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Abstract—Recent years have witnessed the rising of short-
form video platforms such as TikTok. Apart from conventional
videos, short-form videos are much shorter and users frequently
change the content to watch. Thus, it is crucial to have an
effective streaming method for this new type of video. In
this paper, we propose a resource-efficient prefetching method
for short-form video streaming. Taking into account network
throughput conditions and user viewing behaviors, the proposed
method dynamically adapts the amount of prefetched video data.
Experiment results show that our method can reduce the data
waste by 37 ∼ 52% compared to other existing methods.

Index Terms—Short-form Video Streaming, Prefetching, Data
Wastage

I. INTRODUCTION

Video streaming is one of the most important mobile appli-
cations nowadays. According to [1], video traffic accounts for
69% of the total mobile network data traffic as of 2021, and is
predicted to increase to 79% by 2027. In recent years, we have
witnessed the rising of short-form videos, whose duration is
typically a few minutes or shorter. Short-form video platforms
such as TikTok is attracting millions of users sharing various
types of user-generated short-form videos [2].

Short-form videos are different from conventional videos in
many aspects. Especially, viewers have a limited control over
not only video playback but also video content. Based on vari-
ous input data such as the user’s past viewing behaviors, short-
form streaming platforms continuously recommend videos to
users [3]. The user agent then downloads the recommended
videos from a streaming server. In short-form video streaming,
the videos are always displayed in a full-screen mode, and
the playback controls such as pause, resume are typically
not available. To stop watching the current video, users need
to scroll to the next or previous video. In the event of
scrolling, previously downloaded data of the current video is
discarded [4].

So far, just a few efforts have been made to optimize short-
form video streaming over resource-constrained networks.
Recent measurement studies found that commercial short-
form video platforms employ a simple streaming approach
where videos are sequentially downloaded to the user device.
Unfortunately, this approach causes a significant waste in the
network resource [4]. To tackle this problem, buffer-based
streaming approaches have been proposed [5]–[7]. The main
idea is to constraint the amount of prefetched video data to

reduce data wastage when users scroll to the next video. The
previous studies employ deep learning approaches to learn the
optimal value of the required buffer size. The primary problem
with these approaches is that a huge amount of user data (i.e.,
user scrolling behaviors) must be collected in order to train
the deep learning model. In practice, collecting user data is
a non-trivial task when there are more and more user data
protection laws such as GDPR [8] are being applied.

In this paper, we propose a novel resource-efficient prefetch-
ing scheme for short-form video streaming over mobile net-
works. The proposed method has the following key features:

• First, our method is simple and requires only local user
data. The buffer size is dynamically adapted according to
network conditions to jointly minimize data wastage and
re-buffering times.

• Second, parallel prefetching is employed to prefetch
video segments of not only the current video but also
next videos in the playlist. This can significantly reduce
the start-up delay when users scroll videos.

Trace-driven evaluation shows that the proposed method can
significantly reduce the data wastage, the re-buffering time and
start-up delay. The remaining of the paper is structured as fol-
lows. A summary of related studies is presented in Section II.
An overview of short-form video streaming problem is given
in Section III. The proposed method is given in Section IV,
followed by an evaluation in Section V. Finally, the paper is
concluded in Section VI.

II. RELATED WORK

Recent measurements on commercial short-form video shar-
ing platforms have found that a significant amount of video
data is wasted in practice [4], [7]. This is mainly because of
the simple video download strategy adopted by commercial
platforms. In particular, videos are downloaded in sequence
and the download of the next video begins only after the
download of the current video has been complete. To address
this problem, existing works have proposed machine learning-
based methods [5]–[7], [9], [10].

In [10], the authors proposed an adaptive prefetching ap-
proach (APL) to minimize the waste and the stall time of
short-form video streaming. At each consecutive time slot, the
video downloader chooses which video to download for an
amount of time. The result is evaluated based on predicting
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users’ watching time of the past videos. The authors used a
sliding window to predict the viewing duration according to
the maximum of 5 videos in the past. The problem of this
solution is that the sliding window has too few arguments
to predict thus giving a unconvincing predicting results and
led to poor implementation of different users behaviors. The
LiveClip proposed in [7] deals with the existing problem of
the APL method [10]. The authors eliminate the old sliding
window method and replace it with the reinforcement learning
algorithm to predict user viewing duration. This approach thus
gives a much more precise result in the expected watching
duration. Since the users’ short-term viewing is highly pre-
dictable, the waste time is reduced significantly in comparison
with the APL method.

