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Abstract—Facial analysis is an active research area in computer
vision, with many practical applications. Most of the existing
studies focus on addressing one specific task and maximizing its
performance. For a complete facial analysis system, one needs
to solve these tasks efficiently to ensure a smooth experience.
In this work, we present a system-level design of a real-time
facial analysis system. With a collection of deep neural networks
for object detection, classification, and regression, the system
recognizes age, gender, facial expression, and facial similarity for
each person that appears in the camera view. We investigate
the parallelization and interplay of individual tasks. Results
on common off-the-shelf architecture show that the system’s
accuracy is comparable to the state-of-the-art methods, and the
recognition speed satisfies real-time requirements. Moreover, we
propose a multitask network for jointly predicting the first three
attributes, i.e., age, gender, and facial expression. Source code
and trained models are available at https://github.com/mahehu/
TUT-live-age-estimator.

Index Terms—face detection, face recognition, facial similarity,
real-time system

I. INTRODUCTION

Human facial analysis is one of most widely studied areas in
computer vision, including topics such as face verification [1],
[2], head pose estimation [3], [4], facial expression recogni-
tion [5], [6] and age estimation [7]. While computer programs
have traditionally been unable to analyze facial images, humans
are very good at spotting even the smallest differences. With the
surge of deep learning techniques, algorithms have surpassed
human accuracy in most of the above tasks.

In the field of facial image analysis, the majority of works
focus on improving the accuracy of a specific task. Less
attention is paid to investigate the computational complexity [9]–
[11], in particular at the system level, where the architect needs
to pay attention to the functionality of the entire system as well
as that of the individual components; simultaneously optimizing
for prediction accuracy, inference speed, memory footprint,
parallelization as well as user experience (i.e., the system
should at least appear smooth although some components
might operate at below real-time speed).

The straightforward approach would sequentially first detect
all faces, then estimate their age, gender, facial expression,
and facial similarity; show the result on the screen and start
over with the detection. However, the refresh rate on screen
would be dictated by the sum of execution times of individual
components. On the other hand, users are less sensitive to a
slow refresh rate of age estimates than the slow refresh rate
of the display itself. Therefore, the system has to prioritize
the tasks differently while maximizing the performance and
minimizing idle times.

Fig. 1. Our real-time facial recognition system in action. It detects human
faces on a frame captured by a webcam, recognizes age, gender, and emotion
in real-time. Additionally, it shows the most similar appearing face obtained
from the similarity search network.

Our system consists of a screen, a camera, and a computer,
and it estimates the age, gender, and facial expression of all
faces seen by the camera. In addition to these functions, the
most similar-looking face from a database of celebrity faces
is shown next to the detected face. Apart from serving as an
illustrative example of modern human-level machine learning
for the general public, the system also highlights several
common aspects in real-time machine learning systems. The
subtasks needed to achieve these recognition results represent
a wide variety of tasks, including (a) face detection, (b)
age estimation, (c) gender prediction, (d) facial expression
prediction, and (e) image retrieval. Moreover, all these tasks
should operate in unison, such that each task will receive
enough resources from a limited pool.

Overall, we make the following contributions:
• We present a detailed system-level architecture for esti-

mating several attributes from facial images.
• We show the real-time performance of each component

of the proposed architecture and its smooth functionality
even on a moderate-resourced computing platform.

• We release source code and trained models, with detailed
instructions for deployment.

The structure of the rest of the paper is as follows. In
Section II we describe the system level multi-threaded ar-
chitecture for real-time processing. This is followed by a
detailed description of individual components of the system
in Section III. Next, we report the experimental setups
together with datasets and performance measurement metrics in
Section IV. We present experimental results of each recognition
component in Section V and finally, we discuss the benefits
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(a) Sequence diagram

Fig. 2. Sequence diagram of the proposed real-time facial analysis system in (a) and software architecture of our system in (b).

of demonstrating the potential of modern machine learning to
both the general public and experts in the field.

