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felix.henry@orange.com

Abstract—Obtaining an accurate depth map of a scene is
very important for major applications like immersive video,
robotics, autonomous driving, and many more. The different
methods to estimate depths can be classified as conventional
and learning-based methods. While these methods have been
studied for their depth accuracy, less attention has been paid to
studying their performance in the use case of depth image-based
rendering (DIBR). Here we study and evaluate two conventional
methods and five learning-based methods for a real-world use
case of immersive video transmission in the context of MPEG-I.
The user-requested views are synthesized using Test Model for
Immersive Video (TMIV) from the depth maps obtained by all
methods and original texture views. The synthesized images are
compared with their original counterparts using various quality
metrics.

Index Terms—depth estimation, deep learning, view synthesis,
immersive video transmission, MPEG-I

I. INTRODUCTION

In conventional video processing, a three-dimensional real-
world scene is represented as a two-dimensional image or a
video. An essential component is lost during this process,
corresponding to the third dimension: the depth component.
Of course, two-dimensional displays are usually sufficient for
many applications. However, applications like autonomous
driving, immersive video, robotics, 3D reconstruction, aug-
mented reality, and biometrics require the third dimension. In
robotics, depth is a principal component to enable performing
tasks like perception, navigation, and planning. The depth
estimation techniques can be broadly classified into conven-
tional and learning-based depth estimators. In conventional
methods, they typically rely on computing the disparity of
each pixel across rectified images by matching corresponding
pixels along the epipolar lines, thus allowing depth estimation
through triangulation [1]. Humans can quickly identify the
approximate size of an object, its location, its disparity and
can infer how far it is from our eyes. This is because our
brain has enabled us to make use of prior knowledge, i.e.,
previously seen scenes, and develop mental models of the
three-dimensional world. In learning-based methods, this prior
knowledge is used to solve the problem as a learning task [2].

In recent years, depth estimation methods have been compared
against each other by their intrinsic capacity to estimate depth
values that are as close as possible to the given ground truth.
The performance measure is a variant of a signal-to-noise ratio
between the estimated and original depth maps. While this
is certainly a very relevant purpose when developing high-
performance methods, depth maps are generally not the final
goal but only a stage in a processing pipeline of a given use
case. The ISO-MPEG-I MIV standard [14, 15], which intends
to facilitate the storage and transmission of immersive video
content (for AR/VR applications), requires a non-normative
depth estimation component to perform view synthesis. While
we participated in the MIV standard, we noticed that re-
searchers tend to assume that learning-based depth estimation
would soon outperform the conventional depth estimators that
are currently used. Therefore, it is important to inform the
community about the real performance of these approaches
for this essential use case. Hence, in this paper, we study
the performances of two state-of-the-art conventional depth
estimation methods and five state-of-the-art learning-based
depth estimation methods for a specific use case of immersive
video synthesis. In this use case, videos are captured from
several viewpoints of a scene (typically 10 to 20). These videos
are used to construct the depth map associated with each view.
Using DIBR techniques [3], any additional viewpoint can be
synthesized. Our goal is to compare the impact of the different
depth estimation methods on the quality of the synthesized
views. The rest of the paper is structured as follows: Section
2 summarizes the studied depth estimation methods, Section 3
introduces MPEG-I test sequences used for evaluation, as well
as the experimental setup and analysis. Finally, the obtained
results, discussion, and conclusion are in Section 4 and Section
5, respectively.

