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Abstract—Deep learning (DL) tends to be the integral part
of Autonomous Vehicles (AVs). Therefore the development of
scene analysis modules that are robust to various vulnerabilities
such as adversarial inputs or cyber-attacks is becoming an
imperative need for the future AV perception systems. In this
paper, we deal with this issue by exploring the recent progress
in Artificial Intelligence (AI) and Machine Learning (ML) to
provide holistic situational awareness and eliminate the effect
of the previous attacks on the scene analysis modules. We
propose novel multi-modal approaches against which achieve
robustness to adversarial attacks, by appropriately modifying the
analysis Neural networks and by utilizing late fusion methods.
More specifically, we propose a holistic approach by adding new
layers to a 2D segmentation DL model enhancing its robustness
to adversarial noise. Then, a novel late fusion technique has
been applied, by extracting direct features from the 3D space
and project them into the 2D segmented space for identifying
inconsistencies. Extensive evaluation studies using the KITTI
odometry dataset provide promising performance results under
various types of noise.

Index Terms—autonomous vehicles, multi-modal scene analy-
sis, adversarial attacks

I. INTRODUCTION

AVs are considered as an important component of connected
intelligent transportation systems, enhancing travel security,
fuel economy and the travel experience of road users. One
of the most essential operations executed at the AVs, to
enable the aforementioned benefits, is the perception and
understanding of dynamic and complex environments from
multi-modal sensor data. There are roughly three approaches
[1], utilized in deep multi-modal object detection, called early,
middle and late fusion while late fusion is widely adopted due
to the modularity benefits that it offers.
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Despite their great success, DL techniques introduce
formidable challenges in dealing with carefully crafted adver-
sarial perturbations [2]. Cyber-attacks have damaging effects
on an industry like the Cooperative Connected and Automated
Mobility (CCAM). From the least important to the worst ones,
one can mention for example the damage in the reputation
of vehicle manufacturers, the increased denial of customers
to adopt CCAM, the loss of working hours (having a direct
impact on the European GDP), material damages, increased
environmental pollution and ultimately the great danger for
human lives, either they are drivers, passengers or pedestrians.
Thus there is an increasing interest in both academia and
industry to proactively address modern vehicle cybersecurity
challenges applying advanced Al and ML techniques, and
seeking methods to mitigate associated safety risks.

Within this work we will robustify the performance of multi-
modal approaches by utilizing early pre-processing and late fu-
sion methods. More specifically, we design and implement new
layers that are added in a unified manner to the 2D/3D analysis
networks increasing their robustness in adversarial noise. Then
we propose a novel late fusion method that initially extracts
useful features from the 3D point clouds and project them
into the 2D segmented image for identifying inconsistencies.
Extensive evaluations utilizing the KITTI odometry dataset
highlight the benefits of the proposed methods under various
scenarios with different types of noise.

II. COUNTERING ADVERSARIAL ATTACKS

The direction of this paper focus mainly on providing a
robust fusion scheme against adversarial attacks to the camera
sensor. The overall architecture could be divided into two
different parts. The former is dedicated to the pre-processing
and the analysis of the captures 2D and 3D scenes, while the
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latter is based on the co-registration and processing of data
from multiple sources located at different strategic points on
the vehicle. In the next sections, after a short introduction to
adversarial attacks, we describe the proposed DL solution. The
scene analysis is performed using a robust 2D segmentation
model aiming to alleviate the adversarial noise and recognize
the environment. A 3D object detection model is also utilized,
that process raw point clouds coming from the lidar. Finally,
a robust decision is taken by fusing the outputs of the two
analysis modules. The overall pipeline is presented in Fig. 1.
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2D Segmentation
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RGE image RGB segmentation

3D point cloud

Perception § @
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Fig. 1. Proposed architecture: Image and point cloud inputs are being pro-
cessed by the 2D segmentation and 3D object detection modules accordingly.
By correlating the two output at the decision stage, an indication is shown to
the user for a dangerous or safe situation.

