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Abstract—Existing works in the field of quality assessment
focus separately on gaming and non-gaming content. Along
with the traditional modeling approaches, deep learning based
approaches have been used to develop quality models, due to
their high prediction accuracy. In this paper, we present a deep
learning based quality estimation model considering both gaming
and non-gaming videos. The model is developed in three phases.
First, a convolutional neural network (CNN) is trained based on
an objective metric which allows the CNN to learn video artifacts
such as blurriness and blockiness. Next, the model is fine-tuned
based on a small image quality dataset using blockiness and
blurriness ratings. Finally, a Random Forest is used to pool
frame-level predictions and temporal information of videos in
order to predict the overall video quality. The light-weight, low
complexity nature of the model makes it suitable for real-time
applications considering both gaming and non-gaming content
while achieving similar performance to existing state-of-the-art
model NDNetGaming. The model implementation for testing is
available on GitHub1.

Index Terms—Quality of Experience, Video Quality Estima-
tion, Quality Models, Deep Learning, Gaming Video Streaming

I. INTRODUCTION

The video streaming industry is booming with growth

of users of media streaming services such as Netflix and

YouTube, video conferencing applications (e.g., Zoom and

MS Teams), and gaming video streaming (e.g., Twitch and

Facebook Gaming) [1]. Gaming video streaming consists of

a rapidly growing market with emerging online services such

as gaming video streaming, online gaming and cloud gaming

(CG) services. In cloud gaming the heavy processes such

as rendering is performed on the cloud and hence does not

require high-end hardware devices at the user end. Recently

introduced services such as Stadia, and existing services such

as Nvidia Geforce Now and Magenta Gaming by Deutsche

Telekom are some of the examples of such services. Apart

from processing power, cloud gaming benefits users by the

platform in-dependency and for game developers offers secu-

rity to their products and promises a new market to increase

their revenue. Besides cloud gaming, passive video streaming

of gameplay have become popular with hundreds of millions

1https://github.com/stootaghaj/DEMI

of viewers per year with Twitch.tv currently being the most

popular services for passive video game streaming.

In times of exceptional circumstances such as the current

Covid-19, it is imperative that such services meet the minimum

required quality of experience (QoE) to the end users and

video quality forms one of the most important components

of QoE. Video quality assessment is a highly subjective task,

as several factors (resolution, number of stalling events, etc.

[2]) play a role in the final judgement of a user about a

given service. Many services rely on the use of objective

quality models and metrics which try to predict the quality

as perceived by humans. Therefore, over the past many years,

there have been significant efforts towards the development

and usage of quality models for quality prediction of multime-

dia services. For example, Netflix developed a video quality

metric, Video Multimethod Assessment Fusion (VMAF), to

measure the video quality considering encoding and rescaling

artifacts, as they are the only compression related artifacts in

a HTTP Adaptive Streaming based application [2].

While several studies have been done on proposing quality

assessment models and metrics for traditional video streaming

services (e.g., Netflix and YouTube), new types of streaming

content such as gaming video streaming has only recently

started receiving attention of the industry and academia. For a

more cleared discussion on the difference between these, we

refer the reader to the discussion in Chapter 4 in [3]. Towards

this end, in this paper, we present a deep learning model called

DEMI to predict the video quality of compressed videos for

both gaming and non-gaming content. The remaining part of

the paper is organized as follows. In Section II we present a

discussion on the related work. The description of datasets

that are used for evaluation of the model is presented in

Section III. Following this, Section IV presents the proposed

model architecture while in Section V we present a discussion

on the model development and presents the performance

results of the proposed model compared to other existing

models. We then conclude the paper in Section VI.

II. RELATED WORK

Over past several years, due to the nature of the ser-

vice/application in that there is no unimpaired, reference signal

available (e.g., user generated content), there is a growing978-1-7281-9320-5/20/$31.00 ©2020 IEEE
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demand for no-reference (NR) metrics. Several recent works

have tried to address such NR models for both gaming as well

as non-gaming applications, which we briefly discuss next.

In light of the peculiarities of gaming content, several

gaming-specific video quality models have been developed.

