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ABSTRACT

We aim to estimate food portion size, a property that is
strongly related to the presence of food object in 3D space,
from single monocular images under real life setting. Specif-
ically, we are interested in end-to-end estimation of food por-
tion size, which has great potential in the field of personal
health management. Unlike image segmentation or object
recognition where annotation can be obtained through large
scale crowd sourcing, it is much more challenging to collect
datasets for portion size estimation since human cannot ac-
curately estimate the size of an object in an arbitrary 2D im-
age without expert knowledge. To address such challenge, we
introduce a real life food image dataset collected from a nu-
trition study where the groundtruth food energy (calorie) is
provided by registered dietitians, and will be made available
to the research community. We propose a deep regression
process for portion size estimation by combining features es-
timated from both RGB and learned energy distribution do-
mains. Our estimates of food energy achieved state-of-the-
art with a MAPE of 11.47%, significantly outperforms non-
expert human estimates by 27.56%.

Index Terms— Food portion estimation, monocular im-
age, domain adaptation

1. INTRODUCTION

Measuring accurate dietary intake is challenging due to the
high complexity of diet and the lack of unbiased and accurate
tools. Harnessing the capabilities of mobile and vision-based
technologies, new opportunity arise to improve the accuracy
of dietary intake by capturing images of foods consumed at
an eating occasion. However, estimating food portion size
from a single-view image is an ill-posed problem. Image-
based food portion estimation is not well defined and lacks
appropriate datasets, which hinders further progress in this
important topic area. In this paper, we propose to learn an ob-
ject’s portion size which is defined as the numeric value that
is directly related to the spatial quantity of the object in world

coordinates, such as an object’s volume and weight. This in-
formation can then be used to calculate energy in kilocalories
(kCal). Specifically, we are interested in end-to-end solution
for food portion size (in calories) from a single food image.

We focus on the development of deep regression models
for estimating food portion from an single monocular eating
scene image. The proposed method is evaluated on real life
eating scene images collected from a dietary study. Estimat-
ing portion size from a single monocular image is an ill-posed
problem since the spatial quantity is strongly correlated to a
scene’s 3D structure which is lost in the 2D image. We chose
such input format as majority of the data in real-world sce-
narios, especially those collected from mobile cameras, are
single monocular RGB images. This is particularly true for
applications such as image-based dietary assessment where
visual data is collected mostly from mobile cameras and wear-
able sensors. In addition, to date estimation of energy con-
sumed during a meal is undertaken by participants in nutrition
studies using traditional recall and interview methods, which
are time consuming and often lead to under reporting of en-
ergy intake [1]. More importantly, they are not suitable for
everyday monitoring [2].

High quality datasets require many efforts from the re-
search community and are the backbones for training-based
techniques, e.g., ImageNet [3] for object detection, MS-
COCO [4] for segmentation. It is feasible to collect datasets
for detection and segmentation of objects through crowd
sourcing. However, it is difficult to obtain accurate food por-
tion from the crowd based on RGB images, unless these val-
ues are recorded during image collection. To address this is-
sue, we introduce an eating scene image dataset with known
food weights provided by registered dietitians. We describe
the collection of our dataset in Section 3.

Based on experimental results shown in Section 5, di-
rectly using the original RGB image as input to train a deep
regression model to predict portion size is not a feasible so-
lution. Instead of training the deep regression end-to-end, we
supervise the training on energy distribution as described in
Section 4. We show that with supervision on energy distri-
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bution, the deep regression model can be significantly im-
proved compared to directly using original RGB image as
input. The model is end-to-end in inference since input is
the original RGB image and output is the predicted numeric
values of portion size. In addition to the predicted energy
distribution, we added features extracted from the original
RGB input as detailed in Section 4.1. This removes the
sole dependency on predicted feature maps and adds robust-
ness to proposed method by minimizing the impact of er-
rors propagated from previous steps. However, separate mod-
els trained in different domains have different feature space
distributions, which leads to imbalanced feature weights in
the concatenated features. To adapt features extracted from
different domains and to remove imbalance in feature space
for joint regression, we extensively studied the use of nor-
malization techniques [5, 6, 7] in Section 4.2. Our method
showed significant improvement compared to results reported
in prior art [8] for food energy estimation from monocular im-
ages. We show that our proposed method of learning food en-
ergy from monocular eating scene image with cross-domain
feature adaptation achieved mean absolute percentage error
(MAPE) of 11.47% for energy estimation, significantly out-
performs human estimation of 39.03% MAPE. We envision
this would open doors to many possible applications for per-
sonal health management, and hold promise to approving ac-
curacy while reducing participant and researcher burden.