A. Adversarial Attacks on Autonomous Vehicles:

Deep neural networks have being widely utilized in various
autonomous driving scenarios, offering various benefits but
posing at the same time and great concerns for the security
and integrity of the applications. Adversaries can alter original
inputs with perturbations, which may be imperceptible to
the human eye, but can force a trained model to produce
incorrect outputs. Szegedy et al. [2] first discovered that state-
of-art deep neural networks are susceptible to adversarial
attacks. Adversarial examples seem to occur from the extreme
non linearity of deep neural networks. Studies on adversarial
attacks have developed attacks for image classification models
[31, [4], used for multiple vision tasks such as object detection
[5], [6], object tracking [7], and semantic segmentation [6].
A comprehensive study toward adversarial robustness was
presented by Arnab et al [8]. They evaluated the robust-
ness of popular DCNN models used for segmentation tasks
against adversarial attacks and concluded that the accuracy of
the models seriously decreased after the original image has
been perturbed. Adversaries have also being discovered to be
mistaken by DCNNs for traffic legitimate traffic signs [9].
The aforementioned methods were generating attacks aiming
to fool the perception systems based on the camera sensor.
However, Xiang et al [10] proposed attacking methods to
generate adversarial point clouds. The latter managed to fool
a widely used neural network for point cloud processing,
achieving a high error rate.

B. Adversarial Defense using Denoising Methods:

Image restoration techniques could be considered as a
denoising block that will precede the execution of the DL
model, to eliminate the impact of the adversaries to the
perception system output. We evaluated the ability of various

state of the art methods that have been either proposed for
image restoration or for adversarial noise removal in mitigating
adversarial attacks in scene analysis operations. Both of them
manage to restore the attacked image. However, there is a
limitation on methods trained on adversarial noise only, aiming
to remove the perturbation of the adversaries. The majority of
them can only work on a limited range of resolutions, making
them impractical to applications related to Connected AVs
(CAVs). Hence, we concentrate only on methods that address
the topic of the image restoration problem. The predominant
approaches, from the previous category have been working
mostly with Gaussian noise and similar random noise models
to corrupt images.

Starting with Zhang et al [11], he pointed out that residual
learning and batch normalization can benefit each other. Their
integration was effective in speeding up the training and
boosting denoising performance. Although a trained feed-
forward denoising convolutional neural network is able to
handle compression and interpolation errors, the trained model
under a given noise variance (e.g., o) is not suitable for other
noise variances. In a noise agnostic case where the noise level
o is unknown, the denoising method should let the user define
a trade-off between noise suppression and texture protection.
The user-directed approach FFDNet was introduced by [12].
The proposed method takes as input the noise level which
makes it flexible to different noises. In 2019, it was introduced
Adaptive Feature Modification Layers(AdaFm) [13] in a step
toward handling continual modulation of restoration levels.
AdaFm enables consecutive modulation of the restoration
strength at a considerable low computation cost. At first a
standard restoration CNN is trained for the start level, and
then AdaFM layers are inserted to optimize it to the end
level. After the training stage, CNN parameters are being fixed.
The filters of AdaFM layers are interpolated according to the
testing restoration level. By using a controlling coefficient,
the CNN is able to manipulate the restoration effects. Finally,
AdaFM has been integrated into our pipeline, in order a robust
2D segmentation model. More details about the integration are
explained in a further section.

III. PROPOSED ARCHITECTURE FOR ROBUST CAVS

The proposed architecture for robust CAVs is presented here
and each module is described separately.

A. 2D Semantic Segmentation of the Scene:

Semantic segmentation is a fundamental problem in com-
puter vision and is necessary for higher-level tasks such as
scene understanding or object detection. Although, it is rather
a complex problem due to the complicated object boundaries
and the large number of classes that the model needs to
distinguish. The success of deep convolutional neural networks
could not leave unaffected the segmentation approaches. Depth
of the CNN as shown by [15], [16] is crucial for providing
rich features but the accuracy decreases due to the higher com-
plexity of the model. ResNet [17] is a state of the art approach
that addresses this problem. Several ResNet-like methods have
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Fig. 2. Fusion model for generating a robust 2D segmentation model, from left to right: the AdaFM denoising model [13] and the Deeplabv3 segmentation

model [14]

been published [18] improving the accuracy. To decode more
efficient the global context information and perform pixel-level
prediction, Zhao et al. [19] introduced a pyramid scene parsing
network (PSPNet). Features of several pyramid scales, that
combine both local and global context information, are fused
by applying a pyramid parsing module in the last convolutional
layer of a CNN. The final per-pixel prediction is obtained
by a convolution layer. Inspired by PSPNet [19], Deeplab
[14] revisited the Atrous Spatial Pyramid Pooling (ASPP)
[20] by experimenting with cascading and parallel application
of dilated convolutions. This allows them to improve upon
their previous work [14] while achieving comparable results
to PSPNet [19]. Deeplab v3 is the model that we also use in
the proposed architecture due to its efficiency in comparison
to other relevant state of the art approaches. As denoted by the
[21] it performs multi-scale processing and should be preferred
in safety-critical applications due to its inherent robustness
against adversarial attacks.

