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Abstract—Point cloud is a promising representation format for
3D media. The vast volume of data associated with it requires
efficient compression solutions, with lossy algorithms leading to
larger bit-rate savings at the expense of visual impairments.
While conventional encoding approaches rely on efficient data
structures, recent methods have incorporated deep learning for
rate-distortion optimization, while inducing perceptual degrada-
tions of different natures. To measure the magnitude of such dis-
tortions, subjective or objective quality evaluation methodologies
are employed. Lately, a remarkable amount of efforts has been
devoted to development of point cloud objective quality metrics,
which have been reported to attain high prediction accuracy.
However, their performance and generalization capabilities still
haven’t been evaluated in the presence of artifacts from learning-
based codecs. In this study, we tackle this matter by conducting
the first crowdsourcing experiment for point cloud quality re-
ported in the literature, in order to obtain subjective ratings
for point cloud models whose topology and color attributes are
encoded by both conventional and data-driven methods. Using the
subjective scores as ground truth, the performance of a large pool
of state-of-the-art quality metrics is rigorously benchmarked,
drawing useful insights regarding their efficacy.

Index Terms—Point Cloud, Quality Assessment, Subjective
Quality Evaluation, Objective Quality Metrics, Compression.

I. INTRODUCTION

Point cloud has emerged as one of the main representations
of 3D content for a multitude of use-cases. This imaging
modality typically requires a large amount of data, which in
turn demands effective lossy compression. For this task, differ-
ent methods have been proposed, which may rely on different
structures for data representation. The majority of available
solutions make use of handcrafted techniques to increase the
compression efficiency at the expense of added distortions.
Recently deep learning-based encoders provide a powerful
alternative, already achieving comparable performance to the
state of the art.

In applications that target point cloud consumption by
human end-users, particular care must be devoted to the
perceptual quality of the displayed content. The latter can be
assessed by either subjective or objective means. Subjective
quality evaluations rely on human opinions that are recruited
to judge the visual quality of degraded stimuli, denoting
the most reliable methods, albeit being expensive and time
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consuming. Objective quality evaluations are realized by met-
rics that quantify signal degradations; yet, their performance
in predicting perceived impairments should be benchmarked
against subjective scores.

The visual artifacts introduced by different compression
methods can greatly vary, which poses a challenge for objec-
tive quality metrics to correlate well with human perception.
Numerous related studies have been conducted in the past,
using ground-truth subjective quality scores of compressed
point clouds for performance evaluation of objective metrics.
In [1], static and dynamic point clouds were evaluated after
compression using the codec proposed in [2]. A study on
the quality assessment of models subject to graph-based and
octree-based compression algorithms is reported in [3]. In [4],
[5], subjective quality evaluation experiments for point clouds
compressed using the codec described in [2] were conducted,
under different rendering schemes. In [6], an octree-based and
a projection-based encoder were evaluated by three indepen-
dent laboratories using both small and large scale models.
In [7], a subjective experiment was carried out for quality
assessment of the state-of-the-art MPEG G-PCC [8] and V-
PCC [9] test models. Quality evaluations on a volumetric video
dataset was performed in [10], under compression artifacts
from V-PCC. In [11], different types of degradation were
assessed, including Gaussian noise in both topology and tex-
ture, octree down-sampling, and compression artifacts from the
MPEG codecs. In [12], geometric artifacts from octree-based
coding and the MPEG encoding engines were evaluated using
different rendering strategies. Finally, in [13], the performance
of MPEG codecs was assessed in four dislocated laboratories
that participated in the JPEG Pleno Point Cloud Exploration
Study activities.

Despite the above-mentioned efforts to benchmark objective
metrics, no previous study has accounted for distortions caused
by both conventional and learning-based encoders. This paper
describes the design of a crowdsourcing experiment for subjec-
tive quality assessment of point clouds compressed with three
standardized codecs and two recent deep learning methods.
The collected subjective scores are used to evaluate the per-
formance of well-established and newly-introduced objective
quality predictors, with separate analysis issued on the entire
dataset and each subset that occurs after splitting the stimuli
per codec. User reliability was ensured by a post-screening
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Fig. 1: Point cloud contents of the evaluated dataset.
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method based on hidden reference scores. Our results show
that two specific metrics are ranked among the best options
across all tested cases.