II. DEPTH ESTIMATORS

A. Conventional depth estimators

These first-generation depth estimation methods solely rely
on matching pixels across multiple rectified images. For our
analysis, we have selected two state-of-the-art depth estimators
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that have been used in the MPEG standardization group, Depth
Estimation Reference Software (DERS) [4] and Immersive
Video Depth Estimation (IVDE) Software [5, 6]. In DERS,
the error cost for each pixel in the center view and possible
depth are computed by combining errors of all neighboring
views (left, right, top, bottom). Finally, it is subjected to
optimization through graph cuts to get the optimal depth
estimation per pixel. In IVDE, the depth estimation is carried
out simultaneously on all the input views. Instead of estimating
depth for each pixel, it is estimated for segments, where
the segment is a small homogeneous patch of the image.
Hence, processing time and the quality of the depth maps are
dependent on the size of the segments. Finer segments attain
high-quality depth maps, whereas larger segments provide
faster computation. Currently, in MPEG immersive video, the
depths of five out of six natural sequences are generated by
IVDE.

B. Learning-based depth estimators

These are the second generation of depth estimation meth-
ods based on neural networks. For our analysis, we have se-
lected two stereo based depth estimators, Guided Aggregation
Network (GA-Net) [7] and Group-Wise Correlation Network
(GWC-Net) [8], and two multi-view stereo (MVS) based
depth estimators, Depth Inference for Unstructured Multi-view
Stereo (RMVSNet) [9] and Adaptive Aggregation Recurrent
Multi-view Stereo Network (AA-RMVSNet) [10]. We have
also included a state-of-the-art learning-based synthesizer,
IBRNet [11], in our experimentation, as it can be used as
a depth estimator.

The stereo-based depth estimators can be broadly classi-
fied as encoder-decoder with 2D convolution (ED-Conv2D)
[12] and cost volume matching with 3D convolution (CVM-
Conv3D) networks [13]. ED-Conv2D methods use an encoder-
decoder structure for the neural network. The encoder pro-
duces a cost volume with Weight x Height x Disparity dimen-
sion, with a cost associated with each disparity per pixel, and
the decoder part predicts the disparity based on the cost vol-
ume. The ED-Conv2D methods are computationally efficient
but are limited in performance efficiency. To overcome the
accuracy problem in disparity estimation, researchers proposed
CVM-Conv3D networks. Firstly, the left and right feature
maps of stereo pairs of images are computed. Then, a 4D cost
volume is constructed, which has the feature map dimension
in addition to the other dimensions. This forces the neural
network to extract the features that are more relevant to solve
the disparity estimation problem. For our analysis, we have
selected two CVM-Conv3D models, GA-Net and GWC-Net.

A typical learning-based MVS network consists of three
parts, a feature extraction network, a cost volume constructor,
and a cost volume regularization network. Firstly, using a
shared convolutional neural network (CNN), it extracts a
feature representation of each input image. The information
obtained from the feature maps is aggregated to form a 3D cost
volume for depth regularly sampled between the depth range
(it is usually provided with the dataset). The cost volume only

Sequence Type Resolution Frames Views
Frog Natural 1920x1080 300 13x1

Kitchen Synthetic 1920x1080 97 5x5
Shaman Synthetic 1920x1080 150 5x5
Painter Natural 2048x1088 350 4x4
Street Natural 1920x1088 250 9x1

Carpark Natural 1920x1088 250 9x1
Fan Synthetic 1920x1080 97 5x3

Mirror Synthetic 1920x1080 97 5x3

Table 1. The MPEG-I visual test sequences used for evaluation along with
their nature, resolution, and the number of frames utilized for tests.

encodes local information. A further step of 3D convolutions is
then performed to propagate this local information. The depth
map is finally extracted from the refined cost volume using
a differentiable argmin operation. The main disadvantage of
MVS networks is that they cannot handle high-resolution
images since the memory demand of learning cost volume
regularization rises with the model’s resolution. Also, it should
be noted that these models do not use any specific data
augmentation and produce depth maps that are four times
smaller than the original input. For our analysis, we have
selected two learning-based MVS depth estimators: RMVSNet
and AA-RMVSNet.

