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Abstract—We propose an optimization method coupling a
learned denoiser with the untrained generative model, called
deep image prior (DIP) in the framework of the Alternating
Direction Method of Multipliers (ADMM) method. We also study
different regularizers of DIP optimization, for inverse problems in
imaging, focusing in particular on denoising and super-resolution.
The goal is to make the best of the untrained DIP and of a
generic regularizer learned in a supervised manner from a large
collection of images. When placed in the ADMM framework,
the denoiser is used as a proximal operator and can be learned
independently of the considered inverse problem. We show the
benefits of the proposed method, in comparison with other
regularized DIP methods, for two linear inverse problems, i.e.,
denoising and super-resolution.

Index Terms—inverse problems, deep image prior, ADMM,
denoising, super-resolution

I. INTRODUCTION

Inverse Problems refer to a broad class of problems that can
be encountered in many computer vision and image processing
problems. The task in inverse problems is to reconstruct a sig-
nal from observations that are subject to a known (or inferred)
corruption process known as the forward model. Examples of
inverse problems are denoising, de-blurring, super-resolution,
and reconstruction from a sparse set of measurements. To
address inverse problems in 2D imaging, that are typically
ill-posed, one has to incorporate some prior knowledge on the
kind of typical images we try to restore, which helps restricting
the class of admissible solutions.

Early methods for solving inverse problems have been suc-
cessfully using handcrafted priors such as sparsity or smooth-
ness priors. However, in parallel, task-specific deep neural
networks learning the mapping from the measurements to the
solution space, have indeed been shown to give significantly
higher performances for a variety of applications, e.g., sparse
signal recovery [!], deconvolution and deblurring [2], [3], [4],
[5], [6], super-resolution [7], [8], [©], and demosaicing [10].
However, it is necessary to learn one network for each type
of problems and these networks in general have a very large
number of parameters, hence require a very large amount of
training data.

The field has hence recently evolved towards coupling clas-
sical optimization and deep learning techniques, by using more
complex models learned from very large collections of images,
instead of simple hand-crafted priors for regularization. In this
vein, Chang et al. [11] propose a framework for training a
single neural network for solving all linear inverse problems
using projected gradient descent. The network serves as a
quasi-projection operator for the set of natural images. The
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projection operator is learned using adversarial learning: a
classifier D that fits the decision boundary of the natural image
set is used to train a projection function P that maps a signal
to the set defined by the classifier. The proposed projection
operator is integrated to an Alternating Direction Method of
Multipliers (ADMM) algorithm in order to solve arbitrary lin-
ear inverse problems. In the plug-and-play ADMM approach
[12], the proximal operator of the regularizer is replaced
by a traditional denoiser such as BM3D. More recently, the
method in [13] uses instead a trained CNN denoiser and solves
the problem using the HQS proximal algorithm. A learned
proximal operator can also be used to push the estimate in the
proximity of a regularized solution. The proximal operator can
take the form of a denoising autoencoder [ 1], [14], [15], or
the proximal operator for a regularizer [16]. The authors in
[17] learn a generative model of the image space of interest
from a collection of training images. The images of interest
are assumed to lie on a low-dimensional sub-manifold that can
be indexed by an input low dimensional vector.

In parallel, the Deep Image Prior (DIP) has been introduced,
as an untrained generative model, to solve inverse problems in
image processing, i.e., using no prior information from other
images [ 18, 19]. This approach however may suffer from over-
fitting to the input measurements, hence the need for early
stopping of the optimization, and for regularization. While the
original DIP method for solving inverse problems models the
set of possible solutions, the authors in [20] instead consider
the DIP as a regularizing energy function. Liu et al. [21]
introduced a TV constraint regularization when optimizing the
DIP to match the observed measurements. Cascarano et al.
[22] use the ADMM optimization algorithm to solve the TV-
regularized DIP optimization learning problem. While these
regularized DIP based solutions avoid having to train a model
from a very large collection of images, they under-perform
compared with task-specific deep neural networks. To cope
with overfitting of the DIP to the input measurements, in
particular in the presence of noise, due to the very large
number of parameters, the authors in [23] incorporate prior
information to regularize the network weights.

In this paper, we study different methods for regularizing
the estimate produced by the generative model. While, in
the literature, regularization constraints used when optimizing
the DIP model are mostly based on handcrafted priors, we
consider here a learned regularizer. The goal is to couple
advantages of the DIP only optimized from the input image,
with those of a generic prior learned from a large collection of
images. In that aim, we solve the DIP optimization within the
ADMM algorithm in order to use a learned denoiser that plays
the role of a proximal operator for regularization. Hence, we
refer to this method as DIP-denoiser-rADMM. Experimental
results show that for super-resolution, the use of the learned
denoiser with ADMM better regularizes the DIP than TV



regularization either applied also within ADMM or with a
simple gradient descent. The results also show the benefit
brought by the generative model (DIP) beyond a direct solution
of the inverse problem in an ADMM framework with the same
learned proximal operator (i.e. denoiser). For the denoising
task, as expected, the direct application of the denoiser remains
better than the proposed DIP-denoiser-rADMM. Nevertheless,
only a small difference is observed, showing that our method
reaches high performance for the two problems of super-
resolution and denoising with a unique (hence generic) learned
proximal operator.