The main contributions of our work can be summarised as
follows:

1) To the best of our knowledge, this is the first study
benchmarking objective quality metrics on subjective
scores collected on point cloud models degraded with
both learning-based and conventional codecs. Moreover,
we evaluate the largest pool of metrics in a single
experiment up to date.

2) We present the first crowdsourced subjective experiment
for point cloud quality assessment, employing a post-
screening method for detection of unreliable users based
on hidden reference scores.

3) The subjectively annotated dataset will be released, and
in case of acceptance, the corresponding link will be
provided in the final version of the paper.

II. EXPERIMENTAL SETUP

A. Content selection

The point cloud models used during the evaluation session
were taken from the JPEG Pleno Point Cloud Common
Test Conditions (JPEG CTC) document [14]. A total of six
models were retained, namely, longdress and soldier, which
denote two full body models [15]; phil and ricardo, which
represent two upper bodies from MVUB [15]; rhetorician and
guanyin, which represent cultural heritage assets collected by
the PointXR dataset [16]. The models are voxelized at a bit
depth of 10, except for phil that has a bit depth of 9. Figure 1
illustrates the above point cloud contents.

B. Encoding engines

A total of five different codecs were recruited in this
experiment, namely, V-PCC [9], two distinct configurations
of G-PCC [8], and two learning-based compression schemes.

While V-PCC compresses 2D maps corresponding to pro-
jections of a point cloud, G-PCC encodes the model’s topol-
ogy first and then uses the decoded geometry to compress
color attributes. Two alternatives can be used for geometry
coding, namely octree and TriSoup. In this study, we select
both geometry codecs in conjunction with the Lifting color-
encoding module to compress the models, which are referred
to as octree-lifting and trisoup-lifting.

The next algorithm, proposed in [17], is selected as a rep-
resentative of geometry-only learning-based codecs. Models
compressed with this geometry-only method were recolored
using the nearest neighbour attribute of the reference content,
and later color-encoded with the Lifting module from G-PCC.
This combination is referred to, hereafter, as geo_cnn-lifting.

The second learning-based method [18] is a color-only en-
coder that maps the point cloud attributes in 2D using a learned
folding operation, and then compresses the color information
using already established image codecs. Among the learning-
based color-only encoders, it was the only candidate with
open source code. The topology of models is compressed
with the octree module, being then recolored with the same
process previously described for G-PCC. After folding, the 2D
color maps are encoded with BPG [19]. This combination is
henceforth referred to as octree-folding.

The configurations reported in the JPEG CTC docu-
ment [14] were used for encoding with V-PCC and G-PCC.
Specifically, four out of the five compression levels defined
in [14] were selected, excluding the rate point with lowest
quality. Regarding geo_cnn-lifting, the c6 configuration was
adopted for geometry coding as described in [17], using the
following values of A to obtain different compression levels:
{2x107°,5x107°,1 x 107%,3 x 10~*}. For color encoding,
the same configuration as octree-lifting and trisoup-lifting was
used. When encoding with the folding-based method, the point
cloud models were first partitioned into patches and then, for
each patch, a neural network was trained to map the color
attributes into a 2D map. Each map was then encoded with
one of the following quality parameters: {40, 35, 30, 25}. For
geometry encoding, the same configuration as octree-lifting
was used.

C. Rendering

For display purposes, the point cloud web renderer released
in [7] was employed. Every stimulus was displayed using
screen-faced splats of adaptive size, based on local sparsity.
In particular, the splat size of every point was set equal to the
local mean distance of its 12 nearest neighbors, if it wasn’t
identified as an outlier; in the latter case, the global mean
distance, computed over the same neighborhood population
was used instead, to avoid magnification of isolated points.
Every splat was additionally multiplied by a scaling factor of
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Fig. 2: Screenshot of the quality evaluation testbed. The
reference longdress is displayed on the left and its encoded
version using octree-folding at the lowest quality on the right.