II. SYSTEM LEVEL FUNCTIONALITY

The challenge in real-time operation is that there are multiple
components in the system, and each uses a different amount of
execution time. The system should be designed such that the
operation appears smooth, which means that the most visible
tasks should be given higher priority in scheduling.

The implementation is multi-threaded, as illustrated in Fig. 2.
Each thread operates asynchronously, with recognition threads
polling for new frames to process whenever they are idle. The
system is controlled by the controller & visualization thread,
which receives new frames from the camera via the dedicated
grabber thread. The controller thread also stores the frames in a
buffer with each frame associated with flags, whether they have
been processed by each of the threads. Finally, it visualizes
by showing the live video as well as overlay the most recent
recognition results to the user in real-time. The asynchronous
threading structure also allows execution on dedicated platforms
(e.g., detection running on the CPU and recognition on the
GPU). Also, it enables straightforward process prioritization
by launching multiple recognition threads for the same task.

A. Frame Capture

The recognition process starts from the grabber thread,
which is connected to a camera. The thread receives video
frames from the camera for feeding them into a memory buffer
located inside the controller thread. At grab time, each frame
is wrapped inside a class object, which holds the necessary
metadata: a time-stamp and flags indicating whether each of
the processing stages (face detection, attributes recognition,
and similarity search) has been applied on the frame.

B. Face Detection

The first processing step in the pipeline is to find all faces
in the input frame. The detection is executed in a dedicated
thread, which operates asynchronously, continuously requesting

new non-processed frames from the controller thread. The
detection algorithm is discussed in detail in Section III-A.
Finally, the coordinates of the bounding boxes of all found
faces are sent to the controller thread. The controller thread
stores the locations and matches each new face with all face
objects from the previous frames using straightforward centroid
tracking. Tracking allows the system to temporally average the
estimates (age, gender, and smile) for each face over a number
of recent frames to improve the resulting accuracy.

C. Facial Attributes Recognition

The recognition thread is responsible for assessing the age,
gender, facial expression, and facial similarity of each face
crop found from the image. Like the detection thread, the
recognition thread also operates in an asynchronous mode,
requesting new non-processed (but face-detected) frames from
the controller thread. When a new frame is received, the thread
first aligns the face with a face template. After alignment, we
pass each aligned face to separate networks: age, gender, and
expression recognizer or a multitask and a similarity search.

Typically, the networks executed on the face crops are slower
than the detection network. On the other hand, the amount of
time grows linearly with the number of detected faces in the
scene. Therefore, in order for the system to appear fast and
responsive, these tasks should run in the background and only
refresh when each task finishes. More specifically, we refresh
the camera view and face detection in real-time but update the
recognition results at less than the real-time rate. Moreover,
the recognition thread prioritizes the facial expression task
over others because age, gender, and facial similarity can be
assumed to be constant, while users expect a quick response
to their expressions.

The system is implemented using the TensorFlow and
OpenCV libraries. The proposed facial analysis architecture
can run on various hardware configurations, exploiting either
CPU or GPU hardware. As shown in Section V, common
desktop hardware reaches real-time speed both on CPU and



Fig. 3. An example of five-point facial keypoint on a cropped face region
(left) and keypoint template (right). Symmetric keypoints are in blue dots, and
the 5 referenced true keypoints are highlighted with orange color.

GPU. However, if the camera resolution, detector type, or input
resolution are changed, then a GPU can be used instead.

III. SYSTEM COMPONENTS

A. Face Detection

Face detection is the first step for facial recognition systems,
where the location of the face is extracted from the given
image. We design a neural network based face detector
trained using benchmark face datasets. The detectors are not
initialized from scratch but fine-tuned from existing pre-trained
weights. We experimented with several models from two neural
network based detection model categories: single-stage and
two-stage detection networks. The single-stage Single Shot
Detector(SSD) [12] requires only a single pass through the
network with the image as the input and target bounding
boxes with respective confidences as the outputs. The two-
stage Regions Convolutional Neural Network (RCNN) [13]
operates in two stages: a region proposal network proposes
candidate object locations, followed by a classifier that classifies
the proposals to target categories.