The focus has mainly been on developing NR models due

to the lack of availability of pristine quality reference videos

in a typical gaming scenario. Zadtootaghaj et al. [4] pro-

posed a NR machine learning-based video quality metric

named NR-GVQM for gaming content which is focused on

frame-level feature extraction. The authors proposed a model

which collects low-level image features from the frame of

the video and trained the model using VMAF scores for the

frame. The model uses pre-trained model using BRISQUE

features, which was trained on non-gaming content and its

quality prediction on gaming content was proven to be not

satisfactory. Göring et al. [5] proposed a NR metric called

nofu, which is a pixel-based video quality model designed

for gaming content. nofu uses 12 different per frame based

values and a center crop approach for the fast computation

of frame-level features. It further uses frame-level features

pooling at video-level and feeds the features to machine

learning based model for the model development. nofu showed

promising results on GamingVideoSET [6] using a 10-fold

cross-validation approach. Barman et al. [7] proposed two NR

metrics, NR-GVSQI and NR-GVSQE, to predict the quality of

gaming content considering a passive gaming video streaming

scenario. NR-GVSQI is designed using Neural Networks and

it uses the MOS score as a target value for training. This

model uses 15 NR features and three features from the score

of three NR metrics for training of the machine learning based

model. It uses GamingVideoSET [6] for training and KUGVD

(also known as Kingston University Gaming Video data) as

the validation dataset. NR-GVQSE was designed as the NR

equivalent of VMAF (i.e. using VMAF as groundtruth) and

performed well with a Pearson Correlation (PCC) of 0.97 with

VMAF. Utke et al. [8] proposed a deep learning based gaming

video quality metrics which outperforms the existing signal

based video quality metrics.

Within the recent years there has been a growing interest

in the application of deep neural networks (DNNs) for image

and video quality assessment tasks. Since the amount of data,

especially datasets with subjective scores is still very less for

training a deep learning model, it is difficult to train a “deep”

neural network. One approach to train such a model is by

the use of transfer learning where the network is learned by

transferring information from a related domain. Still, such

approaches are limited to images and their application for

video quality evaluation is still limited [9], [10], [11].

III. EVALUATION DATASETS AND METHODOLOGY

In this work, we used five public video quality datasets,

three from gaming namely, GamingVideoSet [6], KUGVD [7]

and CGVDS [12] and non-gaming video datasets, namely,

Netflix Public Dataset [13] and LIVE-NFLX-II Subjective

Video QoE Database (NFLX-SVQD) [14]. The selection of the

video quality datasets is done taking into account the similarity

of encoding settings and range of parameters used.

GamingVideoSET (henceforth GVSET) presented in [6]

consists of 24 reference video sequences from 12 different

games with each video of 30 s duration, of 1920×1080 reso-

lution and 30 fps. The reference videos are encoded in multiple

resolution-bitrate pairs using H.264 video compression stan-

dard resulting in a total of 576 distorted video sequences. The

dataset includes subjective ratings for 90 video sequences as

well as per-frame scores for several FR and RR metrics for

the whole dataset.

KUGVD is another publicly available dataset built in line

with the encoding settings used in GamingVideoSET but

limited to six reference video sequences presented in [7]. It

also consists of 144 distorted video sequences with per-frame

scores for the FR and RR metrics, as well as subjective MOS

scores for 90 distorted video sequences.

Netflix Public Dataset (NFLX-PD) is a non-gaming video

dataset provided by Netflix consisting of nine source video

sequences of 1920×1080 resolution with framerates of 24, 25

and 30 fps. The videos are encoded in multiple resolution-

bitrate pairs with bitrates ranging from 375 kbps to 5800 kbps

and resolution ranging from 288p to 1080p.

LIVE-NFLX-II Subjective Video QoE Database (NFLX-

SVQD) [14] consists of 15 source videos and a total of 420

distorted sequences obtained by encoding the source videos

at different bitrates at native resolution. The dataset includes

both objective and subjective quality ratings, both continuous

as well as retrospective prediction scores.

In addition to the above five public gaming and non-gaming

video datasets, we used a gaming image and one cloud gaming

dataset described next.

GISET: is a gaming image dataset consisting of 164 images

extracted from the GamingVideoSET dataset in which from

each source image, three encoded images are selected, one

with blockiness artifact, one with blurriness and finally one

with mixture of these two degradations. GISET is the only

image quality dataset annotated with blockiness and blurriness.

CGVDS: Cloud Gaming Video Dataset (CGVDS) [12]

consists of a larger number of recording gaming content

captured at 60 fps. Similar to the previously discussed gaming

datasets, three different resolutions, namely, 480p, 720p and

1080p are considered at three different framerates of 20, 30

and 60 fps. The dataset includes results from five different

subjective studies, each with three video games.

