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Abstract—Reverberation time is an important room acoustic
parameter, useful for many acoustic signal processing applica-
tions. Most of the existing work on blind reverberation time
estimation focuses on the single-channel case. However, the
recent developments and interest on immersive audio have
brought to the market a number of spherical microphone arrays,
together with the usage of ambisonics as a standard spatial
audio convention. This work presents a novel blind reverberation
time estimation method, which specifically targets ambisonic
recordings, a field that remained unexplored to the best of our
knowledge. Experimental validation on a synthetic reverberant
dataset shows that the proposed algorithm outperforms state-
of-the-art methods under most evaluation criteria in low noise
conditions.

Index Terms—blind reverberation time estimation, ambisonics,
dereverberation, acoustic parameter estimation

I. INTRODUCTION

Knowledge about the acoustic properties of an enclosure is
a fundamental topic with many applications in the microphone
array and acoustic signal processing field. Problems such as
dereverberation [1]] or source separation [2]] may benefit from
this information, and may require prior estimation of the
related parameters. Reverberation time Tgo [3|] might be one
of the most widespread acoustic parameters; it represents the
time required for the reverberant sound field power to decay by
60 dB. Reverberation time can be accurately computed from
the room geometry [4] or from the impulse response (IR) [S[;
the problem of T§y estimation just from observations of the
reverberant signal itself is referred to as the blind reverberation
time estimation, and it still remains an open research question.

The 2015 Acoustic Characterisation of Environments (ACE)
Challenge [|6] gathered dozens of methods designed for blind
Tso and direct-to-reverberation ratio (DRR) estimation; nowa-
days, it is still considered as a state-of-the-art source for
performance evaluation and comparison among methods.

Most of the model-based T§( estimation algorithms consider
the reverberant signal envelope as an exponential decay, so that
the problem is reduced to finding a signal offset and estimate
the decay rate. Moreover, in last years, data-driven models
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have outperformed the previous state-of-the-art results [7]—[9].
A comparative review on single-channel blind 7§, estimation
algorithms was recently published [10].

However, most of the existing reverberation time estimation
methods focus on the single-channel case. A representative
example can be drawn from the ACE Challenge, where,
despite the fact that one of the reverberant datasets was
recorded with an em32 Eigenmike spherical microphone array,
none of the methods use of it for the T, estimation task.

On the other hand, recent years have witnessed a growing
interest in immersive audio for virtual and augmented reality.
This situation has consolidated Ambisonics [11] as the de facto
standard for spatial audio. Dedicated spherical microphone
arrays have reached the market in last years; their multichannel
nature makes possible spatial manipulations that complement
traditional signal enhancement methods.

In this paper, we present a novel approach to the problem of
multichannel blind reverberation time estimation, specifically
focusing on first order ambisonic (FOA) recordings. The
method is based on a dereverberation stage followed by system
identification. To the best of our knowledge, the proposed
algorithm is the first reverberation time estimation method
specifically designed for first order ambisonic audi(ﬂ

II. SIGNAL MODEL

Let us consider a FOA signal z,,(t), withm =0..., M —1
as the channel number, and M = 4. Let us further assume
that ., (¢) represents the signal captured by an ideal spherical
microphone array located in a reverberant enclosure, where
a static sound source s(t) is present. The ambisonic room
impulse response between source and receiver is represented
by A, (t). In the absence of noise, the recorded signal is the
convolutive mix of the source signal s(¢) and the IR:

T () = hum (t) * s(2) (1)

'Full implementation is available under an open-source license at https:
//github.com/andresperezlopez/ambisonic_rt_estimation.



Here, Tso estimation assumes no receiver directionality.
Therefore, in what follows, all relevant parameters will be
estimated from the zeroth order ambisonic channel, xq(t).

III. BASELINE METHOD

The baseline algorithm, taken from [12]], is based on the
detection of abrupt event offsets in the time-frequency domain.
The subband energy decay on the transitions can be then used
to compute an estimate of the full-band decay. This method
performed best in the ACE Challenge regarding the Pearson
correlation coefficient between estimated and true Tyo [6].

Let us consider the zeroth order channel of the recorded
signal, zo(t), and its short-time Fourier transform (STFT)
counterpart Xo(k,n), where k and n indicate frequency bin
and time frame indices respectively. The subband energy

E(k,n) of the recorded signal can be expressed as:
E(k,n) = | Xo(k,n)|?. )

A free decay region (FDR) is defined as a group of
consecutive bins within the same subband which exhibit a
monotonically decreasing energy. A FDR search is performed
on the subband energy spectrogram E(k,n): for each band, the
algorithm tries to find at least one FDR, iteratively reducing
the FDR length if no candidates are found.