These two structures represent two widely used architectures,
where the two-stage RCNN is traditionally perceived as more
accurate, especially with small targets. On the other hand, the
SSD type networks are simpler, reach faster execution time,
and still achieve a reasonable accuracy when the targets are
not exceptionally small. However, recent improvements [14],
[15] in single-stage detectors have brought single-stage and
two-stage architectures closer to each other, both in terms of
accuracy and execution speed.

SSD model together with feature extractor networks such
as MobileNetV1 [9] and MobileNetV2 [10] are popular
for faster and light-weight object detection. MobileNetV1
introduced a parameter α called width multiplier to build
a smaller and computationally efficient model. This width
multiplier has the effect of reducing computational cost and
the number of parameters quadratically by roughly α2 times.
MobileNetV2 introduced a mobile-friendly variant SSDLite
that replaces regular convolutions with separable convolutions
in the SSD prediction layers, reducing both parameter count
and computational cost.

B. Alignment

We align the faces in two stages. The first stage locates
a set of facial keypoints from the face crop: eyes, nose, and
the corners of the mouth. In the second stage, we find an
affine mapping between these five keypoint locations and
the corresponding template of five keypoints. This improves
accuracy since the recognizers always see the eyes, mouth,
and other facial elements in fixed locations, and require less
effort in understanding the context where facial features are
located. This also enables the use of smaller networks, which
compensate for the added computation due to the alignment
procedure.

Keypoint Detection—The intention of aligning the faces to
fixed coordinates is that this should improve the prediction
accuracy. To this aim, we first find the keypoints for each
face detected by the detector. We use five facial keypoints for
normalizing the face location: eyes, nose, and the corners of
the mouth, as illustrates in Fig. 3. Among the accurate and
lightweight keypoint detection techniques, we consider regres-
sion forests of Kazemi et al. [16] and a convolutional neural
network, where both receive the face crop as input and output
the predicted x-y-coordinates of the five keypoints. We design
the convolutional network according to the keypoint location
branch of the O-Net [17]; consisting of four convolutional
layers and two fully connected layers. The facial keypoint
detector is trained from scratch on AFLW dataset [18].

Affine Mapping—The detected keypoints are aligned to a
set of template keypoints. The template is obtained from the
keypoints of a randomly selected sample face from the dataset.
However, we normalize the template such that the keypoints
are horizontally symmetric with respect to the centerline of the
face. This is done in order to allow training set augmentation by
adding horizontal flips of each training face. More specifically,
we manually marked symmetric pairs of keypoints and averaged
their vertical coordinates and distances from the horizontal
center location as illustrated in Fig. 3. Finally, the resulting
set of coordinates was scaled to fit the network input size of
224× 224 pixels, leaving 10% margin at the bottom edge and
20% margin at the other edges.
Face Alignment—Instead of the simple approach of using the
full affine transformation with least squares fit, we choose to
use a more restricted similarity transformation allowing only
rotation, scale, and translation, but not shearing. This is due to
the possible distortion of the facial shape and the subsequent
degradation of the estimation performances.

The similarity transformation H that maps 2D coordinate
points u ∈ R2 7→ v ∈ R2 with translation t = (tx, ty)

T ,
scaling s ∈ R+ and rotation matrix R with rotation angle
θ ∈ [−π, π] is given by

v = Hx =

[
sR t
0T 1

]
u =

s cos θ −s sin θ tx
s sin θ s cos θ ty

0 0 1

u (1)

Estimation of the transformation parameters— R, t and s— can
be obtained from the vector cross product of point correspon-
dences in homogeneous coordinates [19]. Given x-y-coordinates



of detected keypoints ui = (xi, yi, 1)
T and corresponding

template locations vi = (x′i, y
′
i, 1)

T for i = 1, 2, . . . , P (with
at least P = 2 correspondences), the least squares solution for
H can be obtained from the equation

vi ×Hui = 0. (2)

Substituting Eq. (1) into Eq. (2), the system is further simplified
to [20]

[
−yi −xi 0 1
xi −yi 1 0

]
s cos θ
s sin θ
tx
ty

 =

[
−y′i
x′i

]
, (3)

which can be solved by the singular value decomposition [19].
Finally, we construct the similarity matrix H by inserting the
four solved scalar unknowns into it.

