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Abstract—In this paper, we leverage gait to potentially detect
some of the important neurological disorders, namely Parkinson’s
disease, Diplegia, Hemiplegia, and Huntington’s Chorea. Persons
with these neurological disorders often have a very abnormal gait,
which motivates us to target gait for their potential detection.
Some of the abnormalities involve the circumduction of legs,
forward-bending, involuntary movements, etc. To detect such
abnormalities in gait, we develop gait features from the key-points
of the human pose, namely shoulders, elbows, hips, knees, ankles,
etc. To evaluate the effectiveness of our gait features in detecting
the abnormalities related to these diseases, we build a synthetic
video dataset of persons mimicking the gait of persons with such
disorders, considering the difficulty in finding a sufficient number
of people with these disorders. We name it NeuroSynGait video
dataset. Experiments demonstrated that our gait features were
indeed successful in detecting these abnormalities.

Index Terms—gait, neurological, disorders, Parkinson’s, Diple-
gia, Hemiplegia, Choreiform

I. INTRODUCTION

A neurological disorder [1] is a term given to certain ab-
normalities generated due to the malfunctioning of the human
body’s nervous system. The human body’s nervous system
essentially consists of the brain, the nerves, and the spinal
cords. The nerves are responsible for connecting the brain and
the spinal cord and mutually connecting these to the various
parts of the body. It controls and coordinates even different
bodily voluntary and involuntary actions. The nervous system
is quite sophisticated and has an excellent system of informa-
tion transfer. Therefore, any fault or disorder in this system
can cause trouble in performing even simple movements such
as writing, walking, and eating correctly. These troubles lead
to various visual abnormalities, which can be recorded in
videos [2] and analyzed. We choose to analyze gait (a person’s
manner of walking) to detect these abnormalities and, thus,
potentially even the neurological disorder. Considering this as
a video analytics problem, we can employ different computer
vision and machine learning algorithms to build a computer-
assisted diagnosis system. Given a video of the subject’s gait
[3]–[6], our primary goal is to be able to detect different gait
abnormalities related to neurological disorders.

In some of the neurological disorders, gait-related ab-
normalities are excellent visible symptoms to detect those
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Fig. 1. Gait Abnormalities

disorders. Even doctors consider such visible symptoms as
a basis for their diagnosis to identify the root cause of the
problem. This research attempts to expedite the diagnosis
process by automating this step with computer vision and
machine learning algorithms. It is not only for saving time (or
faster diagnosis) but also because it is much cheaper than the
existing electronic instruments based diagnosis. Also, special
assistance could be given to such people at public places and
events by automatically identifying them. Parkinson’s disease
can be identified by what is known as parkinsonian gait
[7], where a person bends forward and walks very slowly.
Similarly, Hemiplegia can be identified by hemiplegic gait,
characterized by leg’s circumduction (conical movement). In
Diplegia, the gait is known as diplegic gait, which involves
circumduction (conical movement) of both the legs. Lastly,
Huntington’s Chorea is characterized by its choreaform gait
that involves completely involuntary and unbalanced walking.
Sample cropped frames of a demo of all these abnormal gaits
are given in Fig. 1. These observations could be modeled into
video-based predictors (features) using state-of-the-art pose-
estimation algorithms (of computer vision). These features can
subsequently be employed for detecting the gait abnormalities
through machine learning algorithms.

That said, there are quite a few challenges involved. First,
there are no publicly available gait video datasets for neu-
rological disorders. Second, there are no readily available
video features to quantify the gait observations discussed
above. A thorough search of the relevant literature yielded
that almost little to no work was done to detect neurological
disorders based on the gait videos. There are works with the
same goal but using motion sensor data, a time-consuming,ACCEPTED BY IEEE MMSP 2020
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expensive, and sophisticated approach. The sensor-data based
approach is not pragmatic because we aim to potentially detect
such disorders even outside hospitals, for public assistance.
The predictors designed should be robust enough so that
they do not depend on irregularities such as video-duration,
background variation [8], foreground variations [9]–[11], and
lighting conditions.