B. Denoising Model Integration:

Our goal is to investigate how image denoising can enhance
high-level vision applications, including semantic segmen-
tation tasks, especially in CAVs. In the proposed end-to-
end architecture that has been implemented, see Fig. 2, the
denoising block is added prior to the segmentation model. We
focus on ensemble learning so as to improve the performance
of scene analysis operations in CAVs. Both models were
trained separately using data from the KITTI dataset [22]. The
first part of the proposed integrated model is following the
structure of the AdaFM [13] technique. The latter forwards
the denoised image to the segmentation model and it follows
the structure of Deeplab [14]. As a result, the proposed model
significantly increases the robustness of the 2D segmentation
model, alleviating the effect of various adversarial perturba-
tions.

C. 3D Object Detection of the Scene:

Despite achieving state-of-art results, camera-based ap-
proaches are heavily influenced by their physical limitations.
In contrast lidars are not susceptible to environmental factors.
In our case, by assuming that only the camera modality can be
attacked, mapping features that are extracted from the captured
point clouds to the image space is proposed as a solution to the

attack. In this section, a short review of the DL frameworks
that have been applied to 3D data is all presented for the
sake of self-completeness. Many researchers have developed
efficient representations to detect and localize objects in point
clouds. Point clouds lack a specific structure, and researchers
trying to exploit them by using approaches that are analysing
the 3D space in the form of voxel grids [23]-[25], raw point
clouds [26], [27] or by processing them in 2D feature maps
acquired by projection.

In Voxel-Based models, data are separated into uniform
grids with fixed dimensions to represent the distribution of
the data in 3D space. Typically, the size of the grid is
established according to the resolution of the data. The main
advantage of the representation based on voxels is that it
can encode the 3D shape and the viewpoint information by
classifying the occupied voxels into several types, such as
visible, occluded, or self-occluded. Besides, 3D convolution
and pooling operations can be directly applied in voxel grids.
3D ShapeNet proposed by Wu et al. [23], is the pioneer
in exploiting 3D volumetric data using a convolutional deep
belief network. VoxNet is proposed in [24] and conducts 3D
object recognition employing 3D convolution filters based on
volumetric data design.

In order for the data to be processed with classic 2D
convolutional layers, several methods project 3D point clouds
in 2D grid-based features maps. Spherical space [28], camera-
plane map (CPM) and bird’s eye view (BEV) [29] space are
the most dominant approaches. The spherical map is obtained
by projecting the point cloud onto a sphere. This is a dense
and compact way of representing the point cloud, but it stills
differs from images and the fusion is not straightforward. CPM
can be directly fused with camera images at any stages of the
CNN, but lidar resolution is not as dense as images, which
makes an upsampling [30] necessary. BEV is suitable for
object localization because it directly provides the positions
of the objects on the ground, maintaining objects length and
width.

Regarding point cloud-based models, significant impact has
the deployment of PointNet [26] and later the PointNet++ [27].
PointNet [26], as a pioneer in consuming 3D point clouds
directly for deep models, learns the spatial feature of each
point independently via MLP layers and then accumulates their
features by max pooling. The point clouds are given as input
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directly to the PointNet, which predicts the per-point label
or per-object label. In PointNet, a spatial transform network
and a symmetric function are designed to improve the data
invariance to permutation. PointRCNN [31] which will be
integrated into our pipeline, achieves state-of-art results in
a two-stage 3D object detection framework. The first stage
segments foreground points and generates a small number of
bounding box proposals from the segmented points simulta-
neously, while the second stage conducts canonical 3D box
refinement. An extension of [31] from the same authors is Part-
A? [32] which is a part-aware and aggregation neural network.
Finally, an interesting approach is PV-RCNN [33], aiming to
take advantage of efficient learning and high-quality proposals
of the 3D voxel CNN and the flexible receptive fields of the
PointNet-based networks.