C. Age Estimation

Age estimation is commonly treated as a regression problem.
However, in our system, we treated this as a classification task
as our system predicts ages among 101 classes. The network
is initialized using ImageNet [21] pre-trained weights and
fine-tuned in two stages: first with the large but noisy 500K
IMDB-WIKI dataset [22] and then using the small but accurate
CVPR2016 LAP challenge dataset [23].

D. Gender and Expression Recognition

The gender recognition network is trained from scratch in
two stages: first with the 500K IMDB-WIKI dataset and then
fine-tuned with the CVPR2016 LAP challenge dataset, same
as in the age recognition step.

In our system, we focused only on smile recognition, a binary
classification task, detecting smile and non-smile. The smile
recognition network is initialized with ImageNet pre-trained
weights and fine-tuned with Genki4k dataset [24].

E. Facial Similarity Search

In addition to the age, gender, and facial expression, the
fourth analysis task integrated into the system is the facial
similarity search. It is currently implemented for demonstrating
celebrity search, i.e., the program holds a database of celebrity
faces and displays the one whose face has the most similar
appearance to the person in front of the demo system. Alterna-
tively, this functionality could be altered to keep track of users
using a dynamic database (persons are added to the database
every time they are seen) instead of a fixed database (a static
collection of celebrities).

The facial similarity search is implemented in two stages:
(1) the first stage computes a feature vector from the facial
crop using a convolutional network, and (2) the second stage
performs the nearest neighbor search among the database of
precomputed feature vectors from celebrity faces. We use the
FAISS implementation from Facebook [25], since it is widely
adopted, provides an interface in Python, and satisfies the
real-time speed requirement even with large databases.

We adopt a person re-identification framework [26] to find
the most similar face from a collection of celebrity faces. The
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Fig. 4. The architecture of our multitask classification network. The network
is able to classify age, gender, and smile attributes for a given image.

backbone models are initialized with ImageNet pre-trained
weights, and a global average pooling layer is appended to
squeeze the spatial dimensions. Several data augmentation
policies are applied to make the model more robust, including
random flipping, cropping, and random erasing [27]. At the
early stage of the training, the learning rate starts from a
relatively low value and increases gradually. Additionally, the
learning rate gets reduced to one-tenth once the performance
on the validation split plateaus.

F. Multitask Network

We experimented with a single multitask network architec-
ture shown in Fig. 4 for age, gender, and smile predictions.
The multitask network utilizes a transfer learning approach;
backbone network (ImageNet trained) weight is used to fine-
tune on the age, gender, and smile training data. The backbone
network can be any neural network for the classification task.
The last layer of the network is removed, the global average
pooling layer is added, and the output from the pooling layer
is split into three branches. The fully connected layers, each of
dimension 512 is added and SoftMax of different dimensions
is applied for task-specific output branches.

Our multitask network inference time is almost identical to
individual classification networks; hence this network is about
three times faster than the individual networks for age, gender,
and smiles recognition tasks, as reported in Table V.

IV. EXPERIMENTS

A. Datasets

AFLW— The Annotated Facial Landmarks in the Wild
(AFLW) [18] is a large-scale dataset of (25K) face images
collected from Flickr. It has 21 landmarks annotations per face.
We use this dataset to train 5 – keypoint set detection.
CelebA— The CelebFaces Attributes (CelebA) [28] is a large-
scale face attributes dataset containing more than 200K celebrity
images from 10,177 identities. It has 5 landmark locations and
40 binary attribute labels per facial image.
ChaLearn LAP— We use the CVPR2016 competition variant,
consisting of 7,591 facial images with human-annotated ap-
parent ages and standard deviations taken in non–controlled
environments with diverse backgrounds.