We address the above-described challenges in the following
manner: We create a dataset named NeuroSynGait dataset,
which is a synthetic dataset of videos [12] of normal human
beings mimicking the four gait abnormalities discussed and
demonstrating their normal gait. Besides, we develop six
gait based features, namely, limb straightness, hand-leg co-
ordination, upper-body straightness, body straightness, central
distances, and mutual distances, for a frame. These features
are summarized over the video using statistics like mean
and variance for developing a video-level feature. We use
landmarks (key-points) of the human pose for developing these
features. The pose is estimated using AlphaPose [13]–[15]
technique, which already accounts for challenges posed by
the background, foreground variations, lighting conditions, etc.
The derived video-level features are used to build classification
models (using machine learning algorithms) to detect a gait
abnormality, and possibly the related neurological disorder.

The contributions made through this research are as follows:
(i) A benchmark dataset named NeuroSynGait video dataset
for detecting gait abnormalities has been proposed. (ii) Six
gait features have been developed while focusing on the gait
abnormalities caused by four different neurological disorders,
namely Parkinson’s disease, Diplegia, Hemiplegia, and Hunt-
ington’s Chorea. (iii) We successfully build machine learning
models to detect these gait abnormalities.

II. RELATED WORKS

Early works on detecting neurological disorders using gait
analysis started with [16] and [17]. [16] proposed wearing a
specific suit and having a constrained environment (like a plain
background) to extract relevant gait features effectively and
detect neurological disorders, [17] proposed detection of neu-
rological disorders from load distribution on foot. [16] easily
segmented the body (thanks to the suit and plain background)
and extracted a skeleton through thinning operation to extract
the skeleton required for developing the relevant features.
Similarly, [18] proposed a sensor system to detect various
vertical movements and, subsequently, neurological disorders.
Thus, all these works are heavily constrained either by the
arrangements required or the instruments required. Also, given
the idea presented in [17], [19] collected data from smart-
shoes to predict neurological disorders, specifically stroke and
Parkinson’s disease. Similarly, [20] used inertial sensors to
extract relevant features and detect neurological disorders.

It is clear from above that gait analysis has been one of the
prominent characteristics in detecting neurological disorders.
However, to the best of our knowledge, a pose-estimation
based approach has not been explored yet to perform gait
analysis that particularly focuses on neurological disorders.

TABLE I
NOTATIONS FOR THE KEY-POINTS IN THE HUMAN POSE

Key-point Notation as set P ’s element Symbolic Notation
Left Ear P1 Rl

Right Ear P2 Rr

Left Shoulder P3 Sl

Right Shoulder P4 Sr

Left Elbow P5 El

Right Elbow P6 Er

Left Wrist P7 Wl

Right Wrist P8 Wr

Left Hip P9 Hl

Right Hip P10 Hr

Left Knee P11 Kl

Right Knee P12 Kr

Left Ankle P13 Al

Right Ankle P14 Ar
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Limb Straightness Feature  

The lesser the displacement 

(in green) of the central 

joint from the line joining 

extreme joints, the more the 

straightness of the limb. 


The lesser the angle between 

the opposite limbs (e.g., left 

hand and right leg), the more 

the hand leg coordination. 

Hand Leg Coordination Feature 

Fig. 2. Limb Straightness and Hand-leg Coordination

III. PROPOSED METHOD

In this section, we describe what data we extract from
the video, how we design our gait features (focusing on
neurological disorders) at frame-level using such data, and how
we derive video-level features from those frame-level features.