In [5], the authors propose a wastage-aware short-form
video streaming method (WAS). In the WAS method, the
download of the next segment is scheduled so that the buffer
occupancy at any given time is always lower than a threshold.
This can help reduce the data wastage in case the user switches
from one video to another one during the playback process.
In addition, borrowing the idea of Bitrate Adaptive Streaming,
WAS dynamically adjusts the video bitrate based on the
available throughput. For that, multiple versions with different
bitrates of a video are prepared and stored in the server in
advance. The main problem with these methods is that they
require a large amount of user data. In practice, collecting
user data is a non-trivial task due to many restrictions. In [6],
the authors proposes DUASVS, a deep learning-based short-
form video streaming method. In DUASVC, once the prefetch
duration of the current video reaches a threshold, the video
player will shift to fetching the next video. An actor-critic
network is trained to decide the threshold. As a result, this
method also requires collecting a lot of training data. Another
problem of these above methods is that they only take into
consideration the expected viewing duration. However, a key
factor that affects the users experience is the start-up delay
and the re-buffering time or the stall time which causes by
the fluctuation of the network, thus the future bandwidth
prediction should also be focused on.

III. OVERVIEW OF SHORT-FORM VIDEO STREAMING

The general architecture of a short-form video streaming
system is shown in Fig. 1a. We consider the scenario in which
a user is watching videos on short-video platforms on his/her
mobile device (e.g., smartphones) over wireless networks (e.g.,
Wifi, 4G/5G). The videos are stored in a HTTP server where
each video is encoded and temporally divided into small
chunks called segments with a same playback duration. To
download a video from the server, the segment downloader of
the user equipment (UE) sends HTTP requests for individual
segments of the video to the HTTP server. Upon receiving
the requests, the HTTP server responses with the requested
segments to the client via HTTP response messages. The
decision on which segment should be downloaded is made
by a decision engine.

(a) System Architecture

(b) User Session

Fig. 1: Short-Form Video Streaming System

After sending the request, the downloader receives the
requested video segment and stores it in the buffer. The player
then decodes the arrived video segments, and displays them
on the UE’s screen. A key characteristic of short-form video
streaming is that users frequently change the content to watch.
In general, users will spend more time on videos of his/her
interest. Especially, users can only scroll to the previous or
next videos. A typical user session is shown in Fig. 1b.

In fact, there are 3 factors affecting Quality of Experience
(QoE) in short-form video streaming. The first factor is video
quality. Because video data is transmitted over HTTP protocol,
quality degradation caused by network packet losses can be
completely avoided. Thus, video quality is dependent on the
encoding process. Variable Bitrate Encoding (VBR) ensures
stable quality across video segments, whereas Constant Bitrate
Encoding (CBR) yields varying video qualities. The second
factor is re-bufferings in which video playback is temporarily
stopped due to lack of video data in the buffer. This problem
happens when a video segment is available at the user agent
later than its playback deadline. The main cause of this prob-
lem is sudden drops under an available network throughput
condition. Re-buffering events have a significantly negative
impact on user-perceived quality of video streaming [11]. The
third key factor is start-up delay, which is the time when a
user scrolls at a video until the playback of the video begins.
Since users frequently scroll videos, low start-up delay is of
especially important to ensure user satisfactory [4]. If one or
more segments of a video have been downloaded already, then
the video can be started instantly without any start-up delay.
Otherwise, users must wait at least until the first segment of
the considered video has been completely downloaded.

In addition to providing high Quality of Experience to
users, short-video streaming systems must also reduce the
data wastage as much as possible. In particular, when users
scroll to previous or next videos, all data of the current
video that already been downloaded will be discarded. Recent
measurements [4], [7] on the commercial short-form video



Algorithm 1: Network-aware Segment Prefetching

1 icur ← 1 ; /* Current video id */
2 while t < T sess do
3 Update value of B1 and K using Eq. (6)(7)(8);
4 if B(icur, tnow) < B1 then
5 Prefetch the next segment of current video;
6 Update buffer size of current video using Eq.