2. RELATED WORK

Food is an essential component of everyday life. The amount
of food (i.e., food portion size) a person eats can directly im-
pact his/her health. Automatic estimation of food portion size
from a monocular image is an open research problem and
there exists several different approaches. In [9], food por-
tion is divided into discrete serving sizes and food portion
estimation is treated as a classification problem to determine
a fixed serving size. In [10], pre-defined 3D food models
are projected onto the scene to find the best fit with camera
calibration. In [11], a multi-task CNN is proposed to pre-
dict food class, ingredients, cooking instruction and food en-
ergy. The dataset used in [11] for food energy is obtained
by web crawler from a cooking website and cannot be veri-
fied for its accuracy. In addition, only one neuron in the last
fully-connected layer is used for energy estimation, making
it difficult to analyze the cause of error. In [12], food vol-
ume is estimated from the predicted depth map of the eating
scene. The depth map is then converted to voxel representa-
tion which is used to estimated food volumes. Recently, an
end-to-end approach for food energy estimation is proposed
in [8], where the concept of “energy distribution map” [13]
replaces the “depth map” in [12] and the final food energy es-
timation is reported. However, the estimation depends solely
on the predicted “energy distribution map”, therefore any er-
ror from the “energy distribution map” will propagate into the

(a) Eating scene image x. (b) Energy distribution map y

Fig. 1: An example eating scene data. (a) RGB image,
(b) corresponding energy distribution map. The associated
groundtruth food energy is 606 kCal.

final portion size.

3. DATASET COLLECTION

The availability of public image datasets with annotation has
resulted impressive success of deep methods for many com-
puter vision tasks, such as object recognition and segmenta-
tion. To our best knowledge, there is no publicly available
image dataset suitable for estimating food portion size since
such groundtruth is not commonly available. In order to ad-
dress the lack of proper datasets, we introduce an eating scene
image to food energy dataset, which contains eating scene im-
ages collected from a nutrition study, and the groundtruth en-
ergy per food item in each image is provided by registered
dietitians.

The eating scene images are collected as part of an image-
assisted 24-hour dietary recall (24HR) study [14] conducted
by registered dietitians. The study participants are healthy
volunteers aged between 18 and 70 years. A mobile app
is used to capture images of the eating scenes for 3 meals
(breakfast, lunch and dinner) over a 24-hour period. Foods are
provided in buffet style in which pre-weighted foods and bev-
erages are served to the participants and the leftover foods and
beverages are returned and weighted. Participants are asked to
capture both the before and after eating images for each meal.
Based on the known foods and their weight, food energy is
calculated and used as groundtruth for evaluating the pro-
posed method. A complete pair of data include an RGB im-
age and groundtruth food energy, as shown in Figure 1. This
dataset contains 96 eating scene images, the groundtruth food
energy ranges from 19.83 to 2,204.35 kilocalories (kCal), and
the mean is 717.52 kCal.

4. LEARNING OBJECT’S SPATIAL QUANTITY
WITH CROSS-DOMAIN FEATURE ADAPTATION

Since portion size is directly related to the spatial quantity of
objects in 3D space, it can be viewed as a regression task
which aims to estimate numeric values based on the input
image. Directly using the original RGB image as input to
train a deep regression model to predict portion size (a sin-
gle numeric value) is not feasible. For example, if the in-



Fig. 2: An overview of proposed method for estimating food portion from monocular images. It consists of two modules:
(1) generate intermediate result of energy distribution map, (2) combine and normalize features extracted from RGB and energy
distribution domains for efficient regression. (Best viewed in color)

put image is of size 256 × 256 × 3, direct approach would
map R256×256×3 → R1×1×1 and it is difficult to learn such
a mapping. To overcome this challenge, we propose a deep
regression process that utilizes adapted features from the in-
put RGB image and predicted energy distribution map (Fig-
ure 1(b)), illustrated in Figure 2. Our method consists of two
modules: Energy Distribution Estimation: goal is to gener-
ate an accurate energy distribution, based on the input RGB
image. Feature Adaptation: goal is to combine the features
extracted from RGB and energy distribution domains and nor-
malize them for efficient regression.