A. Data Extraction

We extract key-points of human pose using the AlphaPose
technique [13], which essentially provides a skeleton [21], [22]
along with the coordinates of different key-points (or joints).
We select only the key-points we need for our gait analysis,
and those key-points have been mentioned in Table I. Let
the selected set of key-points of a human pose be denoted
as P = {Pi|i = 1, · · · , |P |}. Also, let those key-points
be denoted by individual symbols, as shown in Table I, for
readability. Note that for ensuring brevity and readability of
our equations, we denote the key-points either as elements of
P or using symbolic notations. Each key-point has two values:
an x-coordinate value and a y-coordinate value of the key-point
location on a human body. In summary, taking an example, we
denote x-coordinate of the left ear (Rl) as Rl(x) (or P1(x))
and its y-coordinate as Rr(y) (or P2(y)).

B. Limb Straightness

In the parkinsonian gait, we observe that the hands of
the subject get bent almost like ‘V’ shape while walking.
Also, in choreiform gait, involuntary and unbalanced motion
sometimes leads to a bending of hands and legs. Hence,
we can exploit this observation to form and define our first
feature [23], [24] named limb straightness. There are four
limbs in total: two hands and two legs. While we can consider
shoulder, elbow, and wrist landmark points present on a hand



to measure its straightness, we can consider hip, knee, and
ankle landmark points to do the same for legs. In Fig. 2, we
demonstrate how we compute the straightness of a hand limb.
To quantify the observation, we measure the displacement of
the central landmark point (elbow) from the line joining the
other two landmark points (shoulder and wrist), which are
extreme landmark points of the limb. We derive this distance
in the following way, say for the left hand: (i) We compute
the slope

(
denoted as m(Sl,Wl)

)
of the line joining Sl and

Wl. (ii) We compute the y-intercept
(

denoted as c(Sl,Wl)
)

of the line joining Sl and Wl. (iii) We use central landmark
point (El) coordinate values and slope calculated to obtain
the perpendicular distance using the perpendicular distance of
a point from a line formula. We use the following equations
to arrive at our left-hand limb straightness

(
LS(Sl, El,Wl)

)
feature:

m(Sl,Wl) =
Sl(y)−Wl(y)

Sl(x)−Wl(x)
(1)

c(Sl,Wl) =
Wl(y)Sl(x)−Wl(x)Sl(y)

Sl(x)−Wl(x)
(2)

LS(Sl, El,Wl) =
|m(Sl,Wl)El(x) + c(Sl,Wl)− El(y)|√

(m(Sl,Wl)2 + 1
.

(3)

In the same way, we can find other limb straightness feature
values also, which are LS(Sr, Er,Wr), LS(Hl,Kl, Al), and
LS(Hr,Kr, Ar). While the measured distance should be small
normally, it would be much larger in the case of abnormality.
Note that limb-bending can happen to even normal humans
while holding something or walking on an uneven path, but
such instances occur quite rarely compare to the occurrence
of straight limbs. Therefore, we can know whether a person
has abnormal gait or not only at a video level, after evaluating
all the frames.

C. Hand-leg Coordination

We observe that while walking normally opposite pairs of
an upper limb and a lower limb often tend to swing parallel to
each other, i.e., left-hand swings parallelly with the right-leg,
and right-hand swings parallelly with left-leg. However, we
note that when a person affected with Hemiplegia or Diplegia
walks, our observation of parallelism gets disrupted due to the
abnormal conical movement of legs. Such disruption occurs in
the case of Parkinson’s Disease as well due to bent-hands and
almost straight legs. So, with the motivation of encoding the
hand-leg co-ordination using parallelism of pairs of opposite
limbs, we compute the angle between the hand and the leg
present in those pairs, as shown in Fig. 2. We derive this
angle in the following way, say for the pair comprising left-
hand, and right-leg limbs: (i) We compute the slope of the
hand

(
m(Sl,Wl)

)
. (ii) We compute the slope of the leg(

m(Hr, Ar)
)

. (iii) We compute our hand-leg co-ordination

feature
(
HL(Sl,Wl, Hr, Ar)

)
for the pair by finding the

Upper-body Straightness Feature 

Lesser the displacement (in green)  

of effective shoulder from line 
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Body Straightness Feature 

The lesser the displacement (in 

green) of the effective hip from 

the line joining effective shoulder 

and effective ankle, the more the 

straightness of the body. 