The next step is the estimation of the reverberation time,
which is performed using a subband equivalent of Schroeder’s
method [5]. The subband energy decay function (SEDF)
associated with a given FDR is computed as:

St Bk )
Yo Blk,v)
where n = 0...,L. — 1 spans the length of the FDR. A
linear regression is then performed on each SEDF curve: Tgg
is computed as the time required by the resulting line to reach
the —60 dB reference.

This procedure yields a T estimate per FDR. In order to
obtain a global estimate, the algorithm proposes a two-step
statistical filtering. First, it obtains a narrowband estimate as
the median of all estimates within each subband. Then, the
resulting broadband value Teo is computed as the median of all
subband estimates. The last step of the method is the expansion
of the resulting dynamic range by a linear mapping. This
procedure is required because of the compression introduced
by the median operator. The final value Tgq is thus a linear
mapping of Ty, where the parameters o and 3 might be
obtained by linear regression on a training stage:

Too = oTgo + B 4

IV. PROPOSED METHOD

é(k,n) = 10log;, dB, 3)

We propose a novel method for reverberation time estima-
tion, based on two steps: signal dereverberation, and system
identification. The main idea consist in obtaining an estimate
of the dereverberated signal, which is later used for estimating
the multichannel IR given the recorded reverberant signal. The
reverberation time can be thus computed by the decay slope
of the estimated IR.

A. Dereverberation
Let us consider the convolutive transfer function (CTF)
model of the signal model in Eq. [I|in the STFT domain:
Lh,—l

Xon(k,n) =Y Hyp(k,1)S(k,n —1), (5)
=0

where the multichannel filter H,,(k,!) of length L, contains
the CTF coefficients between the source and the microphones.

It is possible to split the former expression into two con-
secutive elements, which would conceptually match the early
and late parts of the room’s impulse response:

Xm(k,n) = Dy, (k,n) + Ry (k,n) =

1 Lp—1 (6)
=Y Hu(k,D)S(k,n—1)+ > Hpu(k,1)S(k,n—1),
l=T1

T

Il
o

where the parameter 7 represents the mixing time, which
states the transition time between early reflections and late
reverberation. In other words, the captured signal is split
between a direct part D,,(k,n), containing the direct path and
the early reflections, and a reverberant part R, (k,n), which
mainly contains the diffuse part of the reverberation.

Assuming a multichannel auto-regressive (MAR) model,
R, (k,n) can be expressed as a multichannel infinite impulse
response (IIR) filter applied to the recorded signal:

M Ly,—1
Rm(k7n) :Z Z Xi(kvn_T_l)G’rni(k?l)7 (7)
i=1 1=0
where the coefficients G,,;(k,l) € C model the relation
between channels m and ¢, and have a length of L, frames.
By grouping all time frames n = 1..., N —1, it is possible
to express Eq. [7] in vector notation:

Rm(k) = XT(k)Gm(k>7

(8a)
Xr(k> = [XT,l(k;)7"'7XT7M(k)]’ (8b)

where X, (k) is a N x L, matrix, and R,, (k) and G,, (k)
are column vectors with lengths IV and L, M, respectively.

Finally, the expression can be further simplified by omitting
the frequency dependence, and by expressing the channels as
columns in the vector notation. Substituting this expression in
Eq. [] leads to the MAR equation:

D=X-X,G. )

Here, the dereverberation problem consists in the estimation
of the MIMO filter G, so that the clean signal D (containing
both direct path and early reflections) can be computed.

The solution proposed in this paper is based on the method
described in [13]. In this case, the dereverberation problem
is tackled as an optimization problem, considering that the
spectrograms of the reverberant signal are less sparse than
those of the corresponding clean, and ensuring that the inter-
channel signal properties are mantained. Although the pre-
sented method is applied on the whole signal in batch mode,
alternative online methods could be also used, e.g. [14].



By using iteratively reweighted least squares (IRSL) [15]],
it can be shown that an iterative solution for the estimation of
G at the iteration (4) is given by the following expression:

GY = (XIwWWOX )" xEwh X, (10)
where W@ is a N x N diagonal matrix whose diagonal
values, w,(f ), can be updated as:

p—2

wil) = (@ -V 10Dl e (D)

In turn, d,, represents the rows of D arranged as column
vectors of length M, ® is the M x M spatial covariance matrix
(SCM) of D, ¢ is an arbitrary small positive value, and p < 1.
The computation and update of the SCM matrix is given by:

) — L pTiw ) pe6). (12)
N

To conclude the dereverberation method, Egs. [9] [I0} [TT] and
[12] can be applied iteratively, starting by updating Eq. [TT] until
convergence is reached:

|IDW — DD p /DD 5 <, (13)

where 7 is an arbitrary small positive value, or alternatively
until the maximum number of iterations ,,,, 1S exceeded.
For the initialization, the following values are proposed:
D = X and ® = I,; (the identity matrix of size M x M).