IV. FUSION STRATEGY

There is a variety of strategies aiming to increase the overall
performance, by fusing multiple modalities. We can divide the
previous types into three categories: Early fusion, Late fusion
and Deep fusion. Taking into consideration the first category,
modalities are combined at the beginning of the process and
extract the shared information on data, by jointly processing
the raw data measurements acquired by different sensors. Late
fusion performs the synthesis of valuable information at the
final stage of feature extraction, where fusion occurs. Finally,
a more general fusion scheme refers to Deep fusion. By
exploiting the capability of DL to discover high-level data
representation, the Deep fusion can effectively find the joint
data representation by combining the features extracted at the
intermediate layers of deep neural networks. In our case, late
fusion has been applied.

A. Point Projection

For projecting lidar points to the image plane, we are using
the calibration data provided by the KITTI benchmark [22].
lidar data have been captured by a Velodyne HDL-64E S2
sensor and each point is stored with its (x, y, z) coordinate and
an additional reflectance value (7). The number of points per
scan on average for each file/frame is ~ 120,000 3D points.
The rigid body transformation from Velodyne coordinates to
camera coordinates are given in detail at [22] and are expressed

by:
cam tcam
cam __ velo velo
velo — 0 1
where RO S R3%3 is the rotation matrix and
cam ¢ R'"™3 the translation vector from Velodyne to

the camera coordinate system. The projection of a 3D point
x = (z,y, 2, 1)Tin the lidar coordinates system gets projected
to a point in the camera plane y = (u, v, l)Taccording to:

cam

velo X

y:

B. Perception Modules Correlation

Our purpose is the situational awareness improvement and
the mitigation of cyber-attacks against computer vision sys-
tems, especially on the camera sensor. Firstly, we apply 2D
semantic segmentation to the input image to recognize the
objects in the scene. In a safe situation, the majority of the
objects will be detected, whereas in an attacked case, some
of them will be disappeared from the perception engine. In
a parallel module, the 3D object detection model will be
implemented, which has been trained to identify only the
moving objects, which are mainly vehicles, pedestrians and
cyclists. As soon as the coordinates of the 3D bounding boxes
have been obtained, they are being projected to the image
plane. The correlation is applied in the next step in order to
fuse the 2D segmentation and 3D object detection outputs,
as Fig. 3 illustrates. In the latter, with a red mask and green
bounding boxes, the 2D segmentation and 3D detection results
are shown accordingly.

Fig. 3. From top to bottom: 2D segmentation output and 3D detected objects
projected to the image plane

To correlate the two outputs, we isolate the region of
the projected 3D bounding box to the image. We consider
that the isolated region belongs to a specific class (vehicle,
pedestrian, cyclist). We isolate respectively the same region
from the segmentation mask. Finally, we compare the two
outputs in order to estimate the overlap between the two
detected regions. If an object has been detected by both of
the modalities, the overlap should be high enough. Structural
similarity index measure (SSIM) was used for the comparison
and the threshold for a safe situation should be above 0.6 for
the majority of the detected objects.

V. EXPERIMENTS & RESULTS

The proposed algorithms were evaluated using the KITTI
dataset [22]. The results between the robust and the original
2D segmentation model are being presented in Table I. There
is a variety of approaches [34] aiming to generate strong
adversarial attacks with a high error rate in order to manipulate
the vehicle’s behaviour. We tested the models with three
generic adversarial attacks, BIM [35], FGSM [3], and PGD
[36] attack. As we can observe from Table I, the robust
model achieves great IoU scores even when the magnitude
of perturbation is large. The previous perturbation refers to
a hyper-parameter governing the distance between adversarial
and original image. The smaller the magnitude of the perturba-
tion, the less imperceptible will be the attack to the human eye.
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We evaluated the previous attacks setting the perturbation to
each value from {2,4,8} on the scale of [0-255]. The iterations
for PGD iterative attack is set to 10 and the step-size is equal
to 1, so each pixel could be changed by one each iteration. For
instance, observing Table I, the original model fails to operate
after the PGD attack, whereas the robust model achieves 72%
IoU score. An example is illustrated also in Fig. 4 in which
the robust segmentation model manages to restore the attacked
image.

TABLE I
TOU%RESULTS OF SEGMENTATION MODELS FOR ADVERSARIAL ATTACKS
WITH LEVELS OF PERTURBATIONS 2/4/8 FOR A GIVEN IMAGE

Model BIM FGSM PGD
Robust 0.42/0.1/0.03 0.75/0.71/0.66 || 0.74/0.72/0.72
Original || 0.13/0.02/0.01 0.67/0.51/0.21 0.69 /0.53/0.17

Fig. 4. From top to bottom: original segmented image, attacked segmented
image, robust segmented image (with the denoiser)

The results of PointRCNN [31] which was used as the object
detection module was validated on KITTI dataset [22]. Table 11
presents the 3D detection performance of moderate difficulty
on the validation set of KITTI dataset. PointRCNN obtains
78.70% recall, given an IoU threshold at 0.5 on the moderate
difficulty for the car class, 54.41% for pedestrian and 72.11%
for cyclist.