Fig. 3. Upper-body and Total-body Straightness

difference between the corresponding angles of two slopes
computed, as shown below:

HL(Sl,Wl, Hr, Ar) = |tan−1
(
m(Sl,Wl)

)
−tan−1

(
m(Sl,Wl)

)
|

(4)
This angle turns out to be smaller in the normal case and

possesses quite a significant value in the abnormal case. We
can compute this angle for the other pair as well, i.e., involving
right-hand and left-leg, i.e., HL(Sr,Wr, Hl, Al). In this way,
there are two hand-leg co-ordination feature values for a frame.
Like the limb straightness feature, this feature can also be
analyzed at the video-level only to arrive at a proper decision.

D. Upper Body Straightness

The observation that upper-body bends in the parkinsonian
and diplegic gaits leads us to our next gait feature: upper
body straightness.This straightness particularly gets affected
in choreiform gait with the unstable neck. To quantify this
observation, we define our upper-body straightness in terms of
displacement of effective shoulder coordinates from the line
joining the effective hip and effective ear, as shown in the
Fig. 3. By effective shoulder/hip/ear, we mean midpoint of
the two ears/shoulders/hips. Ideally, the effective ear, effective
shoulder, and effective hip should be collinear. We measure
this non-collinearity in the following manner: Similar to limb
straightness, we compute this feature by computing the per-
pendicular distance of effective shoulder from the line joining
the effective hip and the effective ear. The final expression of
our upper-body straightness (US) feature turns out to be the
following:

US = 0.5

∣∣∣∣∣
Rl(y)+Rr(y)−Hl(y)−Hr(y)

Rl(x)+Rr(x)−Hl(x)−Hr(x)

(
Sl(x) + Sr(x)

)
√

1 + (
Rl(y)+Rr(y)−Hl(y)−Hr(y)

Rl(x)+Rr(x)−Hl(x)−Hr(x)
)2

+

(
Rl(x) + Rr(x)

)(
Hl(y) + Hr(y)

)
−
(
Hl(x) + Hr(x)

)(
Rl(y) + Rr(y)

)
(
Rl(x) + Rr(x)−Hl(x)−Hr(x)

)√
1 + (

Rl(y)+Rr(y)−Hl(y)−Hr(y)

Rl(x)+Rr(x)−Hl(x)−Hr(x)
)2

−

(
Sl(y) + Sr(y)

)
√

1 + (
Rl(y)+Rr(y)−Hl(y)−Hr(y)

Rl(x)+Rr(x)−Hl(x)−Hr(x)
)2

∣∣∣∣∣. (5)

So, the lesser the displacement of the effective shoulder from
the line joining effective ear and effective hip, the more the
straightness of the upper-body. Again, this feature also can be
analysed only at video-level for a conclusive decision making,
for even a healthy human may bend forward sometimes.
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Fig. 4. Central Distances and Mutual Distances

E. Body Straightness

During hemiplegic gait, since one of the legs follow a
conical motion while walking, the entire body can not be in a
straight form. Similarly, with all kinds of arbitary movements
at different joints of the body in the Choreiform gait, we can’t
expect body to be straight in such a scenario either. Same
goes with the parkisonian gait where one’s upper body comes
forward quite characteristically. Therefore, the next feature is
named as body straightness. This measures the straightness of
the entire body as a whole. For the same, the displacement of
the effective hip is computed from the line joining the effective
shoulder and effective ankle joints, as shown in the Fig. 3.
Similar to upper-body straightness, the body straightness (BS)
value is computed as following, considering shoulders, hips,
and ankles positions:

BS = 0.5

∣∣∣∣∣
Sl(y)+Sr(y)−Al(y)−Ar(y)