A. Perceptual Video Quality Dimensions

One of the reasons for the increasing popularity of adaptive

streaming is the fact that in adaptive bitrate streaming using

TCP there exist no visual quality impairment due to packet

losses and bit-errors. The major impairments that arise during

the lossy encoding process are compression artifacts and scal-

ing artifacts which in turn affect the end user’s QoE. Therefore,

we decided to train our model based on the two of the

three video quality dimensions (Fragmentation (Blockiness)



and Unclearness (Blurriness)) that are introduced in the ITU-

T Rec. P.918 for the design of our video quality metric,

which can also serve as a diagnostic tool. Table I summarizes

the three identified dimensions which later are used to build

the quality model using a Direct Scaling method. The video

discontinuity dimension was not used in the training process.

TABLE I: Perceptual video quality dimensions introduced in

ITU-T Rec P.918 [15]
.

VQD Name Description Example Impairment

I Fragmentation
(FRA)

Fallen apart, torn and blocki-
ness

Low Coding Bitrate

II Unclearness
(UCL)

Unclear and blurry image Upscaling effect using bicubic
function

III Discontinuity
(DIC)

Interruptions in the flow of the
video

Low frame rate

IV. DEMI MODEL ARCHITECTURE

In this section, we describe the architecture of the proposed

model, DEMI, and the special model design. DEMI is a

CNN based metric which takes into account different types

of artifacts such as blockiness, blurriness and jerkiness, to

predict the overall gaming video quality. The structure of the

model is shown in Figure 1. DEMI has three components.

The first component is a CNN which is used to predict

the frame level blurriness and blockiness. Second component

is a temporal complexity index which is based on Block

Motion estimation (BM) and Temporal Index (TI). Finally

the predicted blockiness, blurriness, TI and BM for multiple

patches of a video is pooled using a random forest model to

predict the video quality which is the third component of the

proposed model.

A. Phase 1 – VMAF training

In order to train a CNN for the quality estimation task, a

major limitation is the availability of a large scale image qual-

ity dataset with images and their subjective ratings. Mixing

multiple datasets could be one option but it suffers strongly

from many shortcomings such as subjective bias, difference

in viewing conditions, display used, etc. and hence, requires

an anchor dataset to deal with this bias which is missing

in such cases. For training, we use the annotated frames

using an objective, full-reference video quality metric called

VMAF, as was done in [8]. The selection of VMAF is due to

high performance of the metric for different types of content

(including gaming content [16] when compression artifacts are

present.

As the underlying CNN architecture, we chose the light-

weight, DenseNET-121 architecture [17], which has been

shown to perform well for image quality estimation tasks

[8]. Selection of the DenseNET-121 is also considering the

fact that the model is of very low complexity, with almost

8 million parameters (e.g. compared to ResNet50 with 25

million parameters), while reaching high accuracy for quality

prediction problems [8]. In order to let DenseNET-121 learn a

regression task (instead of the originally trained classification

task), the fully connected layer at the end of the CNN was

removed. Instead, we added a dense layer consisting of only

one output neuron with linear activation. Training the model

using the VMAF annotated frames allows the network to

learn different types of image compression degradation such

as blurriness and blockiness.

For DenseNET-121, we used the implementation available

in [18]. For training the model, we crop nine non-overlapping

patches, each of size 299 × 299 instead of default DenseNet

patch size of 224 × 224, as recommended in [8], from

each frame for training the model based on the VMAF. In

its entirety, we used over 200k frames and their respective

VMAF scores as the target. The frames are extracted from

multiple videos from several datasets (see Section III for more

information). Since nine patches are extracted per frame, the

total number of inputs during the training phase is over a

million.

Since we have VMAF scores only at frame level, we used

Partial PSNR to determine the quality and the weight of each

patch that contribute to the overall VMAF score. Thus, for the

patch i of frame j, the weight of patch is calculated as follows:

W(i,j) = PPSNR(i,j)/PSNRj (1)

The quality of each patch then was determined based on the

VMAF of each frame which is calculated as:

VMAF(i,j) = VMAFj ∗W(i,j) (2)

The selection of PSNR is due to the simplicity and nature

of the metric as it only measures the signal to noise ratio

and avoids any content bias or scaling adjustment as also

used earlier by authors in [19]. Due to the high similarity

between neighbouring frames, in the training process, we only

used every 20th frame. The number is selected based on our

experience from previous work in [8], which showed that a

too long interval might negatively affect the result due to a

smaller training set .

B. Phase 2- Fine-tuning

Once the model is trained based on VMAF, the model is

then fine-tuned two times based on a small image quality

dataset using Fragmentation (blockiness) and Unclearness

(blurriness) subjective ratings. We retrain the 33 layers of

Densenet-121 (one DenseNet block including 2191k param-

eters) using transfer learning. The 25% of CNN was retrained

once based on the blur ratings and once based on the blocki-

ness ratings. Since only 25 percent of the CNN was retrained

two times, the overhead of double training (for blur and

blockiness) does only result in computational overhead for

testing the model for one additional DenseNet block. It needs

to be noted that this additional step would slightly increase

the prediction computation due to forward propagation of the

prediction process.

