
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/MMSP48831.2020.9287071.

Real-Time Frequency Selective Reconstruction
through Register-Based Argmax Calculation

Andy Regensky, Simon Grosche, Jürgen Seiler, and André Kaup
Multimedia Communications and Signal Processing

Friedrich-Alexander University Erlangen-Nürnberg (FAU)
Cauerstr. 7, 91058 Erlangen, Germany

{andy.regensky, simon.grosche, juergen.seiler, andre.kaup}@fau.de

Abstract—Frequency Selective Reconstruction (FSR) is a state-
of-the-art algorithm for solving diverse image reconstruction
tasks, where a subset of pixel values in the image is missing.
However, it entails a high computational complexity due to its
iterative, blockwise procedure to reconstruct the missing pixel
values. Although the complexity of FSR can be considerably
decreased by performing its computations in the frequency
domain, the reconstruction procedure still takes multiple seconds
up to multiple minutes depending on the parameterization.
However, FSR has the potential for a massive parallelization
greatly improving its reconstruction time. In this paper, we
introduce a novel highly parallelized formulation of FSR adapted
to the capabilities of modern GPUs and propose a considerably
accelerated calculation of the inherent argmax calculation. Alto-
gether, we achieve a 100-fold speed-up, which enables the usage
of FSR for real-time applications.

Index Terms—image reconstruction, parallelization, argmax

I. INTRODUCTION

Efficient image reconstruction algorithms are in high de-
mand due to their broad applicability to diverse signal pro-
cessing tasks, such as error concealment [1], image inpain-
ting [2] or resolution enhancement [3]. Frequency Selective
Reconstruction (FSR) [3] has been introduced as an image
reconstruction algorithm in the context of image resolution en-
hancement and employs non-regular sampling to increase the
quality of the reconstructed high resolution image. By tailoring
the image acquisition process and the reconstruction algorithm
to each other, accurate reconstructions can be achieved. In so-
called quarter sampling [4], a higher resolution is achieved
without increasing the number of pixels on the sensor by
non-regularly covering 3/4 of each pixel and reconstructing
the high resolution image using FSR. This yields a better
quality of the high resolution image than the extrapolation
of conventional image sensor data while reducing the cost
compared to increasing the resolution of the image sensor.

The main problem of most modern reconstruction algo-
rithms, be it in the context of image signals or in the related
field of Compressed Sensing [5], [6] in general, is their high
computational complexity and the resulting long execution
times. For FSR, different approaches have been followed to
reduce the overall reconstruction time on the CPU. In [7], FSR
has been adapted to perform real-valued operations exclusively
by reconstructing the image signal in the Hartley domain.
In [8], constraints have been imposed on FSR in order to

reduce the total number of operations that is required to
reconstruct an image, yet, potentially impairing the overall
reconstruction quality. In [9], extensive pre-computations are
performed to speed up the iterative reconstruction procedure
while increasing the memory cost of the algorithm.

On the other hand, many algorithms have been adapted
to exploit the massive parallelization capabilities of modern
GPUs. In [10], the Matching Pursuit algorithm [11] for sparse
signal recovery has been sped up by performing the involved
matrix-vector operations on the GPU. In [12], this idea was
extended to Orthogonal Matching Pursuit (OMP) [13]. In [14],
the idea is furthermore extended to the 2D-OMP [15], where
a custom implementation of the required argmax operation on
the GPU is employed, that exploits the increased speed of
shared memory compared to global device memory.

FSR allows for a massive parallelization on the GPU as
well. In this paper, we introduce a parallelization of the FSR
algorithm on multiple levels and propose a highly effective,
high speed argmax calculation. Other than [14], which uses
shared memory for thread cooperation, we exploit the rapid
register access between neighbouring threads on the GPU. By
reducing global and shared memory access to a minimum, a
considerable speed-up of the overall reconstruction procedure
is achieved.

This paper is organized as follows: Section II shortly
recaps the FSR algorithm forming the basis of this work.
Section III describes the proposed parallelization of FSR for
GPUs and explains the novel register-based argmax calculation
in detail. Section IV compares the execution time of the
proposed highly parallelized GPU implementation of FSR to
its CPU counterpart, as well as a shared memory based GPU
implementation, and evaluates the achievable framerates for
different resolutions. Finally, Section V concludes this paper.