Sl(x)+Sr(x)−Al(x)−Ar(x)

(
Hl(x) + Hr(x)

)
√

1 + (
Sl(y)+Sr(y)−Al(y)−Ar(y)

Sl(x)+Sr(x)−Al(x)−Ar(x)
)2

+

(
Sl(x) + Sr(x)

)(
Al(y) + Ar(y)

)
−
(
Al(x) + Ar(x)

)(
Sl(y) + Sr(y)

)
(
Sl(x) + Sr(x)− Al(x)− Ar(x)

)√
1 + (

Sl(y)+Sr(y)−Al(y)−Ar(y)

Sl(x)+Sr(x)−Al(x)−Ar(x)
)2

−

(
Hl(y) + Hr(y)

)
√

1 + (
Sl(y)+Sr(y)−Al(y)−Ar(y)

Sl(x)+Sr(x)−Al(x)−Ar(x)
)2

∣∣∣∣∣. (6)

So, the lesser the displacement of the effective hip from the
line joining effective shoulder and effective ankle, the more
the straightness of the body. Again, this feature also needs to
be analyzed at video-level for effective results.

F. Central Distances

We develop a feature named central distances to capture
the distances of all the landmark points with what we call
as effective key-point, as shown in Fig.4. Such distances
can serve interesting information to detect any anomalies in
the gait of a person. Particularly for choreiform gait, these
distances keep changing due to the kind of jerks involved
in it. We define effective key-point as the centroid of all the
landmark points. Let the central distance of a landmark point
Pi be denoted as CD(i). In this way, we have all |P | = 14
distances per frame to serve as a piece of potential information
to detect a person’s anomalous gait. Note that there may be
a person’s size-variations in the video, which can affect the
uniformity in the ranges of these distances across the frames.
To account for this, we normalize these distances by dividing
them with the maximum distance obtained.

Parkinsonian Gait Hemiplegic Gait Diplegic Gait Choreiform Gait 

Fig. 5. A glimpse of our dataset as we can see our participants mimicking
different abnormal gaits

TABLE II
DETAILS OF OUR FEATURES FOR A FRAME

Feature Notations Dimensions
Limb Straightness {LS(Sl, El,Wl), LS(Sr, Er,Wr),

LS(Hl,Kl, Al), LS(Hr,Kr, Ar)} 4
Hand-Leg Coordination {HL(Sl,Wl, Hr, Ar),

HL(Sr,Wr, Hl, Al)} 2
Upper-body Straightness {US} 1
Body Straightness {BS} 1
Central Distances {CD(i)|i = 1, · · · , |P |} 14
Mutual Distances {MD(i, j)|i, j = 1, · · · , |P |} 91

TABLE III
DESCRIPTION OF OUR NEUROSYNGAIT DATASET

Abnormality No. of Training Videos No. of Testing Videos Total Videos
Chorieform 38 13 51
Diplegia 41 14 55
Hemiplegia 52 18 70
Normal 23 8 31
Parkinson 38 13 51

G. Mutual Distances

Similar to central distances, we develop another feature
named mutual distances to capture the distances of different
landmark points with each other, as shown in Fig.4. Such
distances can also serve as other interesting information to
detect any anomalies in a person’s gait. Let distance between
Pi and Pj be denoted MD(i, j). In this way, we can have
all the |P |C2 = 91 mutual distances per frame to serve as
another piece of information to detect the abnormal gait of a
person potentially. Note that, similar to central distances, here
also, we normalize these distances by dividing them with the
maximum distances obtained.

H. Video-level Features

The features discussed so far were all at frame-level, captur-
ing important information about a person’s pose in a particular
frame. Their details are given in Table II. Note that abnormal
poses in gait can be demonstrated by even healthy persons
and persons once in a while. So, real patients are identifiable
only over a while. We currently have a 4+2+1+1+14+91=113
dimensions feature vector at frame-level. To summarize these
feature vectors at video level, we use statistical tools such as
mean and standard deviation of these feature vectors across the
frames in a video and concatenate them. In this way, we obtain
a 113x2=226 dimensions feature vector at the video-level.