Recently, texture-based synthesizers which render the re-
quested view directly from the captured views have emerged
as a very promising area of research. They are capable
of rendering high-resolution views with good generalization
properties. We have therefore adopted IBRNet as the final
method in our tests. It shares principles with the neural
rendering method NeRF [25], where it directly aggregates
information from nearby images to synthesize views and
involves volume rendering along a camera ray. Currently, it
is a state-of-the-art learning-based view synthesizer and can
be used to generate depth maps.

III. EXPERIMENTAL SETTINGS AND ANALYSIS

For our study, we used the test sequences of the MPEG
Common Test Conditions [16]. Table 1 shows the list and
characteristics of the sequences. We only consider perspective
and rectified content for the analysis, as most pre-trained
models are trained on such datasets. The MPEG-I dataset is
comprised of multi-view sequences captured by sparse camera
setup. Our experiment aims at comparing the depth estimation
methods described in Sections 2 and 3 for the specific use case
of view synthesis using depth-based image rendering (DIBR).
To this end, we will use the setup of the TMIV software [14,
15]. TMIV is the reference software implementing the non-
normative encoding, normative decoding, and non-normative
rendering techniques according to the MPEG Immersive Video
coding standard (MIV). For our study, a subset of the tools
of the TMIV processing chain is used. Only the decoder
pipeline is used by replacing each view’s decoded texture
and depth component with the original texture and our tested
depth component, respectively. The camera parameters from
the bitstream are used to perform view synthesis using a



Sequence 1 2 3 4 5 6 7
Frog 805.9 486.0 16.9 1.8 5.6 47.3 165.7

Kitchen 796.1 410.8 16.7 1.6 5.3 47.1 164.8
Shaman 823.3 504.3 18.1 1.7 5.4 47.7 165.9
Painter 801.4 435.7 16.8 1.7 5.3 47.2 165.3
Street 704.3 320.4 16.2 1.4 5.0 46.2 163.5

Carpark 789.5 358.2 16.4 1.5 5.1 46.9 164.1
Fan 892.3 572.7 22.4 2.5 6.4 47.3 167.3

Mirror 852.5 530.6 16.9 1.9 6.2 47.1 165.4

Table 2. Comparison of runtime in seconds per frame for depth estimation.
1:DERS, 2:IVDE, 3:GA-Net, 4:GWC-Net, 5:RMVSNet, 6:AA-RMVSNet,

7:IBRNet.

view weighting synthesizer. The inputs to the renderer are 10-
bit texture and 10-bit depth (normalized disparities), camera
parameters list, and finally, the target camera parameters for a
perspective viewport. The output of the renderer is a perspec-
tive view. The synthesized output view is provided in luma and
chroma 4:2:0 format with 10-bit support for texture. In order to
evaluate the performance of the synthesis, and for each of the
tested sequences, we synthesize the viewport at the location
and angle of an existing view. Of course, this existing view is
excluded from the list of input views available for synthesis.
This is performed for all views at all time instants of the video.
Both DERS and IVDE use the configurations recommended by
the Common Test Conditions of MPEG. We used DERS 8.0,
IVDE 1.0, and TMIV 4.0 software versions for our evaluation.
The GA-Net and GWC-Net produce disparity maps, which are
subsequently converted into depth maps [17]. Both GA-Net
and GWC-Net used the model pre-trained on the KITTI dataset
[18, 19], and RMVSNet and AA-RMVSNet used the model
pre-trained on the DTU dataset [20] for testing. Evaluation
of IBRNet was conducted in two ways: 1) directly testing
with default model, which is trained using both synthetic [21]
and real data [22, 23, 24], on MPEG sequences without any
fine-tuning, 2) fine-tuning the default pre-trained model on
MPEG content before testing. Due to the modest size of the
MPEG dataset, we have fine-tuned one instance of IBRNet
for each sequence by using all other sequences as training set.
Finally, in order to present a broad comparison that takes into
consideration different types of distortions, the performance of
the synthesis was evaluated using various quality metrics like
Immersive Video PSNR (IV-PSNR) [26] which is designed
to reflect virtual view synthesis artifacts, Learned Perceptual
Image Patch Similarity (LPIPS) [27], which evaluates the
distance between image patches, and the Structural Similarity
Index (SSIM) [28] which is a perceptual metric that quantifies
image quality degradation.