TABLE I
COMPARISON OF DIFFERENT DETECTION MODELS FOR FACE

DETECTION WITH DIFFERENT INPUT SIZES.

Resolution AP AP FPS FPS FPS
0.5:0.95 @0.5 TF-CPU TF-GPU OpenCV

Faster RCNN ResNet101
300x300 0.747 0.945 1.84 7.62 1.09
240x180 0.707 0.914 1.93 8.18 1.20
200x200 0.693 0.907 1.98 8.30 1.21

SSD MobileNetV1 α = 1
300x300 0.744 0.945 32.52 87.29 39.36
240x180 0.684 0.868 51.60 105.46 70.09
200x200 0.683 0.839 49.96 107.54 71.42

SSD MobileNetV1 α = 0.25
300x300 0.695 0.909 60.50 148.77 140.95
240x180 0.647 0.895 81.29 156.62 239.59
200x200 0.650 0.887 78.21 158.20 249.72

SSDLITE MobileNetV2 α = 1
300x300 0.764 0.952 28.46 79.94 36.47
240x180 0.728 0.936 41.18 106.98 63.29
200x200 0.730 0.934 40.50 109.47 64.79

SSDLITE MobileNetV2 α = 0.25
300x300 0.733 0.936 43.09 118.29 70.58
240x180 0.704 0.925 60.43 129.25 125.55
200x200 0.679 0.913 64.01 131.77 131.22

Genki-4k— The MPLab Genki-4k [24] contains 4,000 images
with two class expressions (smile or non-smile) labeled by
human and head-pose labels of the faces determined by
automatic face detector.

B. Evaluation Metrics

AP—The Average Precision (AP) metric computes the average
precision overall detection thresholds. The sensitivity of the
detector can be adjusted using a detection threshold set by
default at 0.5. As the sensitivity of detection may be adjusted
at the inference process, we also average the class-wise AP’s
over all classes to produce the mean AP (mAP).
MAE—The Mean Absolute Error (MAE) metric computes the
average error overall prediction. We used MAE to measure the
error (in years) at the age prediction stage.
Accuracy—Accuracy is the fraction of correctly classified
instances among the total number of instances.
CMC rank-k accuracy—Given a query sample, the accuracy
is set to 1 if the top-k gallery samples contain samples that
have the same identity as the query sample, and 0 otherwise.
The CMC rank-k accuracy is obtained by averaging the results
of all query samples.

V. RESULTS AND DISCUSSION

A. Face Detection

For face detection, we use faster RCNN, with ResNet101
backbone and variants of SSD, with MobileNet backbones with
three different input sizes. The network inference speed is tested
on Tensorflow CPU and GPU, and OpenCV environments,
illustrated in Table I. The faster RCNN ResNet101 network
in all experiments gives slightly higher AP than SSD models.
However, the computation complexity of RCNN models is high,

TABLE II
KEYPOINT DETECTION

PERFORMANCE.

Error FPS
rate(%) CPU

Dlib 2.89 17.49
CNN 1.04 18.25

TABLE III
PERFORMANCE IN FACIAL SIMILARITY

USING THREE BACKBONES.

Network mAP rank-1 rank-5

MobileNet 0.782 0.940 0.970
VGG16 0.813 0.952 0.973
ResNet50 0.822 0.953 0.973

i.e., lower FPS compared to one-stage networks. Experiments
show that with α = 0.25, detection performance is about 3%
less accurate while increasing inference speed about 1.5 times.

For all experimented networks, optimal detection perfor-
mance is obtained by larger input size (i.e., 300 × 300),
while best FPS is obtained with smaller input size (i.e.,
200× 200). With a smaller square input size, using OpenCV
at inference always guarantees the best inference speed. If
detection accuracy is not the top priority, using a small value
of the α, smaller input size, and lighter model is suitable for
faster and memory-efficient detection.