II. FREQUENCY SELECTIVE RECONSTRUCTION

FSR is a blockwise reconstruction algorithm, that subdi-
vides the image into neighboring target blocks of size B ×B
pixels and reconstructs each block independently. During
the iterative reconstruction procedure, it takes a neighbor-
hood of L pixels to all sides of the target block into ac-
count to take advantage of additional information. The re-
sulting block of size S × S = (B + 2L)× (B + 2L) pixels
is called the support block. FSR builds a model g[m,n]

ar
X

iv
:2

20
2.

13
92

6v
1

 [
ee

ss
.I

V
]

 2
8

Fe
b

20
22

https://doi.org/10.1109/MMSP48831.2020.9287071

for each support block as a weighted superposition of 2D
Discrete Fourier Transform (DFT) basis images ϕkl [3], [16],

g[m,n] =

S−1∑
k=0

S−1∑
l=0

cklϕkl[m,n] (1)

with pixel positions (m,n) and frequency components (k, l).
It is capable of reconstructing images where a large subset of
pixel values are missing. The sampled signal f̃ [m,n] for a sup-
port block is obtained from the support block signal f [m,n]
as

f̃ [m,n] =

{
f [m,n] for (m,n) ∈ K,
0 otherwise,

(2)

where the set K subsumes the indices of all sampled pixels. It
follows an iterative approach to generate the model g[m,n],
where in each iteration ν, the coefficient ckl of exactly one
basis image ϕkl[m,n] is changed. It is selected such that the
weighted residual energy

E(ν)
w =

∑
m,n

|r(ν)[m,n]|2w[m,n] (3)

is minimized. Thereby, the residual r(ν)[m,n] describes
the difference between the sampled image f̃ [m,n] and the
model g[m,n] in iteration ν as

r(ν)[m,n] = f̃ [m,n]− g(ν)[m,n], (4)

and w[m,n] describes the spatial weighting

w[m,n] =

{
ρ̂

√
(m−S−1

2)
2
+(n−S−1

2)
2

for (m,n) ∈ K,
0 otherwise,

(5)

where the scalar decay factor ρ̂ controls the speed of decay
of the exponentially decreasing weight [3], [16]. Unlike [3],
we refrain from taking into account already reconstructed
pixel values in exchange for a more efficient parallelization
of the overall algorithm. The spatial weighting is employed to
ignore unknown samples (m,n) /∈ K during the calculation of
the weighted residual energy and to assign an exponentially
decreasing weight to pixels further away from the block center.

As each basis image ϕkl[m,n] corresponds to exactly one
frequency component, the algorithm can be efficiently per-
formed in the frequency domain. By describing the weighted
residual r(ν)w [m,n] as

r(ν)w [m,n] = r(ν)[m,n] · w[m,n], (6)

and formulating the model g(ν)[m,n], the weighted
residual r(ν)w [m,n] and the spatial weighting w[m,n] in the
frequency domain, we get G(ν)[k, l], R(ν)

w [k, l] and W [k, l],
respectively. The initial model G(0)[k, l] is set to 0. With F2

denoting the 2D DFT, the weighted residual Rw[k, l] is
therefore initialized to

R(0)
w [k, l] = F2{f̃ [m,n] · w[m,n]}. (7)

In each iteration, the basis image ϕkl[m,n] is selected
that reduces the weighted residual energy E

(ν)
w the most,

so that the frequency index (u, v)(ν) of the selected basis
image ϕuv[m,n] in iteration ν is obtained as

(u, v)(ν) = argmax(k,l)

(
wf [k, l] · |R(ν)

w [k, l]|2
)
. (8)

Thereby, the frequency weighting wf [k, l] is incorporated to
favor lower frequency basis images over higher ones [3]. It is
defined as

wf [k, l] =

1−
√
2

√
k̃2

S2
+
l̃2

S2

2

(9)

with k̃ = S
2 − |k −

S
2 | and l̃ = S

2 − |l −
S
2 |. The projec-

tion coefficient p(ν)uv is chosen such that the selected basis
image ϕuv[m,n] maximally reduces the weighted residual
energy E(ν)

w resulting in

p(ν)uv =
R

(ν)
w [u, v]

W [0, 0]
. (10)

Once the frequency component (u, v)(ν) to be updated
has been determined, and its projection coefficient p

(ν)
uv

has been calculated, the model G[k, l] and the weighted
residual Rw[k, l] are updated accordingly

G(ν+1)[u, v] = G(ν)[u, v] + γp(ν)uv S
2, (11)