IV. RESULTS AND DISCUSSION

The quality of view synthesis from depth maps produced
by different depth estimators evaluated with various quality
metrics is shown in Table 3. The “original” column cor-
responds to a synthesis done with the original depth maps
provided with the MPEG sequences. These depth maps are
not perfect and are typically estimated offline from the input

Fig. 1. Qualitative comparison of depth maps and synthesized views of
Carpark sequence

views and then further refined “by hand”. As shown in Table
3, results vary from sequence to sequence, and more than
half of the sequences have the best quality for learning-based
depth estimators (GA-Net, fine-tuned IBRNet) in the objective
comparison using IV-PSNR and SSIM. For the LPIPS metric,
IVDE has the best average quality of the synthesized views.
Overall, IVDE produces the best average results in all the
three quality metrics. Both conventional and learning-based
depth estimators have their advantages and disadvantages.
The conventional methods produce noisy depth maps, which
can cause degraded synthesized views (Fig. 1, white box),
but they recover sharp edges of objects. The learning-based
stereo networks produce smooth and “cloudy” depth maps
and generate temporally coherent synthesized views (Fig.
1, red box), but they have difficulty in recovering accurate
boundaries. Indeed, as the output depth maps are four times
smaller than the original input, learning-based MVS networks
fail to recover thin structures. Also, the learning-based MVS
networks are temporally inconsistent and have difficulty recon-
structing accurate boundaries around the moving objects when
compared to conventional methods (Fig. 2, yellow, green and
orange box).

The stereo-based networks are not optimized to produce
good quality depth maps for wide baseline data, and when
tested with such stereo pairs, they fail to produce meaningful
depth maps. It should be noted that the depth maps from IBR-
Net produce better synthesized image quality and recover finer
details for synthetic sequences like Kitchen and Shaman when
the network is fine-tuned with MPEG content (Fig. 2, blue
box). Due to the limitations of our simulation platform and the
large size of MPEG sequences, the other methods could not be
fine-tuned, but a similar behaviour would be expected. Also,
the learning-based methods like GANet, GWCNet require
huge amount of computational resources (eight, 24GB GPUs)
and this is impractical for generating the depth maps needed
for immersive video transmission. Table 2 shows the time
taken to produce one depth map on a GeForce RTX 2080 Ti
GPU except for conventional methods, which only use CPU. It



IV-PSNR ↑
Sequences Original DERS IVDE GANet GWCNet RMVSNet AARMVSNet IBRNet IBRNet(FT)
Frog 36.92 34.96 35.13 35.87 35.29 30.28 34.48 31.52 32.18
Kitchen 40.81 38.46 38.92 39.27 38.63 35.74 37.61 38.64 39.42
Shaman 45.74 41.18 42.06 41.38 41.55 36.79 38.25 40.34 42.28
Painter 45.35 39.37 39.82 38.91 39.67 37.02 39.29 38.14 38.47
Street 41.59 39.61 38.81 40.56 40.08 35.09 39.92 38.94 37.96
Carpark 42.17 39.45 38.29 40.39 39.78 34.78 37.16 37.68 37.41
Fan 37.88 35.13 36.71 34.84 34.29 33.68 34.48 34.92 35.21
Mirror 41.52 38.56 40.46 35.67 35.12 33.46 34.18 36.92 38.18
Average 41.37 38.34 38.77 38.36 38.05 34.66 36.92 37.13 37.65