TABLE IV
CROSS-VALIDATION CLASSIFICATION ACCURACY FOR MULTIPLE ABNORMALITIES DETECTION USING DIFFERENT METHODS AND MACHINE LEARNING

ALGORITHMS.

kNN Tree SVM SGD Random
Forest

Neural
Network

Naive
Bayes

Logistic
Regression AdaBoost

AlphaPose [13] 0.260 0.458 0.339 0.547 0.505 0.490 0.307 0.656 0.469
3D-CNN [25] 0.260 0.333 0.432 0.568 0.344 0.495 0.318 0.573 0.375
AlphaPose [13]+
3D-CNN [25] 0.479 0.396 0.531 0.635 0.453 0.609 0.469 0.667 0.365
Ours 0.557 0.682 0.820 0.818 0.714 0.797 0.661 0.276 0.641

TABLE V
TEST CLASSIFICATION ACCURACIES FOR MULTIPLE ABNORMALITIES DETECTION USING DIFFERENT METHODS AND MACHINE LEARNING ALGORITHMS.

kNN Tree SVM SGD Random
Forest

Neural
Network

Naive
Bayes

Logistic
Regression AdaBoost

AlphaPose [13] 0.197 0.591 0.470 0.515 0.470 0.561 0.455 0.758 0.576
3D-CNN [25] 0.273 0.379 0.455 0.530 0.379 0.485 0.288 0.591 0.348
AlphaPose [13]+
3D-CNN [25] 0.424 0.394 0.545 0.606 0.379 0.636 0.470 0.652 0.379
Ours 0.636 0.636 0.788 0.864 0.833 0.788 0.773 0.212 0.712

TABLE VI
THE DETAILS OF THE BEST MODELS FOR PARKINSONIAN GAIT

DETECTION USING DIFFERENT METHODS ACROSS DIFFERENT MACHINE
LEARNING ALGORITHMS. BY BEST, WE MEAN SUM OF CROSS VALIDATION

AND TEST CLASSIFICATION ACCURACIES ARE HIGHEST.

Details AlphaPose [13] 3D-CNN [25] AlphaPose [13]+3D-CNN [25] Ours
Cross Validation 0.984 0.918 0.967 0.984
Test 1.000 0.905 1.000 1.000
Algorithm NN LR SVM RF

TABLE VII
THE DETAILS OF THE BEST MODELS FOR HEMIPLEGIC GAIT DETECTION
USING DIFFERENT METHODS ACROSS DIFFERENT MACHINE LEARNING

ALGORITHMS. BY BEST, WE MEAN SUM OF CROSS VALIDATION AND TEST
CLASSIFICATION ACCURACIES ARE HIGHEST.

Details AlphaPose [13] 3D-CNN [25] AlphaPose [13]+3D-CNN [25] Ours
Cross Validation 0.867 0.827 0.800 0.893
Test 0.962 0.846 0.769 0.960
Algorithm LR LR LR NN

IV. EXPERIMENTAL RESULTS

In this section, we first discuss the dataset developed by
us, named NeuroSynGait video dataset. Second, we discuss
the details of the different experiments conducted. Third, we
discuss the different results we have obtained.

A. Dataset

Since neurological disorders are rare, we show different
videos of the patients’ gait with these disorders to healthy
individuals and request them to mimic those gait abnormali-
ties. To mimic those videos properly, we also request them to
read the publicly available descriptions of each gait1 before
they mimic these gaits. In this way, we obtain a substantial
number of videos of gait abnormalities. The details of these
videos are given in the Table III. We collected 258 videos
and labeled them as either one of the four gait abnormality
or as normal. In this way, our dataset has a total of 5 classes.
We adopt the 3:1 ratio for distributing the collected videos
into training and testing subsets. A glimpse of participants
performing the abnormal gait is given in Fig. 5.