R(ν+1)
w [k, l] = R(ν)

w [k, l]− γp(ν)uvW [k − u, l − v] ∀ (k, l).
(12)

Thereby, the model G[k, l] needs to be updated for the
selected frequency component (u, v)(ν) only, whereas the
weighted residual Rw[k, l] needs to be updated for all of
the S2 frequency components (k, l). The scalar orthogonality
deficiency compensation factor 0 < γ ≤ 1 is introduced to
reduce the interference between the different basis images [3].
This procedure of selecting a basis function according to (8),
computing the projection coefficient according to (10), and
updating the model and the residual according to (11) and (12),
respectively, is then repeated for a fixed number of iterations.

Eventually, the final model G[k, l] is transformed back into
the spatial domain to obtain g[m,n]. The final support block
reconstruction f̂ [m,n] is obtained by taking over the sampled
support block signal f̃ [m,n] for known samples, and taking
over the final model g[m,n] for unknown samples. To end the
reconstruction of the current block, the reconstructed target
block signal is extracted from the reconstructed support block
signal f̂ [m,n] and placed at the corresponding target block
in the global reconstruction. Please refer to [3] for a more
detailed explanation of FSR and its parameters.

III. FREQUENCY SELECTIVE RECONSTRUCTION
ON THE GPU

FSR in the frequency domain shows great potential for
large speed improvements through a massive parallelization
of the internal processing procedure. Especially on GPUs,
which are specifically designed for running many lightweight
tasks simultaneously, a careful design of the parallelized FSR

algorithm promises a huge gain in processing speed. In this
section, we describe the applied GPU thread model and explain
the highly parallelized FSR algorithm that is specifically
adapted to it. Furthermore, we take a deeper look at the novel
register-based argmax calculation on the GPU, which serves
as a major accelerator of the overall reconstruction procedure.

A. Parallelization of FSR

Parallelizing FSR requires a certain understanding of the
thread model that the applied GPU uses. The thread model
describes how data-parallel and task-parallel workloads are
subdivided on the device, and hence, understanding its basics
is essential to be able to design an efficient GPU algorithm. As
Nvidia®’s CUDA® [17], [18] programming language enjoys
high popularity in the scientific community and due to the
broad availability of compatible GPU devices, we employ
the CUDA thread model in our work. Note though, that
competitor GPU manufacturers commonly use similar models
with slightly varying names.

Fig. 1 shows the CUDA thread model [17] where a grid
consists of multiple blocks and each block consists of multiple
threads. Thereby, all blocks in a grid can run independent
from each other, whereas all threads in a block are executing
the same program on multiple data elements. All threads in
a block run in a shared memory space, i.e., on the same
Streaming Multiprocessor (SM) [17], and can interact with
each other. Threads in different blocks can not natively interact
with each other and data transfer among them requires the
involvement of comparably slow global memory. With this
basic understanding of the thread model, an efficient way to
parallelize FSR can be derived.

The parallelization of FSR happens in two stages: a task-
parallel stage and a data-parallel stage. The task-parallel stage
is thereby established similarly to how one would parallelize
the reconstruction process on a multi-core CPU. As FSR is
a blockwise procedure and all blocks can be reconstructed
independent from each other, parallelizing the reconstruction
of all blocks is an obvious solution. This means that the
reconstruction of each support block is assigned to a single
thread block on the GPU, each. For an image of size Y ×X ,
a number of

N =

⌈
Y

B

⌉
·
⌈
X

B

⌉
(13)

support blocks need to be reconstructed, which results in N
thread blocks being employed for the reconstruction of the
image. Note, that one can create more thread blocks than
there are SMs on the GPU, as they are not required to run
simultaneously and one SM can hold multiple thread blocks.
The data-parallel stage follows a more sophisticated layout
for the reconstruction of one support block using FSR. In
general, the parallelization can be interpreted as each thread
being responsible for one pixel of the support block. This
means, that each thread is dedicated to a pixel position (m,n)
in the spatial domain, or a frequency component (k, l) in
the frequency domain, and a support block is reconstructed

Grid

Threads

Block

Threads

Block

Threads

Block

Threads

Block

Threads

Block

Threads

Block

Threads

Block

Threads

Block

Fig. 1. Schematic of the employed thread model.