1.05, which was determined after expert viewing. No shading
was enabled in order to avoid masking of visual artifacts.

D. Testing stimuli

Video sequences illustrating different views of the rendered
point clouds were formed and evaluated by human observers.
The models were centered in the virtual scene of the renderer
with the background color set to black. The virtual camera was
placed at a fixed distance after ensuring that each model would
be visible at its entirety, and was programmed to perform a
complete circle around its vertical axis capturing views in steps
of 1°. In every step, a snapshot was exported, leading to a total
of 360 frames. Note that for phil and ricardo, only the frontal
part was examined, with the 180° semi-circle traversed twice
to keep the same total number of snapshots. The captured
images were encoded using a visually lossless configuration
(i.e., CRF equal to 18) of H.264/AVC codec in FFmpeg at 30
fps, leading to animated videos of 12 seconds duration. Each
frame was of resolution 880x880 pixels, which is equal to
the canvas that was employed to display the models in the
renderer.

E. Test method

A simultaneous DSIS protocol was adopted, showing videos
of the distorted and the corresponding reference models to
the observers side-by-side. The subjects were asked to pas-
sively inspect the entire video duration before scoring the
impairment of the distorted model with respect to the pristine,
using the following 5-grading scale: “5 - Imperceptible”, “4 -
Perceptible, but not annoying”, “3 - Slightly annoying”, “2 -
Annoying” and “1 - Very annoying”. A hidden uncompressed
reference was included among the testing stimuli.

F. Experiment design

The experiment was split in a training and a testing phase.
During training, the subjects were instructed about the task at
hand. To get familiarized with the types of artifacts on point
cloud contents, two distorted versions of ricardo were shown.
Hence, this model was excluded from the rest of the test.

During testing, the entire set of stimuli was consumed and
evaluated by every subject; that is, a total of 105 stimuli,
considering 5 contents compressed with 5 codecs at 4 com-
pression levels, including a hidden reference. The stimuli were
presented to the participants in a random order, after ensuring
that the same content was never shown consecutively. To avoid
biases induced by preferences to a particular side of the screen,
half of the sequences portrayed the reference at the right side
and half at the left side of the screen.

G. Subject recruitment

The subjective assessment was conducted using a crowd-
sourcing online platform [20], with participants recruited using
the Amazon Mechanical Turk service. Human Intelligence
Tasks (HIT) were created, with each task constrained to a
single worker at a time. Upon acceptance of the task, each
worker was redirected to the server where the evaluation plat-
form was hosted. The screen size was then detected and only
participants with resolution above 1920x1080 were allowed
to continue. This step can be regarded as the first of a two-
stage process, narrowing the pool of subjects to only those
who have proper display equipment for the test.

The amount of active HITs limited the number of simul-
taneous accesses on the server, ensuring sufficient bandwidth
for the video streaming. Users with low internet speed were
instructed to not accept the task, warned that the test could take
much longer. A reward of 5 U$ was granted to the participants
after verification that all stimuli had been rated.

A total of 48 subjects (42 males and 6 females), with an
age span of 20 - 63 years and average of 35.1, participated in
this subjective quality assessment experiment.

ITI. DATA PROCESSING
A. Objective quality metrics

Point cloud objective quality assessment methodologies can
be distinguished as: (a) point-based, and (b) image-based.
From the former category, we choose all point-to-point and
the point-to-plane [21] variations, and the color PSNR of
the luminance and each chrominance component computed
separately, which comprise the MPEG PCC metrics. Moreover,
we consider the point-to-distribution [22], plane-to-plane [23],
PCQM [24], PointSSIM [25], and PCM_RR [26] metrics.
From the latter category, we recruit the PSNR, SSIM [27], MS-
SSIM [28], and VIFp [29] (i.e., multi-scale in pixel domain).