1https://neurologicexam.med.utah.edu/adult/html/gait abnormal.html

B. Experiment Details

We use various machine learning algorithms such as Ada
Boost (AB) [26], Decision Tree (DT) [27], k-Nearest Neigh-
bors (kNN) [28], Logistic Regression (LR) [29], Naive Bayes
(NB) [30], Neural Networks (NN) [31], Random Forests (RF)
[32], Stochastic Gradient Descent (SGD) [33], Support Vectors
Machine (SVM) [34] to learn models that can predict the
presence of a particular disorder. We report the classification
accuracies of both cross-validation phase and testing phase.

We conduct two sets of experiments: multiple abnormality
prediction and individual abnormality prediction. In multiple
abnormality prediction, there are five classes (4 abnormalities
and 1 normal). In individual abnormality prediction, there are
only two classes: the concerned abnormality and the normal.
We compare our method with existing 3D-CNN [25] and
AlphaPose [13]. While [25] proposed spatiotemporal features
using deep 3D ConvNets, [13] proposed a regional multi-
person pose estimation framework, which we employ for
developing our features. We compare with both the techniques
and their combination in the following manner. (i) Alpha-
Pose [13], where we use landmark points as features for a
video-frame and summarize them at video-level just like we
do. (ii) 3D-CNN [25], where features obtained for a set of
frames are summarized at video-level just like we do. (iii)
AlphaPose [13] + 3D-CNN [25], where we extract video
features using [25] on the skeleton videos generated by [13].

C. Results

From Tables IV-V, it’s clear that, in the case of multi-
ple abnormality prediction, our features demonstrate superior
performance compared to all the three existing ones, as it
outperforms them in 8/9 learning algorithms, both at cross-
validation and test stages. Our multiple abnormality detector
is best learned using the SGD algorithm as its sum of cross-
validation (81.8%) and test accuracy (86.4%) is found to be
best. Following the same idea of what is best, we identify the
best individual gait abnormality detectors for each method and



TABLE VIII
THE DETAILS OF THE BEST MODELS FOR DIPLEGIC GAIT DETECTION

USING DIFFERENT METHODS ACROSS DIFFERENT MACHINE LEARNING
ALGORITHMS. BY BEST, WE MEAN THE SUM OF CROSS-VALIDATION AND

TEST CLASSIFICATION ACCURACIES ARE HIGHEST.

Details AlphaPose [13] 3D-CNN [25] AlphaPose [13]+3D-CNN [25] Ours
Cross Validation 0.891 0.719 0.781 0.734
Test 0.818 0.909 0.818 0.955
Algorithm LR LR NN RF

TABLE IX
THE DETAILS OF THE BEST MODELS FOR CHOREIFORM GAIT DETECTION

USING DIFFERENT METHODS ACROSS DIFFERENT MACHINE LEARNING
ALGORITHMS. BY BEST, WE MEAN SUM OF CROSS VALIDATION AND TEST

CLASSIFICATION ACCURACIES ARE HIGHEST.

Details AlphaPose [13] 3D-CNN [25] AlphaPose [13]+3D-CNN [25] Ours
Cross Validation 0.689 0.754 0.721 0.951
Test 0.905 0.952 0.762 0.952
Algorithm RF LR NN NN

report the results in Tables VI-IX. Compared to other methods,
our best individual gait abnormality detectors consistently
scored more than 95% in terms of test classification accuracy
and achieved the highest cross-validation and test classification
accuracies for 3/4 abnormalities.

Conclusion

We develop several novel gait features, namely limb
straightness, hand-leg co-ordination, upper-body straightness,
body straightness, central distances, and mutual distances to
detect gait abnormalities caused by neurological disorders in
videos. We employ the key-points of the human pose for
designing them. Our experiments demonstrate their superior
performance in comparison to the existing ones.
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