4.1. Intermediate Result - Energy Distribution

Our goal is to obtain an end-to-end regression model where
the input is an image, and the output is a numeric value re-
lated to spatial quantity, i.e., food energy. The end-to-end is
only required for the inference stage. In the training stage, the
model does not need to be one neural network trained simul-
taneously. It has been shown in [15] that training on interme-
diate concept can improve the performance of trained models.
Kim et al. [16] showed that models trained on synthetic data
could b1e transferred to real world videos for activity recog-
nition. Myers et al. [12] showed that object’s volume can
be estimated using voxel representation from predicted depth
images. Summing each voxel volume would then provide the
volume of the objects in the scene.

Since there is no mapping available from a RGB image to
the spatially distribution of food energy in the scene, a syn-
thetic intermediate result of “energy distribution” image was
proposed in [13]. An “energy distribution” image has pixel-
to-pixel correspondences and the weights at different pixel
locations represent how food energy is distributed in the eat-
ing scene. For example, pixels corresponding to steak have
much higher weight than pixels of apple. In the subsequent
work [8], an end-to-end system of estimating eating scene
food energy is proposed, where the input is the eating scene
RGB image. We follow the architecture proposed in [8] and
train a “energy distribution” estimation module using a Gen-
erative Adversarial Networks in conditional settings [17]. The

regression model is then trained using predicted “energy dis-
tribution image” as input as shown in Figure 2. The portion
estimation in the inference stage is end-to-end where input is
the original eating scene RGB image, and output is the total
food energy estimated from the scene.

The mapping from original RGB space to the energy dis-
tribution space as described in Figure 2 is analogous to per-
forming dimension reduction in feature spaces. Without ad-
ditional features from original RGB images, the regression
model depends solely on the predicted mappings generated,
and errors from the estimated energy distribution propagating
into the subsequent regression module as discussed in [8].

4.2. Features Adaptations from Multiple Domains

To address this sole dependency on prior energy distribution,
which may create a bottleneck for estimation accuracy, we
propose to combine features from both the predicted energy
distribution and the original RGB images to enables more ro-
bust estimation with additional features. We use the features
extracted from a modified ResNet-50 [18] pre-trained on Im-
ageNet [3] where the last fully connected layer is removed
as the additional features for volume estimation. Similarly,
we use the features extracted from this modified ResNet-
50 trained on Recipe1M [19] as the additional features for
food energy estimation. The features from Recipe1M [19]
was originally used for the joint learning of ingredients and
cooking instructions which achieved state-of-the-art results.
Therefore, they are good representations of food image fea-
tures and are suitable for transfer learning between two tasks
both are related to food images.

We denote the features extracted from energy distribution
as xm and the features extracted from original RGB image
as xf . The xm and xf are extracted from separate models
trained in different domains, thus have significant differences
reflected by their mean and variance. Simply concatenat-
ing the features (xm,xf ) (of dimension RC×1) and applying
fully-connected layers causes performance degradation of the
regression model. To adapt the features extracted from dif-
ferent domains and to remove imbalance in feature space for



joint regression, we extensively studied the use of normaliza-
tion techniques. We used z-score as the baseline normaliza-
tion such that:

x̄f = σxm ·
xf − µxf

σxf

+ µxm (1)

where µxf
and σxf

in Equation 1 are the mean and standard
deviation of xf , µxm and σxm are for xm accordingly. The
concatenated features after z-score normalization, (xm, x̄f ),
are now used for the subsequent regression model. Since z-
score normalization parameters are not learnable, the capacity
of the technique is limited.