by S2 threads in parallel. Starting from the regarded sampled
support block signal f̃ [m,n], the residual (7) is initialized
by first multiplying each pixel of the sampled signal f̃ [m,n]
with the spatial weighting w[m,n] simultaneously, where each
thread performs a single multiplication, and then executing
a 2D FFT using all threads to obtain the residual in the
frequency domain. The FFT algorithm is also executed on
the GPU but not investigated further since the optimized
and tested cuFFT library [19] is used for all FFT and IFFT
invocations on the GPU. The model G[k, l] is initialized with
all threads setting the value of their respective frequency
component to 0. From here, the iterative procedure begins. In
each iteration, a basis image is selected, its optimal projection
coefficient is calculated, and the model and the residual are
updated accordingly. For the selection of the basis image (8),
each thread calculates the objective value for the frequency
component (k, l) it is assigned to. Then, all threads in the
regarded thread block are cooperating to find the index of
the maximum frequency component in d2 log2(S)e steps. The
thread cooperative argmax calculation is explained in detail
in Section III-B. Once the basis image to be added has been
found, its projection coefficient (10) has to be computed. For
this computation, only one thread is involved as the projection
coefficient is only required for the selected basis image. The
same is true for the update of the model (11), so that this com-
putation is performed by a single thread, as well. The update
of the residual (12) can be done by all threads simultane-
ously, where a thread dedicated to frequency component (k, l)
accesses the corresponding value W [k − u, l − v] =W [i, j]
from the Fourier transformed spatial weighting with

i =

{
k − u k − u ≥ 0,

S + k − u otherwise,
(14)

j =

{
l − v l − v ≥ 0,

S + l − v otherwise.
(15)

After the desired number of iterations has been executed, the
final model G[k, l] is transformed back into the spatial domain

using the IFFT provided by the cuFFT library. Eventually, each
thread writes its assigned pixel value from the reconstructed
support block signal g[m,n] to the corresponding pixel posi-
tion in the final reconstructed image.

B. Register-based argmax calculation

On NVIDIA GPUs, threads are scheduled to run in groups
called warps [17]. Thereby, a warp consists of 32 threads on all
current Nvidia GPUs. Within each warp, all threads perform
the same instructions on different data elements simultane-
ously. The CUDA programming model provides functionalities
for threads within the same warp to read out each others
registers. Direct register access is extremely fast and allows for
a high-performance implementation of the argmax calculation
that occurs in the iterations of FSR.

As a first step, all threads of the current block com-
pute the objective value for their corresponding frequency
component (k, l)

obj[k, l] = wf [k, l] · |Rw[k, l]|2, (16)

which is stored in a register objective in each thread.
Furthermore, each thread stores its frequency component (k, l)
in registers index_k and index_l.

The argmax calculation is then performed in two phases. In
the first phase, the argmax is searched within each warp of the
current block independently. Thereby, the threads within the
current block are assigned to warps in a consecutive fashion.
In the second phase, the results from the warp-internal first
phase are further processed by a single warp to find the argmax
result of the overall thread block. Both, the first phase and the
second phase perform the same underlying iterative, thread-
cooperative procedure to rapidly find the argmax result by op-
timally utilizing the available GPU resources. This procedure
consists of three steps that are executed simultaneously by all
threads in a warp:

1) A thread at index i reads the register value objective
of the offset thread at index i+ offset and stores it
in a register objective_offset. Preceeding the first
iteration, the offset is initialized to half the number of
threads per warp.

2) If the objective value of the offset thread is larger
than the objective value of the current thread
(objective_offset > objective), the cur-
rent thread replaces its register values objective,
index_k and index_l with the corresponding reg-
ister values from the offset thread.

3) While the offset is larger than 1 (offset > 1), the
offset is halved and the procedure continues with Step 1.
Otherwise, the warp-internal argmax calculation finishes
and the argmax result is guaranteed to reside within the
first thread of the warp.

The described procedure is depicted in Fig. 2, where a
simplified argmax calculation with 8 threads per warp is
performed. Note, that if a thread requests an out-of-bound
thread register, its own register value is returned instead.