TABLE II
KITTI [22] RESULTS FROM OPENPCDET [37] FRAMEWORK

Model Car Pedestrian || Cyclist
PointRCNN 78.70 54.41 72.11
Part — A%-Free 78.72 65.99 74.29
Part — AZ-Anchor || 79.40 60.05 69.90
PV-RCNN 83.61 57.90 70.47

Overall, by fusing the outputs of multiple perception mod-
ules, it is possible to provide improved situational awareness.
Understanding the autonomous vehicle’s state at any time is
critical to identifying potential threats and generate secure
transportation systems. In Fig. 5, a scenario without adversarial
attack on the camera sensor is illustrated. On the left, the 3D
object detection output from the lidar data is shown. With
green and blue bounding boxes, the vehicles and pedestri-
ans are shown accordingly. On the bottom image, the 2D

robust segmentation result is presented, with coloured masks.
Therefore, by correlating the previous outputs, we raise a safe
situation, considering that the majority of the existed objects
in the scene has been detected in both sensors. Thus, the final
decision of the perception engine is coming only from the
camera sensor, as we can observe from the top side of Fig.
5. On the other hand, Fig. 6 indicates an attacked scenario,
in which an external attacker has added adversarial noise to
the camera image. As a result, the 2D segmentation module
fails to recognize the scene and raises an alert to the user.
With orange bounding boxes in the bottom image, the hidden
objects from the camera sensor are presented. Hence, the final
decision of the perception engine is coming only from lidar,
by projecting the 3D outputs to the image plane, as we can
observe from the top side of Fig. 6.

3D Object Detection

Fig. 5. From left to right and bottom to top: 3D object detection output, 2D
robust segmentation output and the fused result, indicating a safe situation

3D Object Detection

Fig. 6. From left to right and bottom to top: 3D object detection output,
2D robust segmentation output and the fused result, indicating an attacked
situation

VI. CONCLUSIONS

Our goal is to achieve contextual and situational awareness,
by fusing different data sources of information to facilitate
the decision-making process. Overall, we have presented a
robust fusion scheme for providing situational awareness to the
driver. We have integrated a denoising module atop an image
segmentation CNN to improve its robustness to adversarial
inputs. As a second layer of defense, the result of an object
detection module on lidar data is correlated with the image
segmentation output. Thus, anomaly detection on the camera
sensor could be detected, leading to more secure perception
systems for AVs.

In future work, we will investigate scenarios where the lidar
is attacked. One mitigation strategy for such scenarios could
be to decide whether the lidar is attacked or not by checking
the consistency with the output of the image segmentation
before and after the denoising. In particular, if the camera has
not been attacked, meaning that scene segmentation will not
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differ before and after the denoising, and the scene analysis of
image and lidar data disagrees then lidar data probably have
been modified. Different levels of trust should be also defined
so as to put different weights on each separate sensor data.
As such, by correlating the outputs of different perception
modules with additional sensor readings, it is possible to
provide improved situational awareness. Another action point
could be the definition of a more complex strategy for fusing
the multiple modalities, aiming to improve the whole system
performance.

ACKNOWLEDGMENT

This work was supported by the European Union’s Horizon
2020 research and innovation program under grant agreement
No.833611 (CARAMEL).

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]
(18]

[19]

REFERENCES

Eduardo Arnold, Omar Y. Al-Jarrah, Mehrdad Dianati, Saber Fallah,
David Oxtoby, and Alex Mouzakitis. A survey on 3d object detection
methods for autonomous driving applications. [EEE Transactions on
Intelligent Transportation Systems, 20(10):3782-3795, 2019.

Christian Szegedy, W. Zaremba, Ilya Sutskever, Joan Bruna, D. Erhan,
Ian J. Goodfellow, and R. Fergus. Intriguing properties of neural
networks. CoRR, abs/1312.6199, 2014.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. CoRR, abs/1412.6572, 2015.
Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Xiaolin Hu, and Jun
Zhu. Discovering adversarial examples with momentum. CoRR,
abs/1710.06081, 2017.