Common normalization techniques that have learnable
parameters include Batch Normalization (BN) [20], Instance
Normalization (IN) [5], Layer Normalization (LN) [6] and
Group Normalization (GN) [7]. Since small mini-batches of-
fer a regularizing effect [21], we use a mini-batch size of 2
in training. As shown in [7], BN does not work well with
small mini-batch sizes. As concatenated features (xm,xf )
have dimension of RC×1, IN is not suitable since estimating
the mean and variance for a single value is not meaningful.
Both LN and GN that are independent of mini-batch size over-
come the drawback of BN that exploits the batch dimension.
Since the feature (xm,xf ) is concatenated from two different
domains, the number of groups for GN used in this work is
pre-defined as 2. LN and GN are defined as:

yi = γx̂i + β, where x̂i =
1

σi
(xi − µi) (2)

where γ and β are learnable parameters, x̂i is the normalized
source domain sample for xi and yi is the mapped sample
based on learned normalization. More specifically, since the
concatenated feature vector (xm, x̄f ) has dimension RC×1,
we define i = (iN , iC), a 2D vector indexing the features in
(N,C), where N is the batch axis, C is the channel axis. σi
and µi are defined as:

µi =
1

m

∑
k∈Si

xk, σi =

√
1

m

∑
k∈Si

(xk − µi)2 + ε (3)

LN computes µi and σi across (C) channels where Si =
{k | kN = iN} and GN computes µ and σ in a set Si that is
defined as Si = {k | kN = iN , b kC

C/Gc = b iC
C/Gc}, where G

is the number of groups, and ε is a small constant. The archi-
tecture for feature adaptation module is illustrated in Figure 3.
We investigated three normalization methods, namely z-score
normalization, LN only and LN+GN1. We denote the nor-
malized concatenated feature with learnable parameters as:
(x̄m, x̄f ). Details for the feature adaptation modules (z-score,
LN, LN+GN) are described below:

1Implementation details of feature adaptation modules (z-score, LN,
LN+GN) are described in the supplementary material.

RGB 
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Fig. 3: The architecture for feature adaptation module
using LN and LN+GN. Each numbered block represents a
group of few stacked layers. (Best viewed in color)

• Normalization using z-score: Block 3: we normalize
the concatenated features (xm,xf ) using z-socre nor-
malization as described in Equation 1. Block 4: FC-
1000 + ReLU + Dropout. Block 5: FC-1.

• Normalization using LN and LN+GN: Block 1: LN
Layer + ReLU + Dropout. Block 2: LN Layer + ReLU
+ Dropout. Block 5: FC-1.

• For LN: Block 3: LN Layer + ReLU + Dropout. Block
4: FC-1000 + LN Layer + ReLU + Dropout.

• For LN+GN: Block 3: GN Layer + ReLU + Dropout.
Block 4: FC-1000 + GN Layer + ReLU + Dropout.

We set ε = 1e − 5 for LN Layer, ε = 1e − 5 and G = 2 for
GN Layer, and Dropout with probability p = 0.5.

5. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed method using the
dataset introduced in Section 3, i.e., the eating scene image
to food energy dataset. The eating scene images are collected
as part of an image-assisted 24-hour dietary recall (24HR)
study [14] conducted by registered dietitians which required
a structured interview of the participants. Therefore, the num-
ber of images collected for this dataset is limited. We applied
data augmentation techniques, such as rotating, cropping, and



(a) (b) (c)
Fig. 4: Percentage error distribution of (a) breakfast, (b) lunch, and (c) dinner meals estimated by human and proposed method.
(Best viewed in color)

Table 1: Experimental results for food energy estimation on
eating scene dataset. xf : RGB feature; xm: Energy distribu-
tion feature; (xm,xf ): Concatenated features; (xm, x̄f ) and
(x̄m, x̄f ): Concatenated features after normalization

Method MAE (kCal) MAPE (%)
xf 292.35 151.33
xm 77.76 17.63

(xm,xf ) 110.84 99.36
(xm, x̄f ): z-score 75.15 22.24
(x̄m, x̄f ): LN+GN 57.75 16.90

(x̄m, x̄f ): LN 56.22 11.47

flipping, to the training and testing sets to expand the dataset.
In the end, we have 864 eating scene images for training and
96 images for testing.