Iteration 1

Iteration 2

Iteration 3

Thread index
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

(0,0) (0,1) (0,2) (0,3) (1,0) (1,3)(1,1) (1,2)

(0,0) (0,2) (1,0) (1,2) (1,3)(1,1)(1,1) (1,3)

(0,2) (1,3)(1,2)(1,1)(1,1)(0,2) (1,1) (1,2)

(1,3)(1,1)(1,1) (1,1) (1,3)(1,1) (1,1) (1,1)

Fig. 2. Schematic of the argmax calculation within a single warp. Simplified
representation with 8 threads per warp. Cell values correspond to the frequency
component. Colors represent the objective value, where blue represents low
values and red represents high values. In each iteration, each thread compares
its own objective value (vertical arrow) with the offset thread’s objective value
(angled arrow) and takes over the register values from the thread with the
higher objective value (solid black arrow). After the last iteration, the result
of the argmax calculation lies in the first thread of the warp (black box).

Thereby, a thread register is considered out-of-bounds if it
is not a member of the current warp.

Once the first phase completes, each warp’s first thread
contains the warp-internal argmax result (maximum objective
value and corresponding frequency component) and stores it
in shared memory for later access. In the second phase, the
argmax of the overall block is calculated by evaluating the
argmax among all warp-internal results from the first phase. As
CUDA allows a maximum number of 1024 threads per block,
there are at most 32 warps per block. Hence, there exist at
most 32 warp-internal argmax results in shared memory after
finishing the first phase. Consequently, in the second phase,
a single warp can perform the argmax calculation using the
described highly efficient thread-cooperative procedure. This
is achieved by each thread reading the results of one warp-
internal argmax calculation from shared memory and storing
the corresponding values in its local registers objective,
index_k and index_l. The iterative, thread-cooperative
procedure is then performed as described above. Finally,
independent of the chosen blocksize (S2 ≤ 1024), the final
argmax result will always reside in the first thread of the warp
that executed the second phase of the described two-phase
procedure. From there, the frequency component (k, l) corre-
sponding to the maximum objective value can be extracted and
the FSR algorithm can continue as described in Section III-A.
Due to the minimal access of shared memory (global memory
is not involved), the register-based argmax calculation is ex-
tremely fast and yields a considerable speed-up of the overall

4 8 16 24 32

10−1

100

101

Support blocksize S

Ti
m

e
in

s

CPU
GPU (shared)
GPU (ours)

Fig. 3. Comparison of the execution time of the FSR on the CPU and the
GPU with a shared memory and our register-based argmax approach.

reconstruction procedure.

IV. SIMULATIONS

To evaluate the performance of the proposed paralleliza-
tion of FSR for GPUs including the novel register-based
argmax calculation, the reconstruction procedure on the GPU
is compared to the reconstruction procedure on the CPU in
terms of quality and speed. To realize a fair comparison, a
highly optimized CPU implementation in C++ is employed.
All CPU computations are performed on one core of an Intel®

Xeon® E5 2690 @ 2.6 GHz. Simulations that use the GPU
implementation run on an Nvidia GeForce® RTX 2080 Ti
with 11 GB of global device memory featurng 4608 cores.
Thereby, code that runs on the GPU is written in Nvidias
CUDA programming language and all parts that require CPU
interaction (memory transfer to/from the GPU, starting the
reconstruction procedure) are written in C++1. The cuFFT
library [19] is used for the necessary FFT calculations on the
GPU. Execution time and Peak Signal to Noise Ratio (PSNR)
are averaged over 100 grayscale images from the TECNICK
image dataset [20] for a given parameterization. If not stated
otherwise, the images are processed at their original reso-
lution of 1200 × 1200 pixels. The target blocksize is set
to B = 4 pixels, the spatial decay factor to ρ̂ = 0.7 and
the orthogonality deficiency compensation factor to γ = 0.5.
The sampled image f̃ is obtained through a quarter sampling
sensor [3], which is emulated by sampling a random pixel in
each neighboring 2× 2 block of the original image f .

As the proposed parallelization of FSR follows the same
mathematical procedure as the conventional FSR on the CPU,
both implementations produce identical results for a given
parameterization. However, due to the massively parallel ex-
ecution of FSR on the GPU, a considerable gain of speed
with respect to the single-threaded CPU implementation can
be observed as visible in Fig. 3. Thereby, results for a
shared memory GPU implementation are included, where
the argmax calculation is performed using a shared memory

1The source code for all evaluated implementations of FSR is publicly
available at https://gitlab.lms.tf.fau.de/lms/gpu-fsr

Device

CPU

GPU

100

200

300

400

Iterations

8

16

24

32

Support Blocksize

Average time in s

A
ve

ra
ge

 P
SN

R
 i
n

dB

31

32

33

34

Fig. 4. Extensive parameter exploration regarding quality and execution time
for the CPU and the GPU implementations of the FSR. Each data point
represents a single parameterization averaged over all test images. In total,
640 parameterizations were tested. For details, see text.