LPIPS ↓
Sequences Original DERS IVDE GANet GWCNet RMVSNet AARMVSNet IBRNet IBRNet(FT)
Frog 0.118 0.137 0.149 0.134 0.141 0.212 0.178 0.198 0.193
Kitchen 0.112 0.131 0.126 0.129 0.129 0.151 0.140 0.129 0.132
Shaman 0.087 0.102 0.112 0.109 0.106 0.184 0.168 0.119 0.101
Painter 0.091 0.121 0.114 0.132 0.118 0.149 0.125 0.141 0.138
Street 0.109 0.120 0.126 0.125 0.119 0.165 0.112 0.153 0.151
Carpark 0.104 0.124 0.129 0.118 0.128 0.193 0.152 0.148 0.145
Fan 0.105 0.130 0.121 0.135 0.138 0.152 0.141 0.138 0.132
Mirror 0.101 0.118 0.109 0.117 0.130 0.148 0.131 0.128 0.121
Average 0.103 0.124 0.123 0.125 0.126 0.169 0.143 0.144 0.139

SSIM ↑
Sequences Original DERS IVDE GANet GWCNet RMVSNet AARMVSNet IBRNet IBRNet(FT)
Frog 0.864 0.852 0.849 0.856 0.852 0.784 0.817 0.795 0.798
Kitchen 0.912 0.881 0.885 0.892 0.882 0.861 0.872 0.879 0.902
Shaman 0.926 0.916 0.901 0.906 0.912 0.882 0.892 0.915 0.919
Painter 0.920 0.884 0.896 0.882 0.887 0.859 0.879 0.872 0.875
Street 0.915 0.887 0.880 0.894 0.889 0.865 0.881 0.871 0.874
Carpark 0.919 0.879 0.871 0.883 0.880 0.856 0.861 0.868 0.869
Fan 0.904 0.875 0.889 0.872 0.868 0.852 0.856 0.864 0.870
Mirror 0.924 0.889 0.908 0.892 0.889 0.875 0.882 0.885 0.891
Average 0.910 0.882 0.884 0.884 0.881 0.854 0.867 0.868 0.874

Table 3. The comparison of average quality of synthesized views using IV-PSNR (higher means better), LPIPS (lower means better) and SSIM (higher
meansbetter) metrics with respect to the various depth estimators.

DERS IVDE GANet GWCNet RMVSNet AARMVSNet IBRNet IBRNet-FT

Fig. 2. Qualitative comparison of synthesized views of Frog, Street, Shaman and Fan (top to bottom) obtained by using various depth estimators.



can be observed that the GWCNet is the fastest depth estimator
compared to other depth estimators.

Overall, the conventional depth estimators produce better
quality depth maps compared to learning-based depth esti-
mators. The main reason is probably that the learning-based
methods are trained on ground-truth depth maps which are
imperfect (especially for natural content) and this causes
degradation in the quality of depth maps, which in turn
produces artifacts in the synthesized views. Also, the learning-
based methods only try to improve the quality of the depth
maps, but they should rather be trained end-to-end with the
synthesized view quality as loss function, something that is
not feasible due to the synthesis being non-differentiable.

V. CONCLUSION

It is the first time to our knowledge that a comparative
study on conventional and learning-based depth estimation
methods following MPEG Common Test Conditions has been
conducted. Our study is instrumental in determining which
depth estimator to use in immersive video transmission de-
pending on the requirements regarding synthesized image
quality, computational power, and run-time. Our work also
benefits the broader research community in understanding
the behavior of networks to input images captured by sparse
camera setup. We have measured the impact of the different
depth estimation methods on the specific use case of view
synthesis for immersive video. Surprisingly, learning-based
depth estimation is not substantially better than a conventional
approach for this use case. Besides, learning-based methods do
not exhibit the graceful degradation of conventional methods in
difficult areas, such as object boundaries. We believe that fur-
ther exploration is needed in terms of optimizing the networks
for wider-baseline and for high-resolution data. However,
given the relatively short amount of time since learning-based
approaches are used for depth estimation and their already
state-of-the-art performance in terms of depth accuracy, there
is little doubt that they will improve substantially in the near
future for the use case of view synthesis.
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