We measured the performance of two keypoint detection
methods on the AFLW dataset. During the training, keypoint
detection models were optimized based on the detected facial
area with ground-truth keypoint labels.

Experiments on O-Net [17] based CNN alignment gives
better alignment accuracy and inference speed as shown in
Table II.

B. Facial Similarity

Our facial similarity system aims at finding the most similar
face, and the rank-1 accuracy is a preferable evaluation metric.
Table III shows the mAP, rank-1 accuracy, and rank-5 accuracy
of facial similarity models trained with categorical cross-
entropy loss on the aligned images from the CelebA dataset.
The rank-1 accuracy of MobileNet reaches 94.0% which
is slightly inferior to VGG16 and ResNet50, while using
MobileNet is computationally lightweight.

C. Age, Gender and Expression Recognition

Table IV shows the accuracies of the different tasks included
in our system. The speed test of each task on two different
environments indicates that in the same environment, there
is no significant difference between the network in terms of
inference speed. However, the multitask network appears better
considering the total inference time for three tasks.

The experimental results on our multitask network for age
estimation, gender, and smile recognition with different back-
bone networks are reported in Table V. The best performing
multitask network gives 5.35 years age MAE which is slightly
higher than the best performing individual age network. Also,
gender and smile accuracies obtained from the best performing
multitask network are slightly less accurate than the individual
networks. EfficientNet [11] networks give better age MAE and
recognition accuracies, but they are computationally expensive.
As our computational budget is limited, and we cannot use a
combination of many networks.



TABLE IV
ACCURACIES AND INFERENCE SPEED AT DIFFERENT STAGES IN OUR

SYSTEM. THE DEPTH MULTIPLIER α = 1.0 IS USED IN ALL
MOBILENETV1 NETWORKS.

Stage
Network Accuracy FPS

CPU
FPS

1050 TI
FPS

1080 TI

Age
MobileNetV1 4.9 MAE 31.61 148.90 147.44

Gender
MobileNetV1 88.3% 31.48 150.45 149.75

Smile
MobileNetV1 87.2% 31.46 148.84 148.78

Multitask
MobileNetV1

5.67 MAE
84.2% Gender
83.6% Smile

29.80 147.06 147.20

Multitask
EfficientNetB0

5.35 MAE
87.5% Gender
86.0% Smile

25.61 143.35 144.24

TABLE V
PERFORMANCE COMPARISON OF THE MULTITASKING
NETWORK WITH DIFFERENT BACKBONE NETWORKS.

Network Age Gender Smile FPS
MAE Acc(%) Acc(%) CPU

VGG16 7.20 84.0 84.1 27.75
ResNet50 6.42 82.1 81.2 27.06
ResNet18 6.02 82.4 82.8 29.63
MobileNetV1 5.67 84.2 83.6 29.80
EfficientNet B0 5.35 87.5 86.0 25.61
EfficientNet B1 5.07 87.8 86.8 22.72
EfficientNet B7 4.37 89.5 87.3 14.63

We can set up a system with a combination of a lighter
detection model and a faster multitask network if the network
accuracies are not the top priority. This way, real-time inference
speed can be achieved on the CPU while slightly compromising
each task’s accuracy.

VI. CONCLUSION

We present a system-level design of a human facial analysis
system with a multi-threaded architecture to reach real-time
operation on resource-limited devices. We describe individual
components of our system, integrating several standard machine
learning components with an extensive set of experiments
on each task. Users can switch specific task networks from
the list of available options on the fly. The demo system
has been presented several times in public locations. It has
shown its value in illustrating the potential of modern machine
learning in an easy-to-approach use case working on many
levels. Moreover, this system can be used in the surveillance
system by adding an alarm function that triggers once the
detected face is matched with the suspect’s faces on the query
dataset. Additionally, the system can be used as a reference
and baseline for related applications.
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