C. Phase 3: Video Level

Once the model is fine-tuned based on the blockiness and

bluriness, we collect the frame prediction level of the model

to be used in the training process at the video level. In
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Fig. 1: Architecture of the proposed model (adapted based on [17]). Each transition block consists of 1x1 Conv and 2x2 Pool

with stride 2. The regression layer has an average pool and a dense layer consisting of only one output with linear activation.

addition to the frame level prediction, we extracted temporal

features (temporal index and block motion estimation) for

better prediction on the video level. We then use Random

Forest (RF) as the training algorithm to fuse the features for

prediction of video quality. Since we have subjective scores

from multiple datasets, in order to compensate for subjective

bias, we used a linear mapping as recommended in [ITU-

T. P.1401] per dataset to the objective quality scores before

computing the performance of the evaluation metrics. This

was done at video level only, as in the subjective scores are

available only for video sequence.

We define temporal information (TI) at a frame level similar

to ITU-T Rec. P.910 [20] as:

TI = std[Mn
p ] (3)

where Mn
p is the pixel intensity difference between Fn

p ,

current frame n, calculated as

Mn
p = Fn

p − Fn−1
p (4)

where Fn−1
p , previous frame n − 1. Block Motion (BM)

estimation with a block size of 8x8 is calculated based on

Sci-kit video library [21]. The block motion is then averaged

over a frame (between two frames) and one value per frame

(second frame in each prediction) is stored for training. With

consideration of the low computation complexity during the

test (considering real-time prediction requirement in real world

applications), the frame-level information was extracted for

every 20th frames. This number is based on previous research

[8] and our investigation.

V. MODEL TRAINING AND PERFORMANCE EVALUATION

The model development was carried out in three phases

of model training which we discuss next. In this section, we

report the performance in terms of Pearson Linear Correlation

Coefficient (PCC), Spearman’s Rank Correlation Coefficient

(SRCC) and Root Mean Square Error (RMSE) after each phase

of training. The results are reported based on their performance

on the training dataset. For the training, the scale of VMAF

was from 1 to 100 and for the Phase-2 and 3 we used 5-point

ACR scale and RMSE is reported accordingly.

A. Model Training

1) Phase-1 (VMAF Training): In first phase, we train the

model using VMAF scores from three datasets, GVSET,

KUGVD, NFLX-PD. The DeneseNet-121 was trained

based on the frames extracted from these three datasets,

using the VMAF scores as the target labels. The result

on the training set showed high performance with RMSE

of 5.15 and PCC score of 0.943 at frame level and

RMSE of 3.25 and PCC of 0.954 at video level (using

average pooling) across all datasets. The result on the two

validation datasets is shown in Figure 2.

2) Phase-2 (Fine-tuning): Once the model is trained based

on VMAF scores, it is then fine-tuned based on MOS

scores from GISET, as it includes scores for both blocki-

ness and blurriness. The model is fine-tuned in two steps,

once using the scores for blockiness and once based

on scores for blurriness. The same weighting method

explained in Phase-1 was applied to the rating of each

patch. Since the number of images is quite less, we used

a leave one out cross-validation method where we left out

video sequences from a game (reference video together

with all encoded videos of that video sequence). The

process is repeated twelve times for each game in the

GISET. The result shows high performance of model for

both blockiness, with PCC of 0.94 and RMSE of 0.39,

and blurriness with PCC of 0.92 and RMSE of 0.45. Due

to small size of dataset, we extracted all possible non-

overlapping patches for fine-tuning the model.

3) Phase-3 (Video-Level): In Phase-3, we train the model at

video level using four datasets, GVSET, KUGVD, NFLX-

PD and a subset of CGVDS consisting of videos of 60

fps (since the other datasets were limited to videos of

upto 30 fps). We trained a random forest model based

on temporal features and the predicted blockiness and

blurriness scores. The features are extracted only from

nine patches of a frame and only from every 20th frame.

The statistical information of patch features over a video

is used in training of the random forest. The result for

the training data showed a very high PCC score of 0.941
and RMSE of 0.31.

B. Model Performance Evaluation

The final model at the end of the training process is called

DEMI which is then evaluated using two datasets not used

in the training process. One each from gaming (CGVDS)

and one non-gaming (Live-NFLX-1) are used for testing

the model performance. Using NFLX-PD and CGVDS for
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Fig. 2: Scatter plots of predicted VMAF vs Actual VMAF scores for the two test datasets.