B. Subjective quality scores

According to [30], traditional outlier detection algorithms
that operate only on subjective scores attributed to distorted
stimuli are unable to efficiently filter unreliable subjects in
crowdsourcing experiments. In this study, in order to confirm
that subjects were focused on the task at hand, we make use of
their ratings with respect to the 5 hidden references that were
randomly presented to them. In particular, we exclude subjects
that rated even one hidden reference below an imposed thresh-
old of 4, which corresponds to the description “Perceptible, but
not annoying”. Thus, we rule out subjects who either didn’t



properly understand the instructions, had inappropriate screen
or lighting conditions, or answered carelessly to the questions.
In a second stage, the outlier detection algorithm described
in the ITU-R Recommendation BT.500 [31] was applied to
the scores of the remaining subjects. Similarly, all scores of
participants identified as outliers were discarded. Using the
remaining ratings, the Mean Opinion Score (MOS) and the
95% Confidence Interval (CI) assuming Student’s t-student
distribution is finally computed for each stimulus.

C. Computation of objective quality metrics

The point-to-point and point-to-plane metrics are imple-
mented by the software version 0.13.5 that is presented in [32].
Both the Mean Square Error (MSE) and the Hausdorff distance
(HSD) were used as pooling methods, with the corresponding
geometric PSNR variants additionally considered. For the
color PSNR metrics, the color attributes were converted from
the original RGB to the YCbCr color space, following the ITU-
R Recommendation BT.709-6 [33], using the same software
release. For each aforementioned metric, the symmetric error
was adopted. Following the JPEG CTC document [14], the
CloudCompare software was used in order to estimate the
normal vectors of the pristine models for the computation of
the point-to-plane metric, using a quadratic surface fitting with
range search of radius 20.

For the point-to-distribution metric, the source code pro-
vided in [22] was executed, using the default neighborhood
size of 31. To compute a global degradation score, both the
mean and the MSE pooling methods were used, which are
referred to as MMD and MSMD, respectively. The corre-
sponding PSNR versions are additionally assessed. In all cases,
the symmetric error provided the final predictions. For the
plane-to-plane metric, the version 1.0 of the scripts released
with [23] was employed. The normal vectors were estimated
using CloudCompare’s quadric fitting with radius search of
20, as per [14].

For the PointSSIM, the scripts published with [25] were
employed. The PointSSIM was computed on the luminance
channel, using variance as dispersion estimator, neighborhood
size of 12, and target voxel resolution of 9, which equals the
minimum voxel bit depth among the contents. To obtain a
global degradation score, the symmetric error was used. For
PCQM and PCM-RR, the software released in [24] and [26],
respectively, was used as such.

For image-based metrics, the same rendering settings that
were adopted during subjective evaluation were employed. The
models were captured from 8 viewpoints, starting from the
frontal view and rotating by 45°, with a simple average pro-
viding the total degradation score. The metrics were applied on
the union of foregrounds of the projected pristine and impaired
models, and were computed on the luminance channel, after
converting the RGB color values to the YCbCr color space
using the ITU-R Recommendation BT.709-6 [33].

D. Benchmarking of objective quality metrics

Objective quality metrics are typically benchmarked after
applying a regression model in order to map the objective

scores to the subjective quality range, while accounting for
biases, non-linearities and saturations that might appear in sub-
jective testing. In our analysis, we follow the Recommendation
ITU-T J.149 and use the logistic fitting function that is given
in (1), ;

fx)=a+ [REap—————) 1)
where a, b, ¢ and d denote parameters of the function that
are determined using a least squares method, after ensuring
monotonicity in order to maintain the ranking order, and f(x)
indicates a predicted MOS. The Pearson linear correlation
coefficient (PLCC), the Spearman rank order correlation coef-
ficient (SROCC), the root-mean-square error (RMSE) and the
outlier-ratio (OR) are then computed between the MOS and the
predicted MOS in order to examine the linearity, monotonicity,
accuracy and consistency of an objective metric, respectively.
The regression and the performance indexes were computed
across the entire dataset and for each codec separately.