B. System Identification

The output of the dereverberation step is the multichan-
nel signal D,,, which ideally contains the direct plus early
reflection components of the source. Therefore, given the
reverberant signal X,,, and the dereverberated signal D,,, an
estimate of the late room impulse response might be derived
by identifying the filter connecting the two. As stated in
Section [l we are primarily interested on the response of the
omnidirectional channel; for that reason, the filter estimation is
performed with the zeroth order components of both recorded
and dereverberated signals. We perform system identification
directly in the STFT through a linear fit between input and
output independently for every frequency bin:

o oy 90 (R)xo (k)

Holk) = Got(ydy (k) (14

where dg,xp are N x 1 length vectors. To avoid complex
cross-band modeling of the system response, we use a long
STFT window, assumed longer than twice the length of the
IR so that a reduction of the CTF to a multiplicative transfer
function (MTF) holds [16].

As a last step, the estimated time-frequency filter Ho(k,n)
is transformed into the time domain filter h(t). The Tgo is
then computed by linear fitting of the Schroeder integral in
the [—5, —15] dB range (T} estimation method), after filtering
h(t) with an octave-band filter centered at 1 kHz.

TABLE I
BASELINE SYSTEM: LINEAR REGRESSION PARAMETERS
Dataset « I¢] o
Speech | 6.6619 | -1.4517 | 0.2131
Drums | 82421 | -2.1939 | 1.0055

V. EXPERIMENTAL SETUP
A. Dataset

The proposed method is evaluated using two different re-
verberant datasets, containing recordings of speech and drums
respectively. In order to have full control over the reverberation
conditions in the experimental setup, the audio clips under
consideration have been rendered by the convolutive mixture
of clean monophonic recordings with FOA IRs.

The speech dataset is composed of the LibriSpeech [17]
test-clean audio samples longer than 25 s, making a total of
30 audio clips. It contains English language sentences by male
and female speakers, often with a small level of background
noise. We have used only a 20 s long excerpt of each clip,
preceded by an initial offset of 5 s. The drums dataset is the
test subset of the isolated drum recordings from the DSD100
dataset [18]]. It contains 50 different audio clips, covering
a wide range of music and mixing styles. The same audio
lengths and offsets as in the previous case are applied.

The IRs are FOA room impulse responses simulated by
the image method with the Multichannel Acoustic Signal
Processing library [19]]. There are 9 different IRs of 1 s,
with random Ty, values in the range between 0.4 s and 1.1
s approximately, estimated by the 77¢ method at the 1 kHz
band. The angular position of the sources is randomized for
each IR, while the receiver position is fixed at the room center,
which has a size of 10.2 x 7.1 x 3.2 m. The source distance is
set to half the critical distance, thus providing positive DRRs.

The combination of the dry audio clips with the IRs yields
a total of 270 and 450 audio clips for the speech and drums
datasets, respectively, after removing the audio clips which
mostly contain silence. Those datasets will be referred in the
following as the evaluation datasets.

Finally, the baseline method requires a previous fitting step
for the computation of the mapping parameters « and 8 from
Eq. @ The procedure has been performed as follows. For the
speech dataset, we selected again the subset of audio clips
longer than 25 s, but in this case on the dev-clean dataset,
which yields a total of 20 audio clips. For the drums dataset,
we used the 50 clips of the development subset. The generation
of the convolutive mixes has followed the same procedure as
in the previous case. We will refer to the resulting datasets as
the development datasets.

B. Setup

The sampling frequency for all methods is 8 kHz. For the
baseline system, the window size is 1024 samples long, with
an overlap of 256 samples. The FDR length is set to 500 ms,
which has been reported as the ideal theoretical minimum [|12]];
it corresponds to a FDR length of L. = 15 samples. At any



TABLE 11
EXPERIMENT RESULTS
speech drums
Metric | Baseline | MAR+SID | Baseline | MAR+SID
Bias -0.0599 0.0305 0.1521 0.2568
MSE 0.6366 0.0594 13.9376 16.5261
p 0.8212 0.9848 0.3705 0.7552

frequency band, the value of L. is iteratively decreased if no
FDR is found, until a minimum value of 3 samples (96 ms).
If still no FDR is found, the sound clip is discarded.

