. and the
interactions between the different animals within this community.
Experimental results show that our pipeline reaches 87.8% F1-
score and allows us to successfully detect and identify 23 species
and ant castes. These 23 species are divided into 7 super-
classes, but the ant super-class, that shows more individuals and
interactions is described more precisely. We are then able to
study the interaction network between different species of this
community and identify major predators of banana pests within
this ecosystem.

Index Terms—Image processing, Animal detection, Interaction
study, Convolutional Neural Network, Trophic networks, Sentinel
prey experiment, On-field image.

I. INTRODUCTION

Understanding and quantifying interactions between species
is a challenging task for ecologists. As images provide a rich
source of data, they are used more and more by ecologists
to access information about biodiversity, its behaviour and the
interactions within a community. As a consequence, ecologists
rely increasingly on image analysis and computer vision
processes [1].

To date, one of the most developed applications of computer
vision in ecology is the identification of species [2]. These
kinds of applications are used in citizen-science initiatives [3]
and rely mostly on classification [4] [5]. However, researchers
tend to use object detection to analyze images [6] [7]. Studies
that have used object detection in ecology so far perform on
datasets featuring large objects on relatively low resolution
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images and therefore encounter difficulties with images that
contained numerous, small, or grouped objects.

For our purposes, we then sought inspiration in methods
used in satellite image analysis, that also feature small objects
and take large images as input [8].

This paper aims to propose a pipeline, based on computer
vision, to reconstruct the interaction network and predation re-
lationships among a community of small invertebrates. Images
are taken during a sentinel-prey experiment to study predators
of weevils Cosmopolites sordidus and Metamasius sp. as eggs,
larvae or adults. These images are high resolution and display
numerous small objects. To perform object detection, we rely
on the use of deep learning and more precisely Convolutional
Neural Networks (CNN). Here, we use the YOLOv3 model
[9], which is now a state of the art network for object
detection. However, to be able to work with high resolution
images, we slice the original images into smaller slices that
can be easily processed by the network. After detection is
performed on each slice separately, detections are merged back
together and refined. As we study invertebrates moving on a
2D surface, we can detect physical interactions between them
as the intersection of associated bounding boxes.

We first present the proposed method in Section II, by
developing the process of the pipeline with slicing and re-
fining as well as the metrics used to assess its performances.
Afterwards, we present experimental results in Section III. In
particular, we present our dataset, the general performances of
the pipeline, a detailed example and a focus on ants, which
are a particularly important class of insect in the studied
community. Finally, we analyze the invertebrate interaction
network, as enabled by the pipeline. We conclude and give
some perspectives in Section IV.

II. PROPOSED METHOD

A. Overview

To be able to use an object detection CNN with high
resolution images featuring numerous small objects, we slice
an original image into smaller slices. This allows us to perform
detection without information loss due to resizing. For model
training, slicing is performed and an object detection CNN is
trained on the sliced dataset. For model testing and use, images



Fig. 1. Overview of the proposed method.

are sliced, detection is performed, detections are then merged
back together and refined to suppress potential duplicates. The
proposed method is summarized in Fig. 1.

B. Slicing

Original images are sliced into nslice × nslice pixel slices.
Slices are cropped with an overlap to reduce the risk of an
object being cut off on the edge of a slice. Before model
training, original labels are recomputed within the referential
of the slice. An object is considered within a slice and its label
recomputed if one of the following conditions are met:

1) Its centroid (x and y coordinates) are within the slice.
2) A minimal proportion Pobject of the object appears on

the image.
3) A minimal proportion Pslice of the slice is covered by

the object.
Condition (1) ensures that the object appears in the sliced

dataset. Condition (2) helps with small elements (e.g., anten-
nas) that should not be learned by the model as a complete
object. On the contrary, condition (3) helps with objects larger
than a slice, so that the object would not only appear on the
centroid slice. For model testing and use, images are sliced
into slices of the same size as used in training.