(1);
7 else
8 for k ← 0 to K do
9 if icur + k ≤ N and

B(icur + k, tnow) < B1 then
10 Prefetch the next segment of video

(icur + k);
11 Update buffer size of video (icur + k)

using Eq. (1);
12 break;
13 end
14 end
15 end
16 end

streaming platforms found that nearly 45% of the downloaded
video data is eventually discarded. Such a high ratio of data
wastage is not desirable for not only users but also service
providers.

IV. PROPOSED METHOD

A. Problem Formulation

We define a viewing session as the time from when a user
opens the short-form streaming app to when he/she closes the
app. During the viewing session, the user watches a set of
N videos {v1, v2, . . . , vN} in sequential order. Video vi has a
bitrate of Ri and a playback duration of Li. Video vi is divided
into Mi =

Li

τ segments with τ is the playback duration of a
segment. Let ti (1 ≤ i ≤ N) denote the time the user spends
watching video vi. We also suppose that the user only scrolls
to the next video in the playlist. The playback of a video
can start when the number of buffered segments of the video
reaches an initial threshold B0.

Let Dt = {vt, kt} denote the download decision made at
time t. The buffer size B(vt, kt) of video vt after downloading
segment kt is given by,

B(vt, kt) = max(B(vt, kt − 1)− τRvt

Thrp(t)
, 0) + τ, (1)

where Thrp(t) denotes the network throughput at time t. If
the segment download time is higher than the current buffer
size, then a re-buffering event will occur. The re-buffering time
at segment kt of video vt is thus given by:

I(vt, kt) = max(B(vt, kt − 1)− τRvt

Thrp(t)
, 0). (2)

When the user scrolls to the next video, if there are B0

segments of that video in the buffer, then the playback of
the next video can start immediately. Otherwise, the user
agent must wait until the first B0 segments are completely
downloaded. This delay time is referred to as start-up delay.
The start-up delay D(i) of video vi can be computed as
follows.

D(i) = max(ta(i, B0)− ts(i), 0) (3)

where ts(i) denotes the time the user scroll to video vi
and ta(vi, B0) denotes the time where the first B0 segments
of video vi is completely downloaded. In addition, all the
segments of the current video will be discarded when the user
scrolls to the next video. The amount of discarded data W (i)
of video i is equal to the buffer size at scrolling time ts(s+1).

W (i) = B(vi, t
s(i+ 1)) (4)

To this end, the short-form video streaming problem can be
stated as follows.

Under varying network conditions and dynamic user behav-
iors, decide the prefetch schedule {D(t)} to download videos
in the current playlist so as to maximize the overall quality
OQ which is a function of data wastage, video bitrates, re-
bufferings and start-up delays

OQ = f({R(i), 1 ≤ i ≤ N},
{I(i), 1 ≤ i ≤ N},
{D(i), 1 ≤ i ≤ N}
{W (i), 1 ≤ i ≤ N})

(5)

Because both interruptions and start-up delay have negative
impacts on user QoE, they should be as small as possible in
order to providing high Quality of Experience.

B. Network-aware Prefetching Method

In this part, we present a novel prefetching method for
short-form video streaming to optimize both user’s Quality
of Experience and network resources. The proposed method
is summarized in Algorithm 1. To reduce the data wastage, the
proposed method prefetches segments of the current video so
that the amount of buffered video data at any time is approx-
imately B1 seconds. The buffered video data can also help
mitigating re-bufferings under network throughput reductions.
It can be noted that the smaller the value of B1 is, the lower
the amount of wastage would become. However, choosing
too small value of B1 might result in re-bufferings under
significant drops under a network throughput condition. Thus,
we propose to dynamically adjust the number of prefetched
segments based on recent network conditions. First, the aver-
age network throughput over the last T s is computed.

α =
1

T

T∑
t=tnow−T

Thrp(t) (6)

Here, Thrp(t) denotes the network throughput sample mea-
sured at time t. In our system, a throughput sample is
calculated after a video segment is completed downloaded by



(a) Trace #1 (b) Trace #2 (c) Trace #3

Fig. 2: Network throughput traces.

dividing the segment size to the download time. The number
of prefetched segments B1 is then computed as follows.