We use two common regression metrics, mean absolute
error (MAE) and mean absolute percentage error (MAPE),
defined as,

MAE =
1

N

N∑
i=1

|w̃i − w̄i| (4)

MAPE =
100%

N

N∑
i=1

|w̃i − w̄i|
w̄i

(5)

where w̃i is the estimated portion size of the i-th image, w̄i is
the groundtruth portion size of i-th image and N is the num-
ber of testing images. The average MAE and MAPE reported
below are calculated based on the models obtained from the
last 50 training epochs. We use the method proposed in [8] as
the baseline and evaluate the proposed method on the eating
scene image to food energy dataset by conducting multiple tri-
als and report the average performance. We compared results
of using 3 different normalization techniques, z-score, and LN
and LN+GN which are summarized in Table 1. The concate-
nated feature normalized using z-score (xm, x̄f ) has slightly
improved results by MAE over the baseline which use only
xm, predicted energy distribution. We further studied the use
of normalization techniques with learnable parameters and fo-
cused on Layer Norm and Group Norm. We denote the con-
catenated features normalized by LN/LN+GN as (x̄m, x̄f ).
We showed that LN achieved the best performance as indi-

cated by lowest MAE and MAPE, 56.22 kCal and 11.47%
respectively, compared to other methods. Addition analysis
of the results are discussed in Section 5.1.

5.1. Ablative Analysis

To investigate the influence of each module, we performed
ablative analysis by remove them one at a time and evaluated
the performance using the two datasets. We summarize the
results for food energy estimation in Table 1. We use results
from [8] as the baseline method. We achieved a MAE of 77.76
kCal and MAPE of 17.63% using the baseline and it is much
better than directly using RGB features as shown in Table 1,
where the MAE and MAPE are 292.35 kCal and 151.33%, re-
spectively. As shown in Table 1, directly using concatenating
features of (xm,xf ) causes performance degradation both in
MAE and MAPE, 110.84 kCal and 99.36% respectively, as
the features from two domains have significant differences re-
flected by their mean and variance.

5.2. Comparison to human estimates

Given the high accuracy of portion size estimation for eating
scene food energy, we are interested in how well our auto-
matic technique compares to human performance in which
the participants of this nutrition study estimated the portion
size using image-assisted 24-hr dietary recall. We compared
our food energy estimates to participants’ estimates from the
same nutrition study . The study participants used a mobile
app to capture images of the eating scene for 3 meals (break-
fast, lunch and dinner) over a 24-hour period. At the end of
the day, participants estimated the portion size of the meal
they consumed in a structured interview while viewing the
captured images [14], we calculated MAPE and MAE of par-
ticipant estimates based on the groundtruth food energy they
consumed.

The MAPE of participant estimates is 39.03%, and the
MAE is 286.37 kCal. We compared participant estimates to
our best result which is predicted by concatenating xf and
xm followed by LN which achieved MAE of 56.22 kCal and
MAPE of 11.47%. This is also illustrated in Figure 4 for
breakfast, lunch and dinner meals separately. We observe
that our proposed method outperforms participant estimates



which indicates that estimating portion size accurately from
a single monocular image is a challenging task for human.
Note also that participants were not able to recall all items
they consumed, particularly for sauces and salad dressings.

6. CONCLUSION

In this work, we proposed an end-to-end framework for learn-
ing food portion from monocular images which is validated
on a new real life eating scene image to food energy dataset
with groundtruth portion size in food energy. We showed that
with supervision on energy distribution map, a deep regres-
sion model can be significantly improved compared to di-
rectly using original RGB image as input. We extensively
investigated different normalization techniques when adapt-
ing features from different domains, and showed that nor-
malization can further improve the estimation accuracy. Our
method achieved state-of-the-art accuracy for the challenging
real life food image dataset with a MAE of 56.22 calories and
a MAPE of 11.47%, surpassing human estimates of 39.03%
MAPE. Our preliminary results showed promising applica-
tions for automated dietary and health monitoring.
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