TABLE II: Comparison of Model Performance

PCC SRCC PCC SRCC

PSNR 0.64 0.66 0.66 0.67

SSIM 0.69 0.76 0.64 0.76

VMAF 0.93 0.91 0.87 0.87

BRISQUE -0.77 -0.76 -0.48 -0.46

NIQE -0.83 -0.81 -0.53 -0.53

PIQE -0.78 -0.80 -0.41 -0.41

NDNetGaming 0.89 0.85 0.92 0.93

DEMI 0.89 0.89 0.93 0.92

Metrics
NFLX-PD CGVDS

FR Metrics

NR Metrics

validation, the results perform well which is shown in Table

II which is compared with some of the well known FR and

NR quality metrics. It can be observed that the result for

gaming video dataset, CGVDS, is slightly higher than Live

dataset which might be due to the fact that there is a higher

number of gaming frames in the training set. Based on the

Table II, we can see that NDNetGaming performs slightly

higher than DEMI for CGVDS dataset. This is due to the

fact that NDNetGaming is trained only based on the gaming

video dataset and it is more complex compared to DEMI.

However, DEMI outperform NDNetGaming for non-gaming

content while still behind VMAF. It has to be noted that

VMAF is trained based on the similar dataset to NFLX-PD

and the result could be biased for VMAF on this dataset.

In addition, we compared the performance of the metric

with MOS on the scatter plot in Figure 3. The scatter plot

showing that the model performs very well with gaming

video dataset. We can observe a few underestimation for

very low complex sequences. For example, we can see that

DEMI underestimates a few sequences of the game, League

of Legend (LoL), which is recorded from special level named

teamfight tactics. We believe this result is due to the training

process where more complex video games exist in the training

dataset compared to low complex sequences. Similar result can

be seen for NFLX-PD.

For testing, we used a PC with 16 GB RAM and NVIDIA

graphic card of GTX 1080, on which our model took less

than 200 seconds for a 1080p video of 30 seconds duration.

The reduced computation time is due to the fact that we

sample frames and patches, as explained in Section V-A, to a

minimum for reduction in computation complexity. We did

not compare our model with existing deep learning video

quality models due to the following practical and theoretical

reasons. First, the source code of those models are not always

available. Second, most of deep learning models are trained

on datasets with different type of artifacts which result in low

correlation with our selected validation datasets and it is not

fair to make such a comparison. In addition, within the same

CNN architecture, deeper CNNs typically perform better (e.g.

DenseNet201 performs better than DenseNet121 on ImageNet)

and such a comparison is valid if we have similar number of

trainable parameters.

C. Discussion

In this paper, we presented a deep learning based video qual-

ity model which is trained based on gaming and non-gaming

content. While the proposed model is more complex during

the training phase than the state-of-the-art (NDNetGaming)

model, its complexity during test (runtime) phase is greatly

reduced due to a much lower sampling rate of frames from

the video and hence, reduced number of computations. An

exact comparison of complexity is out of the scope of this

paper and will be presented in future work. In the Phase-1,

we decided to not combine multiple image quality datasets

due to subjective bias that could occur and influence the result,

and hence instead we used VMAF for training. Using GISET

in Phase-2, we augmented the training process for Blockiness

and Blurriness artefacts. In Phase-3, we combined the three

video datasets in the training process. The reason behind such

a approach in Phase-1 and Phase-3 is that for Phase-1 we

wanted to combine a huge image quality dataset to allow the

deep CNN to learn image compression artifacts. While in the

Phase-3, we only combine the three datasets that are similar in

terms of methodology of subjective test. One major advantage

that the model provides over the existing models is that a

service provider can use the quality dimensions output as a
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Fig. 3: Scatter plots of predicted MOS vs. MOS scores for the two test datasets.

diagnostic tool to improve the quality of experience of the

user by providing improved quality video to the end user.

VI. CONCLUSION AND FUTURE WORK

We presented in this work a deep learning based model

DEMI for quality prediction of both gaming and non-gaming

content. DEMI was trained on four different publicly available

datasets and its performance was independently evaluated on

two separate datasets. A performance comparison with existing

models showed that it achieves similar performance as the

state-of-the-art model NDNetGaming but at a much reduced

complexity making it suitable for real-world quality estimation

tasks. The quality dimensions output can also be used by

service providers to adapt the video quality to enhance the

quality of experience of the end user, hence making such

a model suitable for QoE based measurement and control.

Our future work will include assessment of other transfer

learning methods, inclusion of more quality dimensions and

more relevant datasets.
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