Xingxing Wei, Siyuan Liang, Xiaochun Cao, and Jun Zhu. Transferable
adversarial attacks for image and video object detection. CoRR,
abs/1811.12641, 2018.

Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie,
and Alan L. Yuille. Adversarial examples for semantic segmentation
and object detection. CoRR, abs/1703.08603, 2017.

Bin Yan, Dong Wang, Huchuan Lu, and Xiaoyun Yang. Cooling-
shrinking attack: Blinding the tracker with imperceptible noises, 2020.
A. Arnab, O. Miksik, and P. H. S. Torr. On the robustness of
semantic segmentation models to adversarial attacks. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 888—
897, 2018.

Y. Li, X. Xu, J. Xiao, S. Li, and H. T. Shen. Adaptive square attack:
Fooling autonomous cars with adversarial traffic signs. IEEE Internet
of Things Journal, pages 1-1, 2020.

Chong Xiang, Charles R. Qi, and Bo Li. Generating 3d adversarial point
clouds. CoRR, abs/1809.07016, 2018.

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a gaussian
denoiser: Residual learning of deep cnn for image denoising. [EEE
Transactions on Image Processing, 26(7):3142-3155, 2017.

K. Zhang, W. Zuo, and L. Zhang. Ffdnet: Toward a fast and flexible
solution for cnn-based image denoising. IEEE Transactions on Image
Processing, 27(9):4608-4622, 2018.

Jingwen He, Chao Dong, and Yu Qiao. Modulating image restoration
with continual levels via adaptive feature modification layers. CoRR,
abs/1904.08118, 2019.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig
Adam. Rethinking atrous convolution for semantic image segmentation,
2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition, 2015.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
residual learning for image recognition, 2015.

Zifeng Wu, Chunhua Shen, and Anton van den Hengel. Wider or deeper:
Revisiting the resnet model for visual recognition, 2016.

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya
Jia. Pyramid scene parsing network, 2017.

Deep

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]
(30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Mur-
phy, and Alan L. Yuille. Deeplab: Semantic image segmentation with
deep convolutional nets, atrous convolution, and fully connected crfs,
2017.

Anurag Arnab, Ondrej Miksik, and Philip H. S. Torr. On the robustness
of semantic segmentation models to adversarial attacks, 2018.

Jun Xie, Martin Kiefel, Ming-Ting Sun, and Andreas Geiger. Semantic
instance annotation of street scenes by 3d to 2d label transfer. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang,
Xiaoou Tang, and Jianxiong Xiao. 3d shapenets: A deep representation
for volumetric shapes, 2015.

D. Maturana and S. Scherer. Voxnet: A 3d convolutional neural network
for real-time object recognition. In 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 922-928,
2015.

Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger.
Learning deep 3d representations at high resolutions, 2017.
Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet:
Deep learning on point sets for 3d classification and segmentation, 2017.
Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space, 2017.
Bichen Wu, Alvin Wan, Xiangyu Yue, and Kurt Keutzer. Squeezeseg:
Convolutional neural nets with recurrent crf for real-time road-object
segmentation from 3d lidar point cloud, 2017.

Xijaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view
3d object detection network for autonomous driving, 2017.

Andreas Pfeuffer and Klaus Dietmayer. Optimal sensor data fusion
architecture for object detection in adverse weather conditions, 2018.
Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointrcnn: 3d object
proposal generation and detection from point cloud, 2019.

Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hong-
sheng Li. From points to parts: 3d object detection from point cloud
with part-aware and part-aggregation network, 2020.

Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xi-
aogang Wang, and Hongsheng Li. Pv-rcnn: Point-voxel feature set
abstraction for 3d object detection, 2019.

A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and D. Mukhopad-
hyay. Adversarial attacks and defences: A survey. ArXiv,
abs/1810.00069, 2018.

A. Kurakin, Ian J. Goodfellow, and S. Bengio. Adversarial examples in
the physical world. ArXiv, abs/1607.02533, 2017.

R. S. Zimmermann. Comment on “adv-bnn: Improved adversarial de-
fense through robust bayesian neural network™. ArXiv, abs/1907.00895,
2019.

OpenPCDet Development Team. Openpcdet: An open-source toolbox
for 3d object detection from point clouds. urlhttps://github.com/open-
mmlab/OpenPCDet, 2020.

Octnet:

Authorized licensed use limited to: University of Patras. Downloaded on June 13,2022 at 09:59:26 UTC from IEEE Xplore. Restrictions apply.