In order to compute « and (3, we run the baseline method on
both development datasets. For each IR, the mean and standard
deviation of the results are computed across all sound clips.
Then, these values are used for a weighted least squares linear
regression against the true Tgo values. The results are shown
in Table [, where o represents the joint standard deviation of
« and g after the linear regression; the resulting values are in
the same range as the values reported in [12].

In the dereverberation stage, the STFT uses a small window
size of 128 samples, with 64 samples overlap. The value of p
is set to 0.25, given the good results reported in [13]]. Other
parameter values are 7 = 2, imqr = 10, B = 10~* and
€ = 10~*. After an exploratory search, the length of the IIR
filter L, = 20 has been chosen as a compromise between
method performance and computation time. We have observed
a tendency towards poor dereverberation and non-convergence
of the IRSL when using small values of L, and short audios.

For the SID, the recorded and dereverberated signals are
reshaped into much larger STFTs, with a window size of 8 s
and a hop size of 0.5 s. The predicted filter size is I s.

For both evaluation datasets, the two presented methods are
employed; we will refer to them as Baseline and MAR+SID.
Furthermore, with the aim of evaluating the performance of
the SID method in an isolated manner, we have included a
third method, Oracle SID. As its name suggests, it performs
the System Identification step using the true anechoic signal.

C. Evaluation metrics

We have considered the three metrics from the ACE Chal-
lenge [6]], all of them based on the differece between estimated
and true values: the bias, or mean error; the Mean Squared
Error (MSE); and the Pearson correlation coefficient. The
evaluation has been performed after discarding the outliers,
defined as the reverberation time estimates greater than 1.5 s.

VI. RESULTS

Figure [T[a) shows the experiment result specified for all
audio clips individually. Each boxplot represents the statistics
of the mean estimation error (bias) for a single audio clip
subject to all 9 different IRs. The results are organized by
method (rows) and dataset (columns). Figure Ekb) aggregates
all experiment results into the same plot, showing the statistical
distribution of the bias per method and dataset. In this case,
the Oracle SID results are omitted for clarity. The evaluation
metrics for all methods are shown in Table [

According to the results, the proposed method clearly
outperforms the baseline in the speech dataset by a tenfold
MSE improvement. For the drums dataset, our method only
outperforms the baseline regarding correlation. Nevertheless,
an inspection of the statistical distribution of mean estimation
errors in Figure [T(b) brings in an interesting observation: the
variability of the results given by our method is substantially
smaller than the results of the baseline system. This behaviour
is consistent across datasets: the mean error distributions with
the speech dataset are approximately five times narrower than
with the drums dataset, regardless of the method.

Moreover, all methods behave significantly better on the
speech dataset. The main reason might be the heterogeneity
of the drums dataset dataset with respect to dynamic range
or timbre, and the potential application of audio effects of
any kind. Furthermore, some audio clips of the drums dataset
contain sounds with a high degree of self-similarity, such
as cymbal rolls or exaggerated reverbs; these characteristics
would explain the outliers on the proposed method results. It
is also interesting to notice the robustness of the proposed
method against noise, present in the speech dataset. Such
robustness is consistent with the behavior reported in [[13]].

The performance of the ORACLE SID method is close to
ideal. The bias is in all cases under 0.05 s (excepting a drums
clip containing mostly silence). This result validates the system
identification, and allows, in practical terms, a direct evaluation
of the proposed method against the groundtruth values.

The results obtained in our analysis are very similar to
the results reported in recent deep-learning state-of-the-art
proposals, e.g. [[7]. Such results are not directly comparable
for a number of reasons, including the single-channel nature
of existing methods, and the different noise ratios under
consideration. However, given the similar results obtained
with the same evaluation metrics, it might be anticipated that
out method may perform as well as other recent data-driven
algorithms, under low noise conditions.

VII. CONCLUSION

We have presented in this work a novel method for blind
reverberation time estimation for multichannel audio, with the
aim of applying it to the context of ambisonic recordings. Our
method is based on a first dereverberation step, performed by
a multichannel autoregressive model of the late reverberation.
The resulting dry signal is then used to estimate the impulse
response decay by means of system identification. The per-
formance of the method is evaluated in a simulated exper-
imental environment with two different reverberant datasets,
and compared against a state-of-the-art method. Results show
that our method outperforms the baseline method in a majority
of evaluation metrics and conditions, and consistently provides
results with less variability than the baseline method. In future
work, we plan to extend the experimental setup by using
recorded IRs. Furthermore, the proposed method could be
extended to the case of moving sources by using an online
autoregressive model. Finally, an extension of the method for
higher ambisonic orders remains to be done.
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Fig. 1. Experiment results for speech (left column) and drums (right column) datasets.
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