C. Refining

Object detection is performed separately on each slice.
Afterwards, detections are merged back together within the
referential of the original image. Due to the overlap, some
objects may be detected several times. To suppress potential
duplicates, a refining step is added. Within an image, all
detections of the same class are compared pairwise. If two
bounding boxes A, of area areaA, and B, of area areaB
intersect, with areaint the area of overlap, areaint

areaA
and areaint

areaB

ratios are computed. If one of these ratios exceeds a given
OT (overlap threshold), only the largest box is retained.
This decision rule allows the identification and suppression
of duplicates that are mostly contained within another larger
box. Detections are later filtered above a given minimal CT
(confidence threshold). Then, refining can only raise precision
(see section II-D), by suppressing False Positives (FP). On

the other hand it can only decrease recall by generating False
Negatives (FN). To optimize refining, it is therefore needed
to minimize the recall decrease and maximize the precision
increase.

D. Evaluation metrics

To assess model performances, refined detections are com-
pared with ground truth labels. The IoU (Intersection over
Union) is used to compare bounding boxes. Detections are
accepted as True Positive (TP) if IoU > 0.5 and if the detected
class is correct. Otherwise, the detection is counted as FP. As
well, duplicates are counted as FP. If a ground truth object is
missed, it is counted as FN. Performances are assessed with
precision, recall, F1-score:

precision =
TP

TP + FP
, (1)

recall =
TP

TP + FN
, (2)

F1 = 2× precision× recall

precision+ recall
. (3)

For each class, the Average Precision (AP) is computed
as the area under the precision-recall curve. AP is used to
compare performances between classes. We rely on F1-score
to assess the overall performances of the model.

E. CNN training

We use YOLOv3 [9] as CNN object detection model at
the core of our pipeline. Training is conducted within the
associated Darknet framework [10].

During training, data augmentation is performed on every
batch with new random changes. Changes are applied to
hue (up to 10% change), saturation (up to 50% change) and
exposure (up to 50% change).

As we are working with a relatively small dataset, overfitting
is a phenomenon to monitor. Test performances are monitored
during training to prevent overfitting. Training is stopped
when the pipeline shows maximal test performances. Also,
the test loss

train loss ratio is computed to assess possible overfitting



[11]. A ratio close to one ensures that the model does not
reach overfitting.

F. Interactions

We observed animals walking on a 2D surface, we can
thus use the intersection of bounding boxes to detect physical
interactions between two individuals. After refining, every
intersection between two bounding boxes is then counted as an
interaction. As we work with bounding boxes and not masks,
there may be intersections of bounding boxes without real
physical contact. However, the intersection of bounding boxes
ensures that animals are within very close range to each other.
We chose to consider this as a physical interaction, as this
means that at least one of the participants of the interaction is
willing to engage physical contact with the other.

To provide further nuances, interactions are characterized
depending on the known or observed behaviour of a species
towards another. Interactions between predators and prey are
labelled as predation if the prey is alive and scavenging if the
prey is already dead at the beginning of the experiment. Inter-
actions between two predators of different species are labelled
as competition, whereas interactions between two predators of
the same social species are labelled as cooperation. Finally,
animals whose behaviour towards others where not clearly
identified are labelled as undefined.

III. EXPERIMENTAL RESULTS

A. Dataset

We used a camera (Lumix FZ300) on a tripod (Manfrotto
Befree Advanced) with the lens facing the ground (distance of
160 mm) with the following manual settings: exposure time
of 1/50 s, opening of 4, ISO of 400, flash power of 1/40,
resolution of 12MP (3, 000 × 4, 000 pixels). Prey-sentinels
(dead and living adult weevils, weevil eggs and larvae) were
deposited on a light-brown sheet of A4 paper, which was
attached to a sheet of plywood. We programmed the camera to
take one picture every 30 s during 5 hours and we replicated
the experiments 3 times leading to a set of 1,800 images.

We used 95 images as a training dataset and 93 different
images as a test dataset. We selected images displaying as
many classes and as many different situations as possible (e.g.,
crowded scenes, images from different sessions). These images
feature 4087 animals belonging to 23 classes with a mean
of 21.8 objects per image. The average width of the object
featured is 98.7± 64.5 pixels (2.4% of image width) and the
average height of the objects featured is 98.1 ± 63.9 pixels
(3.2% of image height). Our images then display numerous
and small objects. In comparison, the Pascal VOC 2007 dataset
[12] features a mean 3.12 objects per image with mean width
and height of 30.1% and 38.8% respectively. After slicing,
the slices containing objects feature a mean 1.73 objects of
mean width and height of 21.8% and 21.9% respectively. This
proves slicing eases the task of object detection CNN.