IV. RESULTS
A. Subjective evaluation

A total of 14 subjects were identified as outliers based on
hidden reference ratings. The subsequent method from ITU-
R BT.500 recommendation found no outliers. We observed
that the discarded subjects rated the least compressed models
with lower scores than the remaining participants. Therefore,
the average range of the MOS between the first and the last
compression levels was increased from 1.77 to 2.02 as a results
of applying the outlier detection method.

Based on the remaining ratings, the MOS and the CIs
were computed and corresponding plots against the bit-rate
are provided in Figure 3, for all codecs and compression
levels, separated by content. It can be observed that V-PCC
tends to have better performance at low bit-rates for all con-
tents, without reaching highest quality scores at the assessed
compression levels. The octree-folding method has a similar
performance to octree-lifting, with a small disadvantage on
intermediate bit-rates, but always achieving slightly higher
MOS on the last compression level at a cost of bit-rate
increase. The results for geo_cnn-lifting indicate that while its
performance is clearly better than octree-lifting and trisoup-
lifting for guanyin, the subjective results are comparable for
the rest of the contents at low bit-rates, and deteriorate at
higher bit-rates. It is evident that the performance of this codec
is poor for phil, which might be explained by the inability
of learning-based solutions to generalize well to content of
different characteristics (i.e., the geometric resolution of phil
is sparser than the rest of the contents). Finally, trisoup-lifting
is found to be superior to octree-lifting at low quality levels
with very similar performance after mid-range bit-rates for
longdress and soldier, whereas for the rest of the contents, the
octree-lifting is outperforming.

B. Performance of objective quality metrics

The performance indexes of the objective metrics under
consideration using logistic regression, are reported in Table I.
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Fig. 3: Subjective scores against bit-rates achieved by each codec, clustered per content.

TABLE I: Performance indexes computed over the entire dataset and after splitting per codec.

entire dataset V-PCC octree-folding octree-lifting geo_cnn-lifting trisoup-lifting
Objective metrics PLCC SROCC RMSE OR PLCC SROCC PLCC  SROCC PLCC  SROCC PLCC SROCC PLCC  SROCC
point-to-point HSD 0.452 0.370 0.858  0.76 0.242 0.349 0.875 0.778 0.858 0.803 0.648 0.554 0.930 0.903
point-to-point MSE 0.730 0.641 0.657  0.62 0.846 0.841 0.872 0.789 0.856 0.754 0.854 0.830 0.894 0.887
point-to-plane HSD 0.352 0.493 0.900  0.80 0.129 0.173 0.870 0.802 0.854 0.759 0.422 0.369 0.956 0.893
point-to-plane MSE 0.730 0.688 0.658  0.66 0.886 0.860 0.869 0.837 0.857 0.810 0.823 0.799 0.881 0.887
"PSNR point-to-point HSD ~ 0.483 0521  0.845 082 0.563 0379 0.803 0743 0775 07480793 0707 0921 0.869
PSNR point-to-point MSE  0.726 0.681 0.663  0.63 0.746 0.715 0.831 0.882 0.923 0.883 0.924 0.887 0.763 0.729
PSNR point-to-plane HSD ~ 0.579 0.524 0.784  0.65 0.562 0.396 0.806 0.826 0.786 0.813 0.723 0.619 0.929 0.861
PSNR point-to-plane MSE ~ 0.739 0.739 0.649  0.63 0.753 0.700 0.815 0.883 0.906 0.873 0.921 0.870 0.772 0.761
CPNSRLY T 0.585 0575 0780 071 0463 0414 0.809 0813 0.785 0778 0531 0483 0.822 0.767
PNSR_U 0.400 0.390 0.881  0.76 0.454 0.301 0.587 0.592 0.643 0.582 0.353 0.170 0.583 0.502
PNSR_V 0.413 0.401 0.876  0.77 0.667 0.534 0.581 0.552 0.680 0.566 0.352 0.225 0.527 0.467
"MMD T 0.660 0558 0722 070 0.871 0866 0741 0489 0755 0466 0773 0811 ¢ 0.856 0.889
MSMD 0.663 0.544 0.720  0.68 0.851 0.824 0.740 0.487 0.755 0.505 0.713 0.763 0.858 0.891
"PSNRMMD 0711 0.683  0.676 0.68 | 07730755 0.884 0.828 0921 07920953 0957 0796 0785
PSNR MSMD 0.729 0.682 0.659  0.67 0.760 0.733 0.886 0.780 0.921 0.740 0.933 0.933 0.833 0.789