II. NOTATIONS AND PROBLEM STATEMENT

Inverse problems refer to the problems of reconstructing a
clean image = € R? from a set of degraded observations, and
can be formulated by a linear equation of the form

y=Azr+n (1)

where y € R™ denotes the input observations, A € Rmxd

represents the degradation operator and n € R™ typically
represents Additive White Gaussian Noise (AWGN). The
degradation matrix A is problem dependent. For example, in
the classical problem of image denoising, A is simply the iden-
tity matrix. In super-resolution, A represents the blurring and
down-sampling operators, whereas in compressive sensing, A
is a short-fat matrix with more columns than rows. In general,
inverse problems are ill-posed because rank(A) < d, that is
why we use priors in order to find the optimal solution by
solving the optimization problem:

N 1
T = argmin §Hy—Aa7H2—|—/\¢)(z) (2)

composed by a data fidelity term and a regularization term
representing the chosen signal prior. The former enforces the
similarity with the degraded measurements, whereas the latter
reflects prior knowledge and a property to be satisfied by
the searched solution. The non-negative weighting parameter
balances the trade-off between the two terms.

Eq. 2 can be interpreted as the Maximum A Posteriori
(MAP) estimation of the clean image x from the observed
data y. The MAP maximizes the posterior distribution p(z|y)
that can be expressed using the Bayes formula as p(z|y) =

%. The MAP estimate is thus derived as:
Tpmap = argmax p(zly) = argmax p(y|x)p(x),

= arg;nin —log(p(y|z)) — log(p(x)), ©)

where p(y|z) and p(z) are respectively the likelihood and the
prior distributions. In the assumption of an Additive White
Gaussian Noise n with standard deviation o, the likelihood
—Ax
is expressed as p(y|z) = e~ _ ”2. Hence, by applying the
negative logarithm it becomes evident that Eq. 3 is equivalent
to Eq. 2 where A = o2 and the regularizer is the negative
logarithm of the prior distribution, i.e. ¢(x) = —log(p(x)).
Note that for solving Eq. 2, proximal algorithms such as
ADMM do not evaluate the regularization term explicitly, but
instead require its proximal operator:

1
proxyg(u) = argmin 5 2 —ul|* + X p(x) 4)

It can be seen that the proximal operator definition is a
particular case of inverse problem, where A is simply the

identity matrix. Here, the forward model only consists in
adding white Gaussian noise. Hence the proximal operator
is a Gaussian denoiser in the MAP sense. This property is
exploited in plug-and-play methods such as [13, 12] that solve
Eq. 2 with a proximal algorithm by replacing the proximal
operator with an existing denoiser (e.g. BM3D, trained CNN),
instead of defining an explicit regularizer ¢. The proposed
approach also exploits this idea in combination with the DIP
method in [18].

III. REGULARIZED DEEP IMAGE PRIOR: BACKGROUND

While many supervised learning solutions have been pro-
posed for solving inverse problems, we consider here a non
supervised method, the deep image prior (DIP) introduced
by Ulyanov et al. [18, 19], which can be seen as an image
generative model. The deep generative model x = fgo(2) is
learned by mapping a random code vector z to an image X,
i.e., by solving

o1 N
O cargmin 5 || Afo(z) ~yl;  st.2" = for(z) (5

where O represents the network parameters. The generator is
randomly initialized with variables ©, which are optimized
iteratively in a way that the output of the network is close
to the degraded measurements. In most of the applications, a
U-Net type architecture with skip-connections is used, having
over 2 million parameters.

A. TV-regularized DIP

Liu et al. [21] introduced a TV constraint regularization
when learning the DIP, which is defined as

TV(w) = 3"/ (Dyu)? + (D,w? ©®)

The variables Dy, and D,, denote the first order finite difference
discrete operators along the horizontal and vertical axes.

In fact, || Afo(z) — y||§ in Eq. 5 can be seen as the data fidelity
term in Eq. 2, thus the DIP can be regularized with total
variation, yielding the following optimization problem:

0 € argmin ; [Afo(z) ~ ull3 + A TV(fo-(2)
st " = for(z)

The objective function is minimized using gradient-based
optimization method in [21] and ADMM in [22]. Another dif-
ference between these 2 works is that in DIP-TV, anisotropic
TV is used, decoupling the contribution of both horizontal and
vertical gradient components, whereas ADMM-DIP-TV uses
isotropic TV, jointly considering the gradient components.

)

B. Denoiser-based DIP regularization

Another approach to boost the performance of the DIP is
proposed in [24], bringing-in the concept of Regularization
by Denoising (RED) [25], which uses existing denoisers for
regularizing inverse problems. RED proposes to regularize
inverse problems with the following regularization term:

@) = 52"l — (@) ®

where f is the denoiser applied on the candidate image x,
and the penalty induced is proportional to the inner-product
between this image and its denoising residual.