Animals were identified as the most precise class we were
able to determine (down to ant caste). As presented in Table I,
results are as well presented with these classes summarized

TABLE I
CLASSES AND CORRESPONDING SUPER-CLASSES.

Super-classes Classes

Ant

Camponotus atriceps major
Camponotus atriceps minor
Ectatoma ruidum
Nylanderia msp1
Odontomachus bauri
Pheidole radoskowskii major
Pheidole radoskowskii minor
Solenopsis geminata minor
Wasmannia auropunctata

Spider

Araneae msp1
Araneae msp2
Araneae msp5
Araneae msp6
Araneae msp7
Opilones msp1

Cockroach
Blattidae msp1
Blattidae msp2
Blattidae msp3

Slug Stylommatophora msp1
Stylommatophora msp2

Larva Metamasius larva
Egg Cosmopolites sordidus egg

Weevil Cosmopolites sordidus

into 7 super-classes (ant, cockroach, weevil, spider, larva,
egg, slug). For the interaction study, images from two full
nights of recording are used, meaning a total of 1,191 images
(some images providing no biological relevant information
were removed).

B. slicing and refining parameters, CNN training

We choose nslice = 416 pixels and an overlap of 0.2
(meaning 83 pixels). Each original image then generates 108
slices. Labels are kept for Pobject = 0.4 and Pimage = 0.5.
We chose these parameters empirically according to the size
of the objects featured in our dataset. We choose to maximize
F1-score, we then selected an overlap threshold of 0.4 (see
Fig. 2). Following this reasoning, we selected a confidence
threshold of 0.2.

Fig. 2. Precision, recall and F1-score as a function of the overlap threshold.

Training is conducted with the following parameters: batch
size = 64, momentum = 0.9, decay = 0.0005, and learning
rate = 0.001. The model was trained over 49 500 iterations
(meaning 160 epochs), starting from pre-trained layers (https:



TABLE II
AP PER SUPER-CLASS.

Super-classes Classes train test AP (±σ)
Ant 9 1467 1395 0.84± 0.29
Cockroach 3 35 31 0.18± 0.15
Egg 1 89 85 0.85± 0.00
Larva 1 296 294 0.94± 0.00
Slug 2 16 14 0.63± 0.55
Spider 6 18 14 0.64± 0.50
Weevil 1 173 167 0.90± 0.00

//pjreddie.com/media/files/darknet53.conv.74). At 49 500 iter-
ations, the test loss

train loss ratio reaches 1.01 and test are performed,
this ensures that overfitting is avoided.

C. Performances

AP per super-class are to be seen in Table II. Our pipeline
reaches 86.6% precision, 88.9% recall and 87.8% F1-score
on precise classes. By summarizing these classes into super-
classes, precision, recall, and F1 rise to 89.6%, 91.2%, and
90.4% respectively. A confusion matrix on super-classes is
presented in Fig. 3. Ants provide the most training examples,
but also the most classes. Therefore they show a good AP, but
it experiences strong variations between classes. Larvae and
adult weevils have a very distinct appearance and so are easy
for the network to locate and classify correctly. Cockroaches
are relatively large insects in comparison to other classes
featured here and have long antennas and legs that are difficult
for the network to frame correctly, leading to FN and therefore
a low AP.

As shown in Table III, overlap during slicing appears to
be a necessary precaution, as all performance metrics are
significantly lower without overlap than with an overlap.
Precision drops significantly due to numerous FP. As we chose
to maximize F1-score, the advantages of the overlap during
slicing and of refining appear clearly.

Fig. 3. Confusion matrix on super-classes presented in Table I.

D. Robustness

Robustness of the method is partly ensured by slicing.
During learning, the CNN is confronted with the majority of
slices (8,221 out of 10,260, meaning 80.1%) featuring only

TABLE III
PERFORMANCES WITHOUT OVERLAP DURING SLICING AND WITHOUT

REFINING.

Metric Without overlap Without refining Overlap and refining
Precision 68.2% 71.4% 86.6%
Recall 79.7% 92.8% 88.9%
F1 73.5% 80.7% 87.8%

background, with several details and shapes that could be
confused with animals. In fact, if trained on slices featuring
objects only, a tradeoff between evaluation metrics happens.
Using with precise classes, recall rises to 91.4%, meaning that
the CNN generates less FN but precision drops to 81.1 %,
meaning that the CNN generates more FP. As the CNN is
only trained on slices with objects, it becomes better at finding
them. However, since it has seen less confusing background
cases, it is also more likely to mistake small branches or dirt
for an insect. The maximal F1-score reached by the CNN is
85.6%, which is less than the value reached by a training
sample with all background slices (87.8%).