PCM-RR 0630770623 0747 0,68 0652 0,640 0.94170.868 07917 0.686 03400321 0791
PSNR 0.609 0564 0763  0.76 0.686  0.504 0731 0713 0782 0.730 0295  0.142 0.862
SSIM 0.644 0637 0736 068 0492 0496 0809 0816 0844 0.836 0033 -0.050 0.871
MS-SSIM 0812 0765 0561 062 0.601  0.546 0907 0.870 0950 0.895 0446 0330 0.963
VIFp 0710 0689 0677 065 0.551 0539 0.858  0.848 0908 0.862 0368 0.209 0.907
s = of PCQM can be justified by the additional geometric measure-
s §~- ./Lf ¢ ments that are incorporated in its final prediction, which were
. found beneficial. For PointSSIM, geometric distortions are
u implicitly captured by the formulation of local neighborhoods
g . to compute local statistics, while the voxelization operation
= . . . .
b leads to reduction of cross-content density differences, im-
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Fig. 4: Subjective against objective scores obtained from the
two best-performing quality metrics.

Scatter plots indicating the behaviour of best-performing ob-
jective quality metrics are presented in Figure 4.

According to the performance indexes computed over the
entire dataset, PCQM was found the most accurate predictor,
with PointSSIM the second best-performing alternative, fol-
lowed by the image-based MS-SSIM. Our results indicate that
luminance-based features are effective in quantifying visual
impairments of point cloud contents. The higher performance

performance of PointSSIM with PSNR_Y.

The analysis of the metrics’ performance per codec indicates
consistent behaviour of those two predictors in most cases,
even if they are outperformed by other metrics such as MMD
and MSMD, variants of point-to-point and point-to-plane, and
MS-SSIM, under visual impairments from single codecs.

The majority of metrics from the MPEG suite show poor
performance under distortions from V-PCC, which is however
not the case for the MSE variants of point-to-point and plane-
to-plane. Image-based metrics do not correlate well with the
subjective scores for this codec neither, showing even worse
performance against geo_cnn-lifting. However, they provide
more accurate predictions under the remaining codecs, with
MS-SSIM outperforming all metrics for trisoup-lifting.

Finally, we observe that lower-complexity metrics, such as



point-to-point and point-to-plane variants, or even PSNR_Y
can perform well under degradations occurring from a single
encoder. In particular, the MSE version of the first two
methods shows rather consistent performance across all tested
codecs.

V. CONCLUSION

In this study, state-of-the-art point cloud objective quality
metrics are benchmarked against subjective scores collected
from a crowdsourced experiment for evaluation of learning-
based and conventional codecs. Performance indexes show
that most objective metrics perform poorly when tested against
the entire dataset, with PCQM and PointSSIM providing the
best correlation results. This can be explained by the diversity
of the evaluated set, which contains point clouds of different
characteristics, compressed by a large number of methods that
introduce visual impairments of different natures. These results
suggest that the underlying mechanisms of the aforementioned
predictors used for combining luminance-based features with
geometric measurements are particularly efficient for correla-
tion with human perception. A separate analysis per codec
showed good results for several other metrics, suggesting
that under similar visual degradations and in a more limited
context, they can be useful.
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