approach as described in [14] instead of the novel register-
based approach. Other than that, the shared memory GPU
implementation is identical to the introduced parallelization
of FSR. It is clearly visible, that the register-based argmax
calculation yields notable speed improvements over the shared
memory approach. With the register-based argmax calculation,
speed improvements of more than 100× are possible with
respect to the single-threaded CPU implementation. While the
CPU performance could be greatly improved by higher clock
frequencies and performing the reconstruction of different
support blocks in parallel on multiple CPU cores, note, that
even for a twice as fast clock frequency, more than 50 CPU
cores are required to compete with the performance of the
highly parallelized FSR on a single GPU.

Fig. 4 verifies that the significant gain of speed can be
generalized to a wide range of parameters. Each data point
represents the PSNR and execution time for a given pa-
rameterization averaged over all test images. The number of
iterations I has been varied in the range [100; 400] using a
step size of 100, the support blocksize S has been varied
in the range [8; 32] using a step size of 8, the spatial decay
factor ρ̂ has been varied in the range [0.68; 0.82] using a step
size of 0.02, and the orthogonality deficiency compensation
factor γ has been varied in the range [0.2; 0.6] using a step
size of 0.1. Therefore, 640 parameterizations are tested for the
GPU and the CPU implementation, each. A notable gain of
speed can be observed for all parameterizations by employing
the highly parallelized GPU implementation compared to its
CPU counterpart. For all tested parameterizations, one can
expect the GPU implementation to be roughly 100× faster
than the single-threaded CPU implementation, validating our
findings from above.

With many parameterizations of the parallelized FSR fin-

VGA SVGA FHD UHD
0
2
4
6
8

10

15

20

25

30

35

Resolution

Fr
am

es
pe

r
s

GTX 1060 RTX 2060 CPU (8-core)
GTX 1080 Ti RTX 2080 Ti

Fig. 5. Average framerate of the novel parallelized FSR for various resolutions
on different GPUs compared to a multithreaded CPU implementation on an
Intel Core™ i9-9900 @ 3.1 GHz.

ishing considerably below one second while still producing
decent results in terms of quality, a look at the achiev-
able framerates measured in frames per second (fps) is
of interest. Fig. 5 compares the average framerate of the
parallelized FSR for various common video resolutions on
different GPUs to a multithreaded implementation of FSR
on the CPU. Thereby, an Intel Core™ i9-9900 @ 3.1 GHz
is employed for the CPU computations, where the 8 cores
of the CPU perform the reconstruction of different support
blocks simultaneously. The investigated video resolutions are
640× 480 (VGA), 800× 600 (SVGA), 1920× 1080 (FHD)
and 3840× 2160 (UHD). The support blocksize is set
to S = 16. Considering VGA, more than 30 fps can be
achieved which makes the proposed highly parallelized FSR
capable of real-time applications. Furthermore, it is visible
that the algorithm scales reliably with the computing power
of different GPUs. For the larger FHD resolution, more
than 1 fps is achieved on all applied GPUs, while the powerful
RTX 2080 Ti reaches almost 10 fps. Even for the state-of-the-
art UHD resolution, most of the GPUs among the test field
are still able to steadily reconstruct the original image data in
less than one second. The multithreaded CPU implementation
reaches more than 1 fps only for the low resolutions VGA and
SVGA, and, with a loss of about 70% in terms of framerate,
is well behind even the slow GTX 1060 for all investigated
resolutions.

V. CONCLUSION

In this paper, a highly parallellized implementation of
FSR carefully designed for the execution on GPUs has been
introduced. In combination with the novel highly effective,
high-speed argmax calculation based on direct register access
between neighbouring threads, the execution time of the recon-
struction procedure can be considerably reduced. The register-
based argmax calculation proved to be a major accelerator
of the overall reconstruction procedure leading to notable

speed improvements over the shared memory based approach.
Depending on the applied hardware, speed-ups of more than
100× are possible compared to previous approaches without
losing image quality. These speed-ups are reliably obtained
for a wide range of parameterizations. All in all, the proposed
highly parallelized approach is able to reconstruct multiple
frames per second on a wide range of hardware and is capable
of real-time applications with more than 30 frames per second.