E. Full Example

To illustrate detections processing during refining, we
present a full example with an image belonging to the test
dataset (see Fig. 4). The image is sliced into 108 slices and
detection is performed separately on each slice. The overlap
avoids FN, but then leads to several duplicates, that are counted
as FP. Duplicates are mostly caused by overlap. For instance
in Fig. 4, the larva is to be seen entirely on a slice and
also partly on the neighbouring slice, where the same larva
is also detected. This duplicate is then contained within the
bounding box associated to the entire larva. After refining, the
FP number on this example drops from 7 to 1, caused by a
misclassification.

F. Focus on the ant super-class

Ants show more individuals and more classes than other
super-classes. Therefore detail more precisely performances
on this super-class. Confusion mostly happens between ants
belonging to the same species and to different castes. For
instance, P. radoszkowskii minor are mostly confused with
P. radoszkowskii major and Camponotus atriceps minor with
Camponotus atriceps major. The most common class is Phei-
dole radoszkowskii minor. As a consequence, this class is
seen more often by the network during training and similar
classes (e.g. Nylanderia msp1 or Solenopsis geminata minor)
are confused for P. radoszkowskii minor (see Fig. 5).

G. Interaction analysis

All interactions recorded between species are displayed in
Fig. 6. Most of the interactions concern ants (6,688 interac-
tions out of 6,972, meaning 95.9 %). The high number of ant-
ant interactions is mostly caused by intraspecific interactions.
For instance, e.g. P. radoszkowskii minor - P. radoszkowskii
major account for 227 interactions and P. radoszkowskii minor
- P. radoszkowskii minor for 1,004 interactions.



Fig. 4. Illustrated example of pipeline processing on an image from the test dataset.

Fig. 5. Ant confusion matrix.

In our dataset, ants appear to be the principal predators of
the prey available (weevil, larvae and eggs). Cockroaches can
be seen preying upon larvae and are also defined as predators.
Interactions between ants or cockroaches towards other living
species are therefore labelled as predation. Interactions be-
tween different predators happen when competing for a prey.
However, spiders and slugs only seem to cross paths with other
species without openly attacking or flying in front of another
animal. Their relation towards other animals are labelled as
undefined. Ants and cockroaches only succeed in attacking
weevils if they are already dead and do not achieve predating
a living individual. Their relationship towards weevils are then
labelled as scavenging. Finally, ants of a same species, but
different caste interact during cooperation to catch a prey. An
interaction network representing interspecific interactions is
drawn in Fig. 7. As their behaviour does not alter between
classes, classes other than ants are summarized into super-
classes for the sake of clarity. Based on the interaction number
recorded here, P. radoszkowskii and S. geminata seem to be
major actors in the observed community. Both are responsible
for most of the interactions with Metamasius larvae. Further-
more, S. geminata are the primary consumers of C. sordidus. S.
geminata also are the only recorded consumers of C. sordidus
eggs.

IV. CONCLUSION

Ecological information presented in this paper is solely the
result of a three night record and is therefore more illustrative

Fig. 6. Interaction matrix between each super-class.

than really significant. However, this proves the relevance of
this method for the study of animals and ecological networks.

Our pipeline enables us to handle high resolution images
and to detect with high precision and recall numerous small
objects belonging to several classes. Some of these inverte-
brates belong to visually similar classes and the network is
able to correctly classify ants down to caste.

However, precision and recall could still be improved for
rare classes. Also, unknown classes can be an issue and
impact the significance of the ecological output. A way to
handle these issues can be an implementation of a hierarchical
classification. Such algorithms have already been successfully
used in general object detection methods [13] as well as for
handling ecological data [14].

We studied physical interactions as the intersection of over-
lapping bounding boxes, however interactions without physical
contact can also be observed, such as flight of a prey before a
predator. A tool to study this could be object tracking. Tools
have recently been developed to perform tracking of multi-
ple, small animals [15]. Further statistical and deep learning
methods could then be used to analyze animal behaviour.
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Fig. 7. Interaction network based on recorded interactions.
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