B1 =


4, α ≤ 1.5Ri

3, 1.5Ri < α ≤ 2.5Ri

2, otherwise
(7)

It can be noted that, the higher the value of α is, the lower
the value of B1 would become with the minimum buffer size
is two segments. During the streaming session, our algorithm
continuously compares the buffer size of the current video to
B1. If the current buffer size is smaller than B1, then our
method will download next segments of the current video
until the buffer size exceeds the threshold B1. Otherwise, our
method will prefetch a segment of a next video in the current
playlist. This is to facilitate zero start-up delay when users
scroll videos. Specifically, the algorithm considers K videos
next to the current video in the playlist. The next segment
of the first video of which the buffer size is still lower than
threshold B1 will be fetched. Similar to the buffer size B1,
the value of K is also decided using the average network
throughput α as follows.

K =


7, α ≤ 1.5Ri

4, 1.5Ri < α ≤ 2Ri

7, 2Ri < α ≤ 2.5Ri

12, otherwise

(8)

V. PERFORMANCE EVALUATION

A. Experimental Settings

In our experiments, we take into consideration videos that
have a length of 15 seconds with a constant bitrate of 2Mbps
(so that each video has 30Mb in size). The videos are then
individually divided into 1-second-long segments. The initial
buffer threshold B0 is 1 segment. We use three network band-
width traces from mobile networks to simulate real network
conditions as shown in Fig. 2. Each bandwidth trace contains
an array of network-throughput per seconds for 200 seconds.
The first network trace simulates a relatively stable network
with average throughput of 4500Kbps. The second and the
third traces show highly fluctuated networks with average
throughput of 2000Kbps. For the user scrolling behaviors,
since collecting users data is neither easy nor appropriate due
to many restrictions, we simulate these by generating two
user behavior traces with different properties. These two user
traces are generated following Gaussian distribution. The user

behavior trace consists of an array of numbers, each represent
the watching time of the corresponding video in a sequential
order. User trace #1 represents type of user who would likely
to skip videos moderately (the mean and standard deviation
of Gaussian distribution are 12 and 6, respectively). For user
trace #2, it represents people who scroll videos frequently (in
this case, the mean value is 6 and the standard deviation value
is 3). Both user traces have total time of approximately 3
minutes.

The proposed method is then compared with two reference
methods NextOne and Waterfall that can be described as
follows.

• NextOne: In this method, all segments of the currently
viewing video are buffered. The next video will NOT
be buffered until the current video is completely down-
loaded. The number of next videos that will be automat-
ically buffered and stored in the cache is limited to one.

• Waterfall: Similar to the NextOne method, the next
videos will only be downloaded if the current video is
finished downloading. The key difference here is that the
number of next videos that can be buffered is increased
to two.

B. Experimental Results

In our experiment, we measure 3 performance metrics, as
follows:

• Waste time: the video time buffered that the user never
watched by skipping to the next video.

• Start-up delay: The amount of time from the moment
the user switched to the next video until it is playable.

• Re-buffering time: the time that the user has to wait until
the video playback starts.

Figure 3 and Figure 4 show the overall outcome of waste
time, start-up delay and re-buffering time of our proposed
method in comparison with the other two reference methods.
The results can be seen varied based on 3 different throughput
traces. We can observe from the first throughput trace ( i.e.,
throughput trace #1 ) that it has a relatively high throughput
and fluctuates slightly. Therefore, our method clearly outper-
forms both reference methods in terms of all three metrics. The
start-up delay and re-buffering time of our proposed method is
much lower since it reduces up to more than 90% compared to
both NextOne and Waterfall. And the waste time is decreased
by 41 ∼ 49%.

In the second case (i.e., throughput trace #2), the network
throughput fluctuates remarkably, the approximate average
speed is more than 2000Kbps. We can conclude from Figure
3 and 4 that the waste time is reduced by 37% in compar-
ison with Waterfall and NextOne. In this second case, our
method’s result in start-up delay and re-buffering time out-
performs the other two reference methods by 96%.

Finally, throughput trace #3 represents a moderately fluctu-
ating network bandwidth. Because its network throughput in
the first 25 seconds is quite low (less than 2000Kbps), the start-
up delay is inevitable. However, our method can still reduce



(a) Waste (s) (b) Start-up delay (s) (c) Re-buffering time (s)

Fig. 3: Performance of the proposed method and reference methods under user trace #1.