REFERENCES

[1] G. Zhai, X. Yang, W. Lin, and W. Zhang, “Bayesian Error Concealment
With DCT Pyramid for Images,” IEEE Trans. Circuits Syst. Video
Technol., vol. 20, no. 9, pp. 1224–1232, Sep 2010.

[2] C. Guillemot and O. Le Meur, “Image Inpainting : Overview and Recent
Advances,” IEEE Signal Process. Mag., vol. 31, no. 1, pp. 127–144, Jan
2014.

[3] J. Seiler, M. Jonscher, M. Schöberl, and A. Kaup, “Resampling Images
to a Regular Grid From a Non-Regular Subset of Pixel Positions Us-
ing Frequency Selective Reconstruction,” IEEE Trans. Image Process.,
vol. 24, no. 11, pp. 4540–4555, Nov 2015.

[4] M. Schöberl, J. Seiler, S. Foessel, and A. Kaup, “Increasing imaging
resolution by covering your sensor,” in Proc. 18th IEEE Int. Conf. Image
Process., Sep 2011, pp. 1897–1900.

[5] D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr 2006.

[6] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb 2006.

[7] N. Genser, S. Grosche, J. Seiler, and A. Kaup, “Sparse Hartley Modeling
for Fast Image Extrapolation,” in IEEE 20th Int. Work. Multimed. Signal
Process., Aug 2018, pp. 1–6.

[8] N. Genser, J. Seiler, and A. Kaup, “Spectral Constrained Frequency
Selective Extrapolation for Rapid Image Error Concealment,” in Proc.
25th Int. Conf. Syst. Signals Image Process., Jun 2018, pp. 1–5.

[9] J. Seiler and A. Kaup, “A Fast Algorithm for Selective Signal Extrapola-
tion with Arbitrary Basis Functions,” EURASIP J. Adv. Signal Process.,
vol. 2011, no. 1, p. 495394, Dec 2011.

[10] M. Andrecut, “Fast GPU Implementation of Sparse Signal Recovery
from Random Projections,” Sep 2008.

[11] S. Mallat and Zhifeng Zhang, “Matching pursuits with time-frequency
dictionaries,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397–
3415, Dec 1993.

[12] Y. Fang, L. Chen, J. Wu, and B. Huang, “GPU Implementation of
Orthogonal Matching Pursuit for Compressive Sensing,” in IEEE 17th
Int. Conf. Parallel Distrib. Syst., Dec 2011, pp. 1044–1047.

[13] Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching
pursuit: recursive function approximation with applications to wavelet
decomposition,” in Proc. 27th Asilomar Conf. Signals, Syst. Comput.,
Nov 1993, pp. 40–44.

[14] Y. Dai, D. He, Y. Fang, and L. Yang, “Accelerating 2D orthogonal
matching pursuit algorithm on GPU,” J. Supercomput., vol. 69, no. 3,
pp. 1363–1381, Sep 2014.

[15] Y. Fang, J. Wu, and B. Huang, “2D sparse signal recovery via 2D
orthogonal matching pursuit,” Sci. China Inf. Sci., vol. 55, no. 4, pp.
889–897, Apr 2012.

[16] A. Kaup, K. Meisinger, and T. Aach, “Frequency selective signal extrap-
olation with applications to error concealment in image communication,”
AEU - Int. J. Electron. Commun., vol. 59, no. 3, pp. 147–156, Jun 2005.

[17] NVIDIA Corporation, “CUDA C Programming Guide,” Apr
2018. [Online]. Available: https://docs.nvidia.com/pdf/CUDA C
Programming Guide.pdf

[18] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” Queue, vol. 6, no. 2, p. 40, Mar 2008.

[19] NVIDIA Corporation, “cuFFT Library User’s Guide,” Aug 2019.
[Online]. Available: https://docs.nvidia.com/cuda/pdf/CUFFT Library.
pdf

[20] N. Asuni and A. Giachetti, “TESTIMAGES: A Large Data Archive For
Display and Algorithm Testing,” J. Graph. Tools, vol. 17, no. 4, pp.
113–125, Oct 2013.

https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUFFT_Library.pdf
https://docs.nvidia.com/cuda/pdf/CUFFT_Library.pdf

	I Introduction
	II Frequency Selective Reconstruction
	III Frequency Selective Reconstruction on the GPU
	III-A Parallelization of FSR
	III-B Register-based argmax calculation

	IV Simulations
	V Conclusion
	References