IV. REGULARIZING THE DIP WITH A LEARNED DENOISER

The proposed method is inspired from methods coupling
optimization with learned regularizers [11, 13], but instead,
we consider the problem of learning the DIP, regularized by a
learned denoiser. Consider the problem of regularizing the DIP
optimization with a learned regularizer, therefore minimize:

O =argmin

Sy — Afo ()3 + 2 6(x)
O,z

subject to  x = fo(z)

€))

where ¢ is a learned prior. For simplicity, we will note
t = fo(z) in the following. The augmented Lagrangian form
of Eq. 9 can be written as:

1
Lix,t,u) = S|4t —yll5 + X o) + § |l — ¢ +ul3 (10)

with p being a positive penalty parameter of the constraint,
and u the scaled dual variable. This minimization problem
is solved using the iterative ADMM method. By alternativel
optimizing z, ¢t and u of the augmented Lagrangian L(x, ¢, u{
the ADMM iterate reads as

o1

= f@k+1 (Z) with

2
O+ = argmin lly — Afo ()3 +p [o* — fo(2) +ut[, A

k1

12)
(13)

As discussed in Sec. II, signal priors are found in the form

of proximal operators in ADMM and can be interpreted as

Gaussian denoisers. Here, the x-update in Eq. 12 can be

rewritten as Ty = Proxax ¢(tk+17uk). Hence, we propose

to replace proxaa P with the learned denoiser from [13]. We
P

thus get

2 2\
= argmin ’z — gkt 4 ukHZ + —o¢(x)
w p

e I e

:Ck“rl — Dg(tk+17uk) (14)

with D, being the learned denoiser [!3] assuming a noise
standard deviation o = 22, The denoiser takes the parameter
o as input and was trained using o values in the range [0, 50].
This way, it is applicable for all noise levels in this range
while keeping optimal denoising performance for each noise
level o. It is worth noting that since ADMM separates the
regularization term ¢ from the degradation matrix A, the
learned proximal operator can be used with any linear operator.

In practice, Eq. 11 can’t be solved exactly due to the non-
linear DIP fo(z). Furthermore, the DIP should not overfit the
exact solution in order to provide an additional regularization
effect in complement to the denoiser. Therefore, we solve
Eq. 11 inexactly by performing a fixed number np;p of gra-
dient descent iterations. For the initialization, we optimize the
DIP using the original method [18] which performs gradient
descent to optimize Eq. 5. A number n;,;; of iterations is used
for this initialization, followed by n4pasas iterations of the
ADMM scheme.

V. EXPERIMENTS

In this section, we reproduce the results of [18, 19, 21, 22]
on the images of Figure 1 for the problems of denoising and
super-resolution and compare them with our proposed method.
We also compare the results with the denoiser [13] that we
use in our algorithm. In [22], authors use isotropic TV and
analyze the addition of ADMM by comparing with anisotropic
TV in [21]. For the sake of a fair comparison between [21]

(d) Cameraman

(e) Butterfly

(f) Hill

Fig. 1: The set of images used for the numerical experiments.

and [22], we reproduce the anisotropic version of both of the
methods. Table I shows the parameters used for the proposed
method for each of the cases of denoising and super-resolution.
Figures 2 and 3 show the outputs of denoising with a noise
standard deviation oy = 20 and super-resolution of factor 4
respectively. Tables II and III show the best PSNR along all
iterations for each of the compared methods for denoising
and super resolution respectively. For denoising (Table II),
we can see that, our proposed method significantly improves
the result of the DIP. Hence, as expected, learned regularizers
outperform handcrafted regularizers when regularizing the DIP
optimization. However, the learned denoiser itself performs
better alone, and the DIP does not have an added value in this
case. This was expected in the case of denoising, since the
network is learned end-to-end for the denoising task.
However, for the task of super resolution (Table III), we
have a different outcome. In fact, we can see again that regular-
izing with a learned denoiser over the DIP optimization gives a
better performance than using handcrafted priors. But also, as
opposed to what we got for the denoising, combining the DIP
with the denoiser improves the performance of the learned
regularizer alone, which makes our proposed method better
than the other ones in this case. It is important to note that the
degradation filter for the task of super resolution is a Gaussian
filter of standard deviation oy = 0.5 for both x4 and x8 super-
resolution factors. More visual results can be seen on the web
page: http://clim.inria.fr/DeepCIM/Regul-DIP/index.html

VI. CONCLUSION

In this paper, we showed the advantages of using a learned
denoiser to regularize the Deep Image Prior optimization for
inverse problems. The proposed denoiser based regulariza-
tion compares favourably with handcrafted priors and remain
generic, since it can be applied to different inverse problems
using an ADMM formulation. We also show that in the context
of super-resolution, the use of Deep Image Prior improves on
the classical ADMM formulation with the same denoiser based
regularization.
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