(a) Waste (s) (b) Start-up delay (s) (c) Re-buffering time (s)

Fig. 4: Performance of the proposed method and reference methods under user trace #2.

this value by 33 ∼ 58% in both user trace scenarios (i.e., user
trace 1 and 2). Furthermore, our algorithm is still performing
reasonably good with the remaining 2 metrics. The waste time
of our proposed method in user trace #1 is reduced by 52%,
and in user trace #2 is reduced by 50 ∼ 53%. The re-buffering
time in user trace #1 is quite similar in all methods and in user
trace #2 with faster scrolling speed of user behavior, the re-
buffering time is improved significantly, it is less than 84%
compares to the two reference methods which are Waterfall
and NextOne.

VI. CONCLUSIONS

In this paper, we have demonstrated a method for streaming
short-form videos to users over time-varying networks. Our
proposed method dynamically adjusts the number of buffered
segments according to recent network conditions. Also, the
proposed method prefetches not only segments of the current
video, but also those of next videos in the playlist. Experimen-
tal results show that our proposed method can significantly
reduce the data wastage, re-buffering time, and start-up delay
compared to two reference methods. In future work, we will
develop method for multiple users in a same network.

ACKNOWLEDGMENT

This work was funded by Vingroup and supported by
Vingroup Innovation Foundation (VINIF) under project code
VINIF.2020.DA03 and Competitive Fund from Tohoku Insti-
tute of Technology, Japan.

REFERENCES

[1] “Ericsson mobility report,” https://www.ericsson.com/4ad7e9/assets/local/reports-
papers/mobility-report/documents/2021/ericsson-mobility-report-
november-2021.pdf, Nov. 2021.

[2] “Tiktok,” https://www.tiktok.com, accessed: 2022-04-08.
[3] D. Klug, Y. Qin, M. Evans, and G. Kaufman, “Trick and please. a mixed-

method study on user assumptions about the tiktok algorithm,” in 13th
ACM Web Science Conference 2021, ser. WebSci ’21, Virtual Event,
United Kingdom, 2021, p. 84–92.

[4] Y. Zhang, Y. Liu, L. Guo, and J. Y. B. Lee, “Measurement of a large-
scale short-video service over mobile and wireless networks,” IEEE
Transactions on Mobile Computing, pp. 1–1, 2022.

[5] G. Zhang, K. Liu, H. Hu, and J. Guo, “Short video streaming with
data wastage awareness,” in 2021 IEEE International Conference on
Multimedia and Expo (ICME), Shenzhen, China, 2021, pp. 1–6.

[6] G. Zhang, J. Zhang, K. Liu, J. Guo, J. Lee, H. Hu, and V. Aggarwal,
“Duasvs: A mobile data saving strategy in short-form video streaming,”
IEEE Transactions on Services Computing, pp. 1–1, 2022.

[7] J. He, M. Hu, Y. Zhou, and D. Wu, “Liveclip: Towards intelligent mobile
short-form video streaming with deep reinforcement learning,” in Proc.
of NOSSDAV, Istanbul, Turkey, 2020, p. 54–59.

[8] P. Voigt and A. Von dem Bussche, “The EU general data protection
regulation (GDPR),” A Practical Guide, 1st Ed., Cham: Springer Inter-
national Publishing, vol. 10, no. 3152676, pp. 10–5555, 2017.

[9] J. Guo and G. Zhang, “A video-quality driven strategy in short video
streaming,” in Proceedings of the 24th International ACM Conference
on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
Alicante Spain, 2021, p. 221–228.

[10] H. Zhang, Y. Ban, X. Zhang, Z. Guo, Z. Xu, S. Meng, J. Li, and Y. Wang,
“Apl: Adaptive preloading of short video with lyapunov optimization,”
12 2020, pp. 13–16.

[11] H. T. T. Tran, N. P. Ngoc, A. T. Pham, and T. C. Thang, “A multi-factor
qoe model for adaptive streaming over mobile networks,” in 2016 IEEE
Globecom Workshops (GC Wkshps), Washington DC, US, Dec, 2016,
pp. 1–6.


	I Introduction
	II Related Work
	III Overview of Short-Form Video Streaming
	IV Proposed Method
	IV-A Problem Formulation
	IV-B Network-aware Prefetching Method

	V Performance evaluation
	V-A Experimental Settings
	V-B Experimental Results

	VI